Analysis I - Examples Sheet 3

Lent Term 2013
V. Neale

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leqslant|x-y|^{2}$ for all $x, y \in \mathbb{R}$. Show that f is constant.
2. Given $\alpha \in \mathbb{R}$, define $f_{\alpha}:[-1,1] \rightarrow \mathbb{R}$ by $f_{\alpha}(x)=|x|^{\alpha} \sin (1 / x)$ for $x \neq 0$ and $f_{\alpha}(0)=0$. Is f_{0} continuous? Is f_{1} differentiable? Draw a table, with nine columns labelled $-\frac{1}{2}, 0, \frac{1}{2}$, $\ldots, \frac{7}{2}$ and with six rows labelled " f_{α} bounded", " f_{α} continuous", " f_{α} differentiable", " f_{α}^{\prime} bounded", " f_{α}^{\prime} continuous", " f_{α}^{\prime} differentiable". Place ticks and crosses at appropriate places in the table, and give justifications.
(If you wish, start by considering $g_{\alpha}(x)=x^{\alpha} \sin (1 / x)$ for $x \neq 0$ and $g_{\alpha}(0)=0$, for $\alpha \in\{0,1,2,3\}$.)
3. By applying the mean value theorem to $\log (1+x)$ on $[0, a / n]$ with $n>|a|$, prove carefully that $(1+a / n)^{n} \rightarrow e^{a}$ as $n \rightarrow \infty$.
4. Find $\lim _{n \rightarrow \infty} n\left(a^{1 / n}-1\right)$, where $a>0$.
5. "Let f^{\prime} exist on (a, b) and let $c \in(a, b)$. If $c+h \in(a, b)$ then $(f(c+h)-f(c)) / h=$ $f^{\prime}(c+\theta h)$. Let $h \rightarrow 0$; then $f^{\prime}(c+\theta h) \rightarrow f^{\prime}(c)$. Thus f^{\prime} is continuous at c." Is this argument correct?
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\exp \left(-1 / x^{2}\right)$ for $x \neq 0$ and $f(0)=0$. Show that f is infinitely differentiable (including at 0), and that $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Comment, in the light of what you know about Taylor series.
7. Find the radius of convergence of each of these power series.

$$
\sum_{n \geqslant 0} \frac{2 \cdot 4 \cdot 6 \cdots(2 n+2)}{1 \cdot 4 \cdot 7 \cdots(3 n+1)} z^{n} \quad \sum_{n \geqslant 1} \frac{z^{3 n}}{n 2^{n}} \quad \sum_{n \geqslant 0} \frac{n^{n} z^{n}}{n!} \quad \sum_{n \geqslant 1} n^{\sqrt{n}} z^{n}
$$

8. Find the derivative of $\tan x$. How do you know that there is a differentiable inverse function $\arctan x$ for $x \in \mathbb{R}$? What is its derivative?
Now let $g(x)=x-x^{3} / 3+x^{5} / 5-\cdots$ for $|x|<1$. By considering $g^{\prime}(x)$, explain carefully why $\arctan x=g(x)$ for $|x|<1$.
9. (L'Hôpital's rule.) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $f(a)=g(a)=0$, that $g^{\prime}(x)$ does not vanish near a, and that $f^{\prime}(x) / g^{\prime}(x) \rightarrow \ell$ as $x \rightarrow a$. Show that $f(x) / g(x) \rightarrow \ell$ as $x \rightarrow a$.
Use the rule with $g(x)=x-a$ to show that if $f^{\prime}(x) \rightarrow \ell$ as $x \rightarrow a$, then f is differentiable at a with $f^{\prime}(a)=\ell$.

Find a pair of functions f and g satisfying the conditions above for which $\lim _{x \rightarrow a} f(x) / g(x)$ exists, but $\lim _{x \rightarrow a} f^{\prime}(x) / g^{\prime}(x)$ does not.
Investigate the limit as $x \rightarrow 1$ of $\frac{x-(n+1) x^{n+1}+n x^{n+2}}{(1-x)^{2}}$.
10. The infinite product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is said to converge if the sequence $p_{n}=\left(1+a_{1}\right) \cdots\left(1+a_{n}\right)$ converges. Suppose that $a_{n} \geqslant 0$ for all n. Write $s_{n}=a_{1}+\cdots+a_{n}$. Prove that $s_{n} \leqslant p_{n} \leqslant e^{s_{n}}$, and deduce that $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges if and only if $\sum_{n=1}^{\infty} a_{n}$ converges. Evaluate $\prod_{n=2}^{\infty}\left(1+1 /\left(n^{2}-1\right)\right)$.
11. Let f be continuous on $[-1,1]$ and twice differentiable on $(-1,1)$. Let $\phi(x)=(f(x)-$ $f(0)) / x$ for $x \neq 0$ and $\phi(0)=f^{\prime}(0)$. Show that ϕ is continuous on $[-1,1]$ and differentiable on $(-1,1)$.

By using a second-order mean value theorem for f, show that $\phi^{\prime}(x)=f^{\prime \prime}(\theta x) / 2$ for some $0<\theta<1$. Hence prove that there exists $c \in(-1,1)$ with $f^{\prime \prime}(c)=f(-1)+f(1)-2 f(0)$.
12. We say that f^{\prime} has the property of Darboux if $a<b$ and $f^{\prime}(a)<z<f^{\prime}(b)$ means that there is some c with $a<c<b$ and $f^{\prime}(c)=z$.

Prove the theorem of Darboux: that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f^{\prime} has the property of Darboux.

Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that there does not exist a differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$ with $F^{\prime}=f$.
13. (i) Show that $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ has radius of convergence 1 , that it converges for all z with $|z|=1$ and $z \neq 1$, and that it diverges if $z=1$.
(ii) Let $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{m}\right|=1$. Find a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ that has radius of convergence 1 , that converges for all z with $|z|=1$ and $z \notin\left\{z_{1}, z_{2}, \cdots, z_{m}\right\}$, but that diverges if $z=z_{j}$ for some $1 \leqslant j \leqslant m$.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).

