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Abstract We introduce an efficient preprocessing algorithm to reduce the number of
cells in a filtered cell complex while preserving its persistent homology groups. The
technique is based on an extension of combinatorial Morse theory from complexes to
filtrations.
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1 Introduction

The use of topological methods for data analysis is rapidly growing and persistent
homology is proving to be one of the more successful techniques [1,6,7,10]. Three
fundamental properties account for the importance of persistent homology: (i) being
based on algebraic topology, it provides a well understood codification of potentially
complicated and/or high dimensional geometric information, (ii) the information it
provides is stable with respect to perturbations [3], and (iii) it is readily computable
[4,8,24,34,35]. Our focus is on this last point.

The most common algorithm used for computing persistent homology is presented
in [35] wherein it is remarked that the worst case complexity is of the same order in
time and space as that of computing homology. Subsequent work [21] has reduced
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this complexity to O(nω), where ω is the matrix multiplication exponent. To the best
of our knowledge, there are no known implementations of fast matrix multiplication
besides Strassen’s algorithm [31], which has an exponent ωS ∼ 2.8.

While our work is strongly motivated by the usefulness of persistent homology,
there are instances in which one is interested in computing general homology groups of
filtered complexes. The optimal worst case analysis for current homology algorithms
appears to be super-quartic over general principal ideal domains [12] and roughly
cubical in practice over the integers [5,28,30] with respect to the size of the input
complex. For massive datasets, this can be a severe limitation. Since we know of no
way to improve the worst case complexity of the problem, the strategy we propose
in this paper is to use ideas from combinatorial Morse theory [9] to reduce the initial
complex using geometric and combinatorial methods before applying the algorithms
of [35]. This reduction preserves all homological information in general and persistent
homology groups in particular.

For a heuristic understanding of our approach, consider a complex X (a precise
definition is given in Sect. 2) with a finite nested sequence of subcomplexes X 0 ⊂ X 1

⊂· · ·⊂X K=X . We refer to this structure as a filtration F of X . The inclusions canon-
ically induce maps i k∗ : H∗(X k)→H∗(X k+1) on the homology groups. For each num-

ber p ≥ k, let i k,p∗ : H∗(X k)→H∗(X p) denote the composition i p−1∗ ◦ · · · ◦ i k+1∗ ◦ i k∗ .
When working over field coefficients, it is possible to simultaneously choose bases

of H∗(X k), k = 0, . . . , K such that for each basis element α ∈ Hq(X k) there exists
a well-defined pair of integers bα ≤ k and dα ≥ k + 1 satisfying the following
properties: bα is the smallest integer � so that α ∈ i�,kq (Hq(X �)) and dα is the largest

integer � with i k,�−1
q (α) 
= 0. The pair (bα, dα) indicates the ”birth” and ”death” of

the topological feature identified by α. Observe that if β is the element of Hq(X p)

satisfyingβ = i k,p(α), then (bα, dα) = (bβ, dβ) and hence we identify these intervals.
The collection of these equivalence classes of pairs ranging over all α ∈ Hq(X k) for
k = 0, . . . , K produces the qth persistence diagram for the filtration F .

The complexity of computing the persistence diagram of a filtration F is essentially
determined by the complexes {X k}. Thus, a natural approach for reducing the compu-
tational cost is to perform an efficient preprocessing step that constructs an alternate fil-
tration F ′ consisting of significantly smaller complexes {X ′k}which has the same per-
sistence diagram as F . The same strategy has been adopted to compute homology of an
unfiltered complex [14,19]. Again, we provide a heuristic description of this technique.

In the classical setting, the Morse homology of smooth manifolds is defined in
terms of a complex where the chains are generated by critical points of a smooth
functional and the boundary operator is determined by heteroclinic orbits generated
by the gradient flow of the functional. In the combinatorial setting, the gradient flow
is replaced by a partial pairing on cells in the complex. The unpaired cells generate
the chains in the Morse complex, while the boundary operator is defined via paths
in the cell complex generated by the pairing. The preprocessing algorithm of [14] is
based in part on the coreduction algorithm of [23] and provides an efficient means for
constructing a partial pairing on a given cell complex. As is demonstrated in [13], for
many complexes the resulting Morse complex is many orders of magnitude smaller
than the original. A contribution of this paper is an algorithm that takes a filtration
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F and produces a new, typically much smaller, filtration M such that the persistence
diagram of M agrees with that of F . In Sect. 6 we show that for many examples this
preprocessing step has the advantage of significantly reducing both the computational
time and the required memory for running the persistence algorithm [35].

An outline of this paper is as follows. Section 2 recalls the fundamental ideas and
constructions related to complexes, persistent homology and combinatorial Morse the-
ory. Section 3 provides a categorical construction that allows us to relate the persistence
homology groups of different filtrations. Using this language we prove Theorem 4.3 in
Sect. 4, which establishes that the persistent homology of a given filtration is equivalent
to the persistent homology of an associated Morse filtration. Section 5 contains the pre-
processing algorithm MorseReduce along with our main result which demonstrates
that the output of MorseReduce is a filtration with the same persistent homology as
the input filtration. Finally, Sect. 6 presents experimental results derived from apply-
ing our preprocessing algorithm to a variety of filtrations based on different types of
complexes.

2 Background

In this section we provide a brief review, primarily to establish notation of complexes,
persistent homology and combinatorial Morse theory.

2.1 Complexes

As indicated in the Introduction, our interest in computing persistent homology is
motivated by data analysis. For these problems typically one does not have an a
priori understanding of the structure of the underlying space and thus one works with
abstract complexes which may or may not correspond to a geometric or topological
realization. With this in mind, we use a rather general notion of complex that dates
back to Tucker [32] and Lefschetz [18]. Throughout this paper, R denotes a principal
ideal domain (PID) whose invertible elements will be called units.

Definition 2.1 Consider a finite graded set X = ⊔
q∈Z Xq along with a function

κ : X × X → R and denote ξ ∈ Xq by dim ξ = q. Then (X , κ) is a complex if the
following properties hold.

(i) For each ξ and ξ ′ in X ,

κ(ξ, ξ ′) 
= 0 implies dim ξ = dim ξ ′ + 1. (1)

(ii) For each ξ and ξ ′′ in X ,

∑

ξ ′∈X
κ(ξ, ξ ′) · κ(ξ ′, ξ ′′) = 0. (2)

An element ξ ∈ X is called a cell and dim ξ is called the dimension of ξ . The
function κ is called the incidence function for the complex (X , κ). We denote (X , κ)

123



Discrete Comput Geom (2013) 50:330–353 333

simply by X when there is no possible confusion about the underlying incidence
function. The face partial order � is induced on the elements of X by the transitive
closure of the generating relation ≺ given as follows. For ξ , ξ ′ ∈ X

ξ ′ ≺ ξ if κ(ξ, ξ ′) 
= 0.

By (1), the function dim : X → Z is an order-preserving map.
Consider X ′ ⊂ X and note that the restriction of κ to X ′ × X ′ satisfies (1). If for

each η ∈ X ′ the set {ξ ∈ X | ξ ≺ η} is contained in X ′, then we say that X ′ satisfies
the subcomplex property and call X ′ a subcomplex of (X , κ). Note that Eq. (2) is
automatically satisfied for a subcomplex X ′, and so (X ′, κ) is a complex in its own
right.

Given a complex (X , κ) the associated chain complex consists of the free modules
Cq(X ) := R(Xq), where the basis elements are identified with the q-dimensional
cells ξ ∈ Xq , and the boundary operator ∂q : Cq(X )→ Cq−1(X ) is generated by

∂qξ :=
∑

ξ ′∈X
κ(ξ, ξ ′)ξ ′.

The q-cycles and q-boundaries are defined to be the submodules Zq(X ) := ker ∂q

and Bq(X ) := im ∂q+1 of Cq(X ), respectively and the homology groups are given by
the quotient module

Hq(X ):= Zq(X )
Bq(X ) .

Let φ∗, ψ∗ : C∗(X )→ C∗(X ′) be chain maps. Recall that a collection of module
morphisms � = {�q : Cq(X ) → Cq+1(X ′)} is a chain homotopy between φ∗ and
ψ∗ if

�q−1 ◦ ∂q + ∂ ′q+1 ◦�q ≡ φq − ψq

on Cq(X ). It is a standard result that if φ∗ andψ∗ are chain homotopic—that is, if there
exists a chain homotopy between them—then they induce the same homomorphism
on homology groups. Two chain maps φ∗ : C∗(X ) → C∗(X ′) and ψ∗ : C∗(X ′) →
C∗(X ) are chain equivalences if φ∗ ◦ ψ∗ is chain homotopic to the identity map on
C∗(X ′) andψ∗◦φ∗ is chain homotopic to the identity map on C∗(X ). Observe that this
implies that the induced maps φ∗ : H∗(X ) → H∗(X ′) and ψ∗ : H∗(X ′) → H∗(X )
are mutual inverses and hence isomorphisms. For a detailed discussion and proofs see
[29, Chap. 4] and [25, Chap. 1.13].

2.2 Persistent Homology

Recall that F = {X k | k = 1, . . . K } is a filtration of the complex X if for all k,
X k is a subcomplex of X and X k ⊂ X k+1. The individual complex X k is referred
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to as the kth frame of the filtration. Let i p,k : X k ↪→ X k+p denote the inclusion
map. This induces a natural map on the chain complex, which we also denote by
i p,k∗ : C∗(X k)→ C∗(X k+p).

The p-persistent qth homology group of the kth frame X k is defined to be

Hp
q (X k) = i p,k

q
(
Zq

(X k
))

i p,k
q

(
Zq

(X k
)) ∩ Bq

(X k+p
) (3)

A discussion of the direct computation of these groups for all p, k, and q can be found
in [35] along with an explicit algorithm based on the Smith normal form in the case
when R is a field.

2.3 Combinatorial Morse Theory

Let (X , κ) be a complex over the PID R and denote by ≺ the generating relation of
the face partial order � on X .

Definition 2.2 A partial matching of (X , κ) consists of a partition of X into three
sets A, K and Q along with a bijection w : Q → K, such that for each Q ∈ Q the
incidence κ(w(Q), Q) is a unit in R. We denote this matching by (A, w : Q→ K).

Observe that by Definition 2.1(i) and the unit incidence requirement, we have
dimw(Q) = dim Q + 1 and Q ≺ w(Q) for each Q ∈ Q. Given a partial matching
of X , define a relation� on Q by the transitive closure of the generating relation �
given below. For distinct elements Q, Q′ ∈ Q,

Q′� Q if Q′ ≺ w(Q). (4)

If� is a partial order on Q then (A, w : Q→ K) is called an acyclic matching of X .
In this paper, we are only interested in those matchings which are acyclic.

Remark 2.3 The definition of an acyclic matching (A, w : Q→ K) is clearly related
to earlier presentations of combinatorial Morse theory. See for example the work of
Forman [9], Chari [2], and in particular Kozlov [16,17]. Elements of A are typically
referred to as critical cells in analogy to classical Morse theory. The paired elements
in K and Q are often not explicitly labelled since from a purely Morse theoretic per-
spective they are unimportant objects; it is only the pairing w that plays an essential
role. However, our interest is in using combinatorial Morse theory to develop algo-
rithms that are designed to be applied to complexes arising from experimental or
numerical data sets. In particular, as is explained in Sect. 5 we often iteratively apply
the preprocessing algorithm of this paper to the resulting Morse complex. This has
no analogue in the classical Morse theory and in particular the critical cells of one
complex cease to be critical cells in the next iterate of the algorithm. Similarly, in
some applications (e.g. computing induced maps on homology [14]) it is essential to
be able to recover homology generators in the original complex. For this we need to
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keep track of the paired cells and find it useful to have different labels for the different
elements of the pairing.

Given an acyclic matching (A, w : Q → K) of X , a gradient path is a non-
empty sequence of cells ρ = (

Q1, w(Q1), . . . , QM , w(QM )
)

with Qm ∈ Q such
that Qm 
= Qm+1� Qm for each m. Thus, successive elements from Q in a given
gradient path are strictly monotonically decreasing with respect to the partial order�
and consequently no such path can be a cycle. The initial cell Q1 of ρ is denoted by
qρ ∈ Q and the final cell w(QM ) by kρ ∈ K. The index ν(ρ) of ρ is defined as the
following element of R:

ν(ρ):=
∏M−1

m=1 κ(w(Qm), Qm+1)
∏M

m=1−κ(w(Qm), Qm)
. (5)

Given cells A and A′ in A, a gradient path ρ is a connection from A to A′ if

qρ ≺ A and A′ ≺ kρ . This relationship is denoted by A
ρ� A′. The multiplicity of

this connection ρ is defined to be

m(ρ):=κ(A,qρ) · ν(ρ) · κ(kρ, A′). (6)

Define a new map κ̃ : A×A→ R by the relation

κ̃(A, A′) = κ(A, A′)+
∑

A
ρ�A′

m(ρ), (7)

where the sum is taken over all connections ρ from A to A′ and equals 0 if no such
connections exist.

Theorem 2.4 Let (X , κ) be a complex over a principal ideal domain R. Consider a
fixed acyclic matching (A, w : Q→ K) of X and let Aq := A ∩ Xq . Then (A, κ̃) is
also a complex over R, where A =⊔

q∈Z Aq and κ̃ : A×A→ R is defined by (7).
Furthermore,

H∗(X ) ∼= H∗(A).

The complex (A, κ̃) is called the Morse complex associated to the acyclic matching
(A, w : Q → K) of X and κ̃ is called the associated Morse incidence function.
Theorem 2.4 follows from the work of Forman [9] and has been re-proven in a variety
of contexts [2,14,16,17]. For the purpose of obtaining Theorem 4.3 we have adopted a
slightly different presentation. Thus, to introduce the necessary notation we conclude
this section with a terse outline of the proof which is obtained inductively via the
following reduction step.

Let (X , κ) be a complex with an acyclic matching (A, w : Q→ K). Given Q ∈ Q,
define XQ ⊂ X by

XQ :=X \{Q, w(Q)}
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and the function κQ : XQ × XQ → R by

κQ(η, ξ) = κ(η, ξ)− κ(η, Q) · κ(w(Q), ξ)
κ(w(Q), Q)

(8)

A direct computation shows that κQ is an incidence function, and so (XQ, κQ) is
a complex. In fact, we may view the construction of κQ from κ as a sequence of row
and column operations on the matrix representation of the boundary operator ∂ which
make the unit incidence of Q and w(Q) a pivot.

Observe that the acyclic matching (A, w : Q → K) on X induces an acyclic
matching on XQ of the form (A, wQ : QQ → KQ) where QQ = Q \ {Q}, KQ =
K \ {w(Q)}, and wQ = w |QQ .

Define ψQ∗ : C∗(X )→ C∗(XQ) by

ψQ(η) =

⎧
⎪⎨

⎪⎩

0 if η = w(Q),
−

∑

ξ∈XQ

κ(w(Q), ξ)

κ(w(Q), Q)
ξ if η = Q,

η otherwise,

(9)

and φQ∗ : C∗(XQ)→ C∗(X ) by

φQ(η) = η − κ(η, Q)

κ
(
w(Q), Q

) w(Q). (10)

It is left to the reader to check that ψQ∗ and φQ∗ are chain maps.

Lemma 2.5 The maps ψQ∗ and φQ∗ are chain equivalences.

Proof A direct computation shows that the compositionψQ∗ ◦φQ∗ is the identity map
on XQ . It remains to be shown that φQ∗ ◦ψQ∗ is chain homotopic to the identity on X .
Define� : C∗(X )→ C∗(X ) to be the collection of maps

{
�q : Cq(X )→ Cq+1(X )

}

where

�q(η) =
⎧
⎨

⎩

1

κ
(
w(Q), Q

) w(Q) if η = Q,

0 otherwise.

Again, direct computations show that

�q−1 ◦ ∂q + ∂Q
q+1 ◦�q = ICq (X ) − φq ◦ ψq ,

where ∂Q is the boundary operator generated by κQ and ICq (X ) is the identity map on
the q-chains of X . ��

An immediate consequence of Lemma 2.5 is that H∗(X ) ∼= H∗(XQ). Before con-
cluding the proof of Theorem 2.4 we need the following result which guarantees that
the Morse incidence function remains unaffected by the reduction step.
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Proposition 2.6 Let κ̃Q denote the Morse incidence function of the reduced complex
XQ with the induced acyclic matching (A, wQ : QQ → KQ). Then, κ̃Q ≡ κ̃ on
A×A.

Proof Note that κQ(w(Q′), Q′) = κ(w(Q′), Q′) for any Q′ ∈ QQ by the following
contradiction. From (8), if the difference

κ(w(Q), Q′) · κ(w(Q′), Q)

κ(w(Q), Q)

does not vanish then we have Q′� Q� Q′ by the non-zeroness of the numerator,
which violates the standing assumption that the matching on X is acyclic.

Fix cells A and A′ in A and let ρ = (Q1, . . . , w(QM )) be a connection in XQ from
A to A′. We make the simplifying assumptions that Q ⊀ A and A′ ⊀ w(Q), because
the argument is very similar to the sequel when one or both of these assumptions is
revoked. Now, we have κQ(A, A′) = κ(A, A′), so we only need to show that the
sum-over-connections term of (7) is the same for X and XQ .

Since successive elements of Q in a gradient path are �-decreasing, there is at
most one m ∈ 1, . . . , (M−1)with κQ(w(Qm), Qm+1) 
= κ(w(Qm), Qm+1). If there
is no such m, then the index of ρ—and hence its multiplicity—is the same in both X
and X ′. On the other hand, if there is such an m then there exists a unique augmented
connection ρ+ from A to A′ in X given by

ρ+ = (
Q1, . . . , w(Qm), Q, w(Q), Qm+1, . . . , w(QM )

)

and it is readily verified from (5) that the index of ρ in XQ equals the sum of the
indices of ρ and ρ+ in X . Thus, the sum over all connections of the multiplicities is
preserved in the reduced complex (XQ, κQ). ��

Finally, we provide a brief proof of the central theorem of combinatorial Morse
theory.

Proof of Theorem 2.4 Let {(w(Qi ), Qi ) | i = 1, . . . , I } denote the set of all paired
cells. Define the maps ψ∗ : C∗(X ) → C∗(A) and φ∗ : C∗(A) → C∗(X ) by the
compositions

ψ∗:=
I∏

i=1

ψQi∗ and φ∗ :=
1∏

i=I

φQi∗.

It follows from the reduction step and Proposition 2.6 that the domain and range of
ψ and φ are as indicated. This argument also guarantees that (A, κ̃) is a complex
by induction: we have already assumed that (X , κ) is a complex as the base case,
and demonstrated that removing a cell pair (Q, w(Q)) does not alter the cells in
A and that the resulting sequence of incidence functions converges to the Morse
incidence function κ̃ . Finally, Lemma 2.5 guarantees that the maps ψ and φ are chain
equivalences as desired. ��
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3 Filtered Chain Maps

As Theorem 2.4 indicates, combinatorial Morse theory provides a means by which the
homology of a complex can be computed using a potentially smaller complex. The
main result of this paper is a corresponding result for computing persistent homology
of a filtration. There are two issues that need to be resolved: construction of the
new filtration and demonstrating that the persistent homology is the same for both
filtrations. To clarify the proof of the second issue, we provide a short description of
an obvious categorical structure on the set of filtrations.

Let (X , κ) and (X ′, κ ′) be complexes and let F and F ′ be filtrations of X and X ′
respectively. We are interested in comparing the persistent homology between these
filtrations and thus we turn our attention to chain maps.

Definition 3.1 A filtered chain map � : F → F ′ is a sequence {φk∗ : C∗(X k) →
C∗(X ′k)} of chain maps so that for each k the following diagram commutes.

C∗(X k) C∗(X k+1)

C∗(X ′k) C∗(X ′k+1)

� � ��

��
φk∗

��
φk+1∗

� � ��

Here the horizontal chain maps are induced by inclusions of cells.

A filtered chain map induces a family of maps on homology from H∗(X k) to
H∗(X ′k) for each k. More interesting for the purposes of this paper is the following.

Proposition 3.2 Given a filtered chain map � : F → F ′, there exist well-defined
morphisms φ p,k

q : Hp
q (X k)→ Hp

q (X ′k) of persistent homology groups given by

φ
p,k
q (z) = φk+p

q ◦ i p,k
q (z), z ∈ Zq(X k),

where i p,k
q is induced by the inclusion X k

q ↪→ X k+p
q

The proof follows directly from the commuting diagram of the preceding definition
and the fact that every map in sight is a chain map. Next, we extend the concept of a
chain homotopy to filtrations as follows.

Definition 3.3 Let�,� : F → F ′ be filtered chain maps. A filtered chain homotopy
between � and � consists of a collection of chain homotopies {�k | k = 1, . . . , K }
between each φk∗ and ψk∗ .

If� and� are filtered chain homotopic maps from F to F ′ then the induced maps
φ

p,k∗ : Hp∗ (X k) → Hp∗ (X ′k) and ψ p,k∗ : Hp∗ (X k) → Hp∗ (X ′k) are identical on the
persistent homology groups. This follows from the commuting diagram of Definition
3.1. Finally, filtered chain maps � : F → F ′ and � : F ′ → F are filtered chain
equivalences if � ◦ � and � ◦ � are filtered chain homotopic to the identity. In
particular, we have the following simple proposition.
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Proposition 3.4 If � : F → F ′ and � : F ′ → F are filtered chain equivalences,
then their induced maps on the persistent homology groups are inverses, and hence

Hp
q (X k) ∼= Hp

q (X ′k)

for all p, q, k.

The proof of this proposition for a fixed p and k is a straightforward calculation
which only requires the existence of a chain homotopy�k+p∗ betweenφk+p∗ andψk+p∗ .

4 Filtered Morse Complexes

We begin by extending an acyclic matching of a complex to a filtration. Consider a
filtration F = {X k | k = 1, . . . , K } of a complex (X , κ).
Definition 4.1 A filtered acyclic matching of F comprises an acyclic matching
(Ak, wk : Qk → Kk) for each frame X k with the following additional structure:
Ak ⊂ Ak+1, Kk ⊂ Kk+1, Qk ⊂ Qk+1 and

wk ≡ wk+1 |Qk : Qk → Kk

for each k ∈ {1, . . . , K − 1}.
Assume we have a filtered acyclic matching (Ak , wk : Qk → Kk)of the filtrationF .

By convention, we write (A, w : Q→ K) for the matching (AK , wK : QK → KK )

of the final frame X K = X . In particular, (A, κ̃) is the Morse complex corresponding
to the acyclic matching (A, w : Q→ K) of (X , κ).
Proposition 4.2 M:={Ak | k = 1, . . . , K } is a filtration of the Morse complex
(A, κ̃).
Proof First we show that κ̃ |Ak×Ak≡ κ̃k for each k. Given A in Ak and an arbitrary
A′ ∈ A, it suffices to check by (7) that there are no connections in X \X k from A to A′.
To see this, observe that any connection ρ = (Q1, w(Q1), . . . , QM , w(QM )) from
A must have its initial element qρ = Q1 satisfy Q1 ≺ A where ≺ generates the face
partial order � on X . Since F is a filtration of X , it is known that X k is a subcomplex
of X and so Q1 ∈ X k . By the definition of a filtered acyclic matching,w(Q1) also lies
in Kk ⊂ X k . By definition of a gradient path, Q2� Q1, i.e., Q2 ≺ w(Q1) and hence
Q2 ∈ X k by the subcomplex property. Proceeding in this way, we see that every cell
in ρ lies in X k . Thus, we observe that

(1) κ̃k(A, A′) = κ̃(A, A′) as desired, and more importantly,
(2) given A ∈ X k , any connection ρ from A lies entirely in X k .

Now assume that κ̃(A, A′) 
= 0 for some A ∈ Ak . We will show that A′ ∈ Ak , thus
proving the desired subcomplex property for Ak ⊂ A. From (7) we see that either
κ(A, A′) 
= 0 or there exists at least one connection ρ from A to A′ with m(ρ) 
= 0.
In the first case we have A′ ∈ X k by the fact that X k is a subcomplex of X , so without
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loss of generality we assume that there exists some connection ρ from A to A′. By the
second observation above, we know that each cell of ρ lies in X k , and in particular
we have the last element kρ in X k . Since A′ ≺ kρ by definition of a connection, we
see that A′ ∈ X k by the subcomplex property. ��

We call M the Morse filtration associated to the filtered acyclic matching
(Ak, wk : Kk → Qk). By Theorem 2.4, the associated Morse complex (A, κ̃) has
the same homology as the complex (X , κ). We now extend this result to the level of
persistent homology.

Theorem 4.3 Let F = {X k | k = 1, . . . , K } be a filtration of a complex (X , κ) with
filtered acyclic matching (Ak, wk : Qk → Kk). Let (A, κ̃) be the associated Morse
complex with Morse filtration M = {Ak | k = 1, . . . , K }. Then for all k, q, and p,

Hp
q (X k) ∼= Hp

q (Ak). (11)

In order to make the proof of this theorem transparent, consider the function
b : X → Z given by

b(ξ):=min{k | ξ ∈ X k}. (12)

The two important properties of b are:

(1) by Definition 4.1, b(Q) = b(w(Q)) for each Q ∈ Q, and
(2) by the subcomplex property, b(ξ) ≤ b(η) whenever ξ ≺ η.

Let {(w(Qi ), Qi ) | i = 1, . . . , I } denote the set of all paired cells in K ×Q with the
following additional constraint:

if b(Q j ) > b(Qi ) then j > i.

This gives us positive integers I1 ≤ I2 ≤ · · · ≤ IK = I such that Qi ∈ X k if and only
if i ≤ Ik . Define chain maps ψk∗ : C∗(X k) → C∗(Ak) and φk∗ : C∗(Ak) → C∗(X k)

by the compositions

ψk∗ :=
Ik∏

i=1

ψQi∗ and φk∗:=
1∏

i=Ik

φQi∗. (13)

Denote by � and � the collections of chain maps {ψk} and {φk}, respectively. By
Proposition 3.4, the proof of Theorem 4.3 concludes with the following result.

Proposition 4.4 The maps � : F → M and � : M → F are filtered chain
equivalences.

Proof Lemma 2.5 implies thatψk∗ and φk∗ are chain equivalences for all k = 1, . . . , K ,
and so by the requirements of Definition 3.3 we are only required to show that � and
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� are filtered chain maps. That is, given any k ∈ {1, . . . , K − 1} we will show that
the following diagrams commute:

C∗(X k) C∗(X k+1) C∗(X k) C∗(X k+1)

C∗(Ak) C∗(Ak+1) C∗(Ak) C∗(Ak+1)

� � ��

��
ψk∗

��
ψk+1∗

� � ��

� � �� � � ��

��

φk∗

��

φk+1∗

Fix some Q ∈ Q with b(Q) ≥ k + 1. Note from the defining formula (9) that ψQ

differs from the identity only on Q and w(Q), both of which have b values exceeding
k + 1 by our explicit assumption on Q and the first observed property of the function
b. Therefore, ψQ∗ |C(X k ) is the identity map. Thus, � is a filtered chain map by (13).

Similarly, we show that φQ∗ is the identity map on C(X k)whenever b(Q) ≥ k+1.
From (10), φQ∗(η) may differ from η only when κ(η, Q) 
= 0, i.e., when Q ≺ η. By
the second observed property of the function b, we must have b(η) ≥ b(Q) = k + 1
and so η ∈ X \ X k as desired. Thus, � is a filtered chain map as well. ��

5 Algorithms

Throughout this section F = {X k | X k ⊂ X k+1, k = 1, . . . , K } denotes a fixed
filtration of a complex (X , κ) with boundary operator ∂ and face partial order �
generated by ≺. We make use of the following notation in the algorithms: given
ξ ∈ X , the coboundary cells of ξ are given by

cb(ξ) := {η ∈ X | ξ ≺ η}.

It is not necessary to impose any specific order on the cells in cb(ξ).

5.1 Description

Theorem 4.3 implies that it is possible to compute the persistent homology groups
of F by applying the algorithm of [35] to a smaller filtration M = {Ak | k =
1, . . . , K } associated with a Morse complex (A, κ̃) for X . The usefulness of this
approach depends upon having an efficient algorithm for constructing the filtration M
and the Morse incidence function κ̃ , or equivalently the boundary operator ∂A on A.

The filtration M and incidence function κ̃ depend on the acyclic matching
(A, w : Q → K). The trivial matching given by A = X and Q = K = ∅ always
exists, but results in the same filtration and thus provides no savings in computational
cost. Clearly, the desired goal is to choose an acyclic matching which minimizes
the number of cells in A, or equivalently maximizes the number of cells paired by
w : Q→ K. It is known that in general the problem of constructing an optimal acyclic
matching is NP hard (see [15] and [20, Sect. 4.5]).

Our approach to producing an acyclic matching is based on the coreduction homol-
ogy algorithm of Mrozek and Batko [23] which has proven effective in computing
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homology of complexes [14,13]. This algorithm is based on the following idea. Let
X ′ ⊂ X . A pair of cells ξ, η ∈ X ′ form a coreduction pair in X ′ if restricted to C∗(X ′)

∂ξ = u · η,

where u ∈ R is a unit. In this case we make the identifications ξ ∈ K, η ∈ Q and
w(η) = ξ , and remove both ξ and η from X ′.

We differ from [14,13] in the construction of ∂A. From (7) it is clear that κ̃—and
hence ∂A—is defined by summing over all connections between cells in A. A naïve
attempt to enumerate all the connections between two such cells can lead to a com-
binatorial explosion. To circumvent this summation, we make use of the observation
that the coreduction-based construction of the pairingw : Q→ K is done by building
gradient paths in reverse order with respect to�. We therefore proceed by assigning
to each cell ζ ∈ X a chain g(ζ ) ∈ C∗(A) such that if A ∈ A, then g(A) = ∂A A.

Initially we set g(ζ ) := 0 for every cell. However, as the coreduction algorithm is
used to construct the acyclic matching—that is, as the gradient paths are constructed—
the value of g(ζ ) is suitably modified. Thus, the computation of ∂A can be done during
the construction of w : Q → K using the subroutine UpdateGradientChain
presented below.

Algorithm: UpdateGradientChain
In: ξ ∈ X ;

Out: Updates g(ζ ) for each ζ ∈ cbN (ξ)

01 for each ζ ∈ cbN (ξ)

02 if ξ ∈ N k
A for some k

03 g(ζ )← g(ζ )+ κ(ζ, ξ) · ξ
04 else
05 g(ζ )← g(ζ )+ κ(ζ, ξ) · g(ξ)
06 end if
07 end for

To emphasize that we only need to store each cell once rather than save a copy for
each subcomplex X k containing that cell, we partition the cells in X by setting

N k = X k \ X k−1, k = 1, . . . , K ,

where X 0 = ∅. Note that each cell ξ ∈ X lies uniquely in N b(ξ) where b : X → Z

is as defined in (12). The partition {N k | k = 1, . . . , K } defines the input to our
algorithms; each cell ξ is eventually excised from N b(ξ) either as an element of A
or in a coreduction pair. Given a cell ξ ∈ N k , we denote by cbN (ξ) and ∂N (ξ)
the coboundary cells and the boundary chain when restricted to {N ∗}. Once a cell is
removed from N k , it is also removed from the corresponding cbN and boundary ∂N
of the remaining cells. Similarly, the cells of the output Morse complex (A, κ̃) are
also partitioned via N k

A = Ak \Ak−1.
The next two subroutines perform tasks pertaining to removing cells. The first

subroutine—calledMakeCritical—chooses an arbitrary A′ of minimal dimension
in a non-empty N k and excises it as an element of A.
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Algorithm: MakeCritical
In: k ∈ {1, . . . , K } so that N k 
= ∅

Out: A′ ∈ Ak

01 choose A′ ∈ N k of min dimension
02 add A′ to N k

A;
03 updateGradientChain(A′)
04 remove A′ from N k

05 ∂A A′ ← g(A′)
06 return A′

Thus, the output A′ of MakeCritical becomes a generator of C∗(Ak). The
gradient chains of remaining coboundary cells cbN (A′) are then updated to reflect
their incidence with A′. In this manner, the construction of gradient chains is from the
“bottom-up”. Finally, the action of the Morse boundary operator ∂A on A′ is recovered
from the corresponding gradient chain g(A′).

The obvious operation of the second subroutine, calledRemovePair, is to perform
the reduction step from Sect. 2.3 with respect to a single coreduction pair (K , Q) from
the complex.

Algorithm: RemovePair
In: K , Q ∈ N k∗ with ∂N K = u · Q, Queue of cells Que, d ∈ N

Out: Removes (K , Q) as a cell pair from N k∗
01 remove K from N k∗
02 enqueue cbN (Q) in Que
03 if dim Q = d

04 g(Q)←− g(K )
u

05 updateGradientChain(Q)
06 end if
07 remove Q from N k∗

Recall that on the theoretical level coreduction pairs are identified as w-paired
cells and hence they define steps in gradient paths. Thus, before the coreduction pair
can be removed two additional steps need to be performed involving the remaining
coboundary cells cb(Q) of Q. First, we check if the removal of Q has created new
coreduction pairs. For this, it suffices to check cells in the coboundary of Q and so
we enqueue those cells in a queue structure. Secondly, if the pair (K , Q) potentially
lies on a gradient path between unpaired cells of adjacent dimension, the gradient
chains of Q and hence of its remaining coboundary cells are updated by a call to
UpdateGradientChain.

These subroutines are combined to form MorseReduce, which is our main
algorithm. The input to this algorithm is a filtration F of a complex (X , κ) parti-
tioned by {N k} as described above; the incidence function κ represents knowledge
of the boundary operator ∂ . The output is a new filtration M of the Morse complex
(A, κ̃)—partitioned by {N k

A}—corresponding to a coreduction-based acyclic match-
ing (Ak, wk : Qk → Kk). The Morse incidence function κ̃ is recovered from the
boundary operator ∂A.
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Algorithm: MorseReduce
In: {N k }K1

Out: {N k
A}K1

01 for each k = 1, . . . , K
02 while N k 
= ∅
03 A′ ← MakeCritical(k)
04 Que := Empty Queue of Cells
05 enqueue cbN (A′) in Que
06 while Que 
= ∅
07 dequeue ξ from Que
08 if ∂N ξ = 0
09 enqueue cbN (ξ) in Que
10 else if ∂N ξ = u · η for some η ∈ N b(ξ) and unit u
11 RemovePair(ξ , η, Que, dim A)
12 end if
13 end while
14 end while
15 end for
16 return {N k

A}K1

Note that we use a queue data structure Que which gets re-initialized once for each
iteration of the outer while loop from Line 02. We keep track of which cells are in
Que so that no cell is queued twice per such iteration. This can be achieved in practice
either by storing an additional flag for each cell or by mirroring the queue in a separate
data structure which has been optimized for search.

5.2 Verification

We use Theorem 4.3 to confirm that the output filtration M generated by
MorseReduce has the same persistent homology groups as those of the input filtra-
tion F .

Theorem 5.1 Let F = {X k | k = 1, . . . , K } be a filtration of a complex (X , κ) over
a PID R and define N k := X k \ X k−1 for each k. Then

(1) MorseReduce terminates when applied to {N k}K1 and produces smaller col-
lections of cells {N k

A}K1 .
(2) The output {N k

A} defines a filtration M of a complex (A, κ̃) where each frame

Ak is given by
⋃k
�=1 N �

A and the underlying incidence function κ̃ corresponds to
the boundary operator ∂A.

(3) For each p, q and k, we have an isomorphism of the corresponding persistent
homology group

Hp
q (X k) ∼= Hp

q (Ak).

123



Discrete Comput Geom (2013) 50:330–353 345

Proof Each iteration of the outer while loop from Line 02 permanently excises at least
one cell A via MakeCritical.1 The fact that no cell is queued twice during any
iteration of the second while loop in Line 07 guarantees the absence of infinite loops.
Moreover, it is clear that the final size of each N k

A is smaller than the initial size of
N k because MakeCritical is only called once per iteration of the outer while loop
and each call to MakeCritical results in a single cell from N k being removed and
stored in the corresponding N k

A. Thus, N k
A ⊂ N k for each k.

Observe from Line 10 that if (ξ, η) is sent to RemovePair, then b(ξ) = b(η) and
κ(ξ, η) equals some unit u in R. Let k∗ = b(ξ), and note that definingwk∗(η) = ξ for
each such pair constructs wk∗ : Qk∗ → Kk∗ . Combining this pairing information with
the output of MakeCritical produces a filtered partial matching (Ak, wk : Qk →
Kk) of F .

To see that this partial matching is acyclic, observe from Lines 10 and 11 that a
pairing w(η) = ξ is only made when η is the last remaining face of ξ , i.e., the unique
cell in {ζ ∈ N b(ξ) | ζ ≺ ξ}. Recall that Q � η for some Q ∈ Q if and only if Q ≺ ξ
by (4). Thus, all elements of Q satisfying Q � ηmust have already been been excised
before the pair (ξ, η) and so the order of pair excision respects the relation � on Q.
Therefore, the transitive closure� of the generating relation � must be a partial order
on Q as desired.

By Theorem 4.3, in order to show that the output determines a filtration M with
isomorphic persistent homology to F , it suffices to establish that M is the Morse fil-
tration associated to the acyclic matching (Ak, wk : Qk → Kk). Thus, we must ensure
that the stored boundary ∂A of each cell A ∈ A built from the corresponding gradient
chain g(A) equals the boundary operator corresponding to the Morse incidence func-
tion κ̃ from (7). This is addressed by the subsequent proposition, which concludes the
proof. ��

The proof of the following proposition employs the usual inner product 〈 , 〉 :
C(X )× C(X )→ R on chains of the input complex (X , κ) obtained by treating the
cells in X as an orthonormal basis.

Proposition 5.2 Assume the hypotheses and notation of Theorem 5.1. For cells A and
A′ in A,

〈
g(A), A′

〉 = κ̃(A, A′),

where κ̃ is the Morse incidence function (7) corresponding to the acyclic matching
from the proof of Theorem 5.1.

Proof We provide a brief summary of how gradient chains are constructed. Assume
throughout that A′ is excised via MakeCritical. Consider the following two
cases.

1 In practice many more cells are also removed, since if (ξ, η) appear as a coreduction pair then they are
excised during the RemovePair subroutine. Furthermore, observe that their appearance as a coreduction
pair is equivalent to their being part of a gradient path that descends to A.
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[A] Assume that ζ is an unremoved cell with A′ ≺ ζ . Then, by Line 02 of
MakeCritical and the subsequent call toUpdateGradientChain, the gra-
dient chain g(ζ ) of ζ is incremented as follows:

g(ζ )← g(ζ )+ κ(ζ, A′) · A′.

Since this is the first instance of A′ being added to gradient chains, we are guar-
anteed to have

〈
g(ζ ), A′

〉 = κ(ζ, A′) when MakeCritical returns A′.
[Q] Assume ζ is an arbitrary unremoved cell. Each cell Q excised as an element
of Q via RemovePair inherits its gradient chain from the existing gradient chain
of its paired cell w(Q) by the formula

g(Q) = g
(
w(Q)

)

−κ(w(Q), Q
) .

This follows from Line 04 of RemovePair. As UpdateGradientChain is
called in the next line, each remaining cell ζ satisfying Q ≺ ζ has its gradient
chain incremented by κ(ζ, Q) ·g(Q). By the preceding formula for g(Q), we have

g(ζ )← g(ζ )+ κ(ζ, Q)

−κ(w(Q), Q
) · g(

w(Q)
)
.

Thus, there are two ways a critical cell A′ appears with non-zero coefficient in the
gradient chain g(ζ ) of some hitherto unremoved cell ζ : either A′ ≺ ζ and we directly
apply [A], or

〈
g(w(Q)), A′

〉 
= 0 for some previously removed Q ∈ Q with Q ≺ ζ
and we apply [Q]. Combining these contributions, we have the following formula:

〈
g(ζ ), A′

〉 = κ(ζ, A′)+
∑

Q∈Q

κ(ζ, Q)

−κ(w(Q), Q
)

〈
g
(
w(Q)

)
, A′

〉
. (14)

Now assume that a cell A is eventually removed from the input filtration by
MakeCritical. Recalling (7), we substitute ζ = A in (14) to get

〈
g(A), A′

〉 = κ(A, A′)+
∑

Q∈Q

κ(A, Q)

−κ(w(Q), Q
)

〈
g
(
w(Q)

)
, A′

〉
.

Applying (14) recursively to each
〈
g(w(Q)), A′

〉
in the expression above completes

the argument. ��

5.3 Complexity

Let (X , κ) be a complex over a PID R filtered by F = {X k}K1 with face partial order
� generated by the usual relation:

ξ ≺ ξ ′ if κ(ξ ′, ξ) 
= 0 ∈ R.
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5.3.1 Parameters and Assumptions

We describe the computational cost of using MorseReduce to construct an acyclic
matching (A, w : Q→ K) on X as well as the Morse complex (A, κ̃) in terms of the
following complexity parameters. A similar analysis for unfiltered complexes may be
found in [14].

(1) The input size—denoted by n—is the number of cells in X .
(2) The output size is the number of cells in the filtered Morse complex A which we

denote by m. Note that m is partitioned by m = m0 + · · · +m D where md is the
cardinality of d-dimensional cells in A. As we have remarked before, constructing
an optimal acyclic matching—that is, a matching which minimizes m—is NP hard
[15,20]. Providing sharp bounds on optimal m values relative to n for arbitrary
complexes would require major breakthroughs in algebraic topology as well as
graph theory. Therefore, we leave m as a parameter.

(3) The coboundary mass p of X is defined as

p = sup
ξ∈X

#
{
η ∈ X | κ(η, ξ) 
= 0

}
,

where # denotes cardinality. Thus, the coboundary mass bounds the number of
cells η ∈ X which satisfy ξ ≺ η for a given cell ξ ∈ X . Even though p may safely
be bounded by n, in most situations this is a gross over-estimate. For example,
the coboundary mass of a d-dimensional cubical grid is bounded above by 2d
independent of the total number of cubes present.

For the purposes of complexity analysis, we also make these two simplifying
assumptions:

(1) we assume that adding, removing or locating a cell ξ ∈ X incurs a constant cost,
and

(2) we assume that ring operations in R may be performed in constant time so that
the cost of adding and scaling gradient chains is linear in the length of the chains
involved.

5.3.2 Evaluating Complexity

We begin by evaluating the complexity of a single iteration of the outer while loop from
Line 02 of MorseReduce. Assume that in this iteration the call to MakeCritical
via Line 03 has returned a cell A′ of dimension d. Since in each iteration of this while
loop we add a cell to Que at most once, the maximum size attainable by Que is n.
Moreover, each Que insertion involves testing the coboundary of a cell which requires
at most p operations. In light of these bounds, we will just assume that the total cost
of managing the Que data structure within a single while iteration depends linearly
on n · p and we will not separately tabulate the cost of each Que operation.

We also require the following observations regarding the cost of the three subrou-
tines in terms of the complexity parameters defined previously.
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(1) The cost of calling UpdateGradientChain on a d-dimensional cell equals
O(p ·md). This follows from the fact that we must iterate over each cell ζ in the
remaining coboundary of ξ and update the gradient chain g(ζ ) which consists of
d-dimensional cells in A.

(2) A call to MakeCritical in Line 03 also costs O(p · md), since the only non-
trivial operation is the call to UpdateGradientChain in Line 03.

(3) In the worst case, the if statement from Line 03 ofRemovePair always evaluates
positively and hence UpdateGradientChain is called. Thus, each call to
RemovePair also incurs a worst case cost of O(p · md) since all other non-
trivial operations only involve Que insertion.

Since the inner while loop from Line 06 of MorseReduce depends only on the
size of Que, it may run at most n times. Thus, the cost of iterating the outer while
loop from Line 02 reduces to a single call to MakeCritical, the management of
the Que structure, and at most n calls to RemovePair. Adding these respective
contributions, the total cost of a single iteration of this outer while loop equals

O(p · md)+ O(n · p)+ O(n · p · md).

The third quantity clearly dominates the first two, so the desired complexity estimate
of the outer while loop when A′ has dimension d is O(n · p · md).

It now suffices to estimate how many iterations of the outer while loop are actually
executed in a single instance ofMorseReduce. But this is straightforward: each such
iteration corresponds to exactly one cell A′ ∈ A as returned by MakeCritical,
so this while loop executes precisely m times. Partitioning m = m0 + · · · + m D by
dimension as usual, we estimate the following total cost of running MorseReduce
in terms of our complexity parameters:

O
(

n · p ·
D∑

d=0

m2
d

)

In light of this expression, it is convenient to define the number m̃ ≤ m2 by

m̃ =
D∑

d=0

m2
d .

Thus, we have proved the following result regarding the computational complexity of
MorseReduce.

Proposition 5.3 Assume that MorseReduce is executed on a filtered complex X of
top dimension D, size n and coboundary mass p. If the resulting Morse complex A has
size m = m0 + · · · +m D, then the worst-case complexity is bounded by O(n · p · m̃),
where m̃ = m2

0 + · · · + m2
D.

Thus, the cost of computing the maps induced on homology by inclusions X k ⊂
X k+1 in the filtered complex X over an arbitrary PID R reduces from O(n4) [12] to
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O(n · p · m̃ + m4) if MorseReduce is used as a pre-processor. In the special case
when R is a field, computing persistence intervals has complexity O(nω)whereω is the
matrix multiplication exponent [21]. Therefore, the cost of computing the persistence
intervals of X after applyingMorseReduce to X equals O(n· p·m̃+mω). In practice,
persistence intervals are typically computed using the standard algorithm from [35]
which has cubic complexity in the worst case [22]. Thus, using MorseReduce as a
pre-processor for the standard algorithm lowers the overall complexity from O(n3) to
O(n · p · m̃ +m3). If m is much smaller than n, then the n · p · m̃ term is dominant in
each case and one observes essentially linear cost in terms of the input size n.

Remark 5.4 The efficiency of our approach depends crucially on m being much
smaller than n. In the worst case, no cells get paired and we are left with m = n.
Examples of filtered complexes for which this is the case may be easily constructed
in one of two ways:

C1 Consider a complex X such that each non-zero incidence κ(ξ, ξ ′) ∈ R is not
a unit for any pair of cells ξ, ξ ′ ∈ X .
C2 Consider a complex X so that whenever κ(ξ, ξ ′) 
= 0 for cells ξ, ξ ′ we have
b(ξ) 
= b(ξ ′). Since matched cells are required to have the same b values by
Definition 4.1, no non-trivial matching is possible in this case.

It is easy to test the input complex for both conditions C1 and C2 in O(n · p) time
by checking each pair of cells ξ, ξ ′ ∈ X with non-trivial incidence κ(ξ, ξ ′) 
= 0.
Moreover, for a wide variety of practical situations we do not expect the worst case
scenario to occur. For example, if one considers simplicial or cubical complexes arising
from experimental data, then the following structures are common.

(1) For both cubical and simplicial complexes all non-zero incidences are units ±1
in any PID R, so C1 is avoided.

(2) The b values are only prescribed on top-dimensional cells (such as grayscale pixel
or voxel values for image data). In these situations, each lower dimensional cell
recursively inherits its b value as the minimum b value encountered among its
co-boundary cells. This guarantees the existence of at least some cells ξ ≺ ξ ′
with b(ξ) = b(ξ ′) and avoids C2,

(3) The b values are inherited from lower dimensional cells. A prime example is the
Vietoris–Rips complex built around point cloud data. Here each simplex inherits
the maximum b value encountered in its 1-skeleton. Again, this process ensures
the existence of dimensionally adjacent cells which share b values and hence
avoids C2.

As we demonstrate in Sect. 6, Morse theoretic pre-processing is effective for com-
puting persistent homology of several types of filtered complexes arising from experi-
mental data. We believe that a more nuanced approach to analyzing the effectiveness of
combinatorial Morse theory would require imposing reasonable probability measures
on the set of all complexes and proving statements regarding the expected fraction of
cells reduced. We leave such considerations to future work.
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6 Experimental Results

The popularity of persistent homology as a tool for understanding large datasets has
led to a variety of highly efficient implementations and preprocessing algorithms. To
the best of our knowledge, the first use of combinatorial Morse theory for persistence
computation was presented in [27], where the construction of an acyclic matching
is done via the algorithm ProcessLowerStars. The major differences between
ProcessLowerStars and MorseReduce are as follows:

(1) Coefficient Rings: ProcessLowerStars constructs the Morse complex over
Z/2Z coefficients whereas MorseReduce may be applied to filtered cell com-
plexes over an arbitrary PID.

(2) Complex Types: ProcessLowerStars requires a filtered cubical complex as
input along with birth times provided only for top dimensional cells. The birth
time for a lower dimensional cell is recursively inherited as the minimum birth
found among all cells in its coboundary. On the other hand, MorseReduce is
complex-agnostic and does not impose any such top-down inheritance require-
ment. Moreover, ProcessLowerStars requires perturbing the input filtra-
tion so that no two top-cells have the same birth time. This is unnecessary in
MorseReduce even when dealing with 3D cubical data.

(3) Dimensions: MorseReduce is dimension-independent whereas ProcessLo-
werStars, as written, requires a top dimension of 3.

The existing frameworks [11,33] for applying combinatorial Morse theory to persis-
tent homology computation rely heavily on the efficient storability of cubical datasets
of low dimension over Z/2Z coefficients, and we do not see an obvious means of
applying similar techniques to other types of complexes. Since our approach with
MorseReduce only requires face relations on the input complex as encoded by the
underlying incidence function, it applies to filtered complexes independent of coef-
ficient ring and dimensionality. The coreduction-based strategy of [24] has similarly
wide applicability but it only pairs those cells which have gradient paths descending
to unpaired cells of dimension zero, and therefore results in the reduction of fewer
cells when compared to MorseReduce.

Note that since the output of MorseReduce is a filtration in its own right, it is
possible to iterate the algorithm until the number of reductions performed becomes
essentially negligible. Thus, the cells output by an iteration of MorseReduce get
further partitioned by the subsequent iteration and may get paired by the associated
acyclic matching. We are not aware of any existing technique which allows for such
iteration on arbitrary filtrations.

We demonstrate the results of MorseReduce on cubical grids, simplicial com-
plexes, Vietoris–Rips complexes and movies. The cubical complexes come from sub-
level sets of finite element Cahn–Hilliard simulations and the simplicial complexes
arise from brain imaging data. The Vietoris–Rips complexes come from point clouds
of experimental granular flow data. Our largest datasets by far, courtesy of M. Schatz,
are two black and white movies obtained by segmenting Rayleigh–Bénard convection
data, each successive frame consisting of about 155, 000 three dimensional cubes.
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Table 1 Experimental results

Type Dim # Frames # Cells (M) Red. # cells (K) SP MR + SP

C 2 16 0.26 2.31 2.4 0.9

C 3 25 1.24 3.35 12.7 4.2

C 3 2,400 5.25 9.50 195.8 46.6

S 5 20 12.86 27.13 73.9 8.8

S 5 5,000 0.86 99.8 1951.6 153.1

VR 2 100 2.34 86.33 1277.0 37.7

VR 3 50 9.50 18.31 286.5 47.2

VR 3 250 1.29 53.95 551.1 125.2

M 3 209 259.21 1.25 DNF 7,213

M 3 215 266.67 2.10 DNF 7,416

The implementation ofMorseReduce benchmarked here was coded in C++ using
the standard template library and compiled using the GNU C++ compiler with opti-
mization level O3. All computations were performed on an Intel Core i5 machine
with 32 GB of available RAM and virtual memory disabled. The source code for our
implementation is available at [26].

The comparison is with our implementation of the standard algorithm for computing
persistent homology as found in [35] which we will denote bySP. While this algorithm
may be found in various flavors and as part of the software package jPlex2 or from
the Dionysus project,3 the authors feel that the present comparison is fair because
the same data structures are used in both cases. The SP results simply provide the
time taken when no combinatorial Morse theoretic pre-processing is performed while
holding all other implementation-specific factors constant. Thus, if more efficient
implementations of SP exist, then we expect that preprocessing with MorseReduce
will improve the performance of those implementations as well.

While the results of Theorem 5.1 apply to input filtrations over any PID R, the
usual computation of persistence intervals via SP requires R to be a field. In the
experimental results that follow, we have performed all reductions over Z, but we
assume R = Z/2Z throughout when applying SP to the reduced filtration output
by MorseReduce. Table 1 demonstrates the performance comparison of computing
peristence with and without pre-processing by MorseReduce.

The table is arranged as follows: the first column indicates the type of complexes in
the filtration (Cubical, Simplicial, Vietoris-Rips or Movie) while the second column
contains the maximum dimension of the cells present in the filtration. The third column
contains the number of frames K of each input filtration F = {X k

}K
1 . The next two

columns provide the size (in number of cells) of the filtration before and after Morse
reduction. The penultimate column provides the time taken by our implementation
of SP to compute persistence intervals over Z/2Z of the filtration, whereas the last

2 http://comptop.stanford.edu/u/programs/jplex
3 http://hg.mrzv.org/Dionysus
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column provides the total time taken to first apply MorseReduce and then compute
the persistence intervals of the reduced filtration with SP. DNF indicates that the given
algorithm failed to terminate because it ran out of memory. All times are in seconds.

A final note to illustrate the power and scalability of the Morse theoretic approach:
the movie datasets were far too large to be held in memory all at once. Our approach
involved storing about 30 frames at a time and removing paired cells from all but the
last frame. This freed up considerable memory which we used to input the remaining
portions of the movies in pieces, each comprising 30 consecutive frames. At each stage
we left the last frame unreduced so that the next piece of the movie could be attached
to it, and so on. In this way, extremely large and complicated persistence computations
may be brought within the scope of commodity hardware. To the best of our knowledge,
there is no other publically available technique which yields persistence intervals of
a large filtration from such local computations without ever holding all the cells in
memory at once.
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