
Analysis I — Examples Sheet 4

Lent Term 2013 V. Neale

1. Show directly from the definition of an integral that
∫ a

0
x2 dx = a3/3 for a > 0.

2. Let f(x) = sin(1/x) for x 6= 0 and f(0) = 0. Does
∫ 1

0
f exist?

3. Give an example of a continuous function f : [0,∞) → [0,∞) such that
∫∞

0
f exists but

f is unbounded.

4. Give an example of an integrable function f : [0, 1] → R with f > 0 and
∫ 1

0
f = 0 and

f(x) > 0 for some value of x.

Show that this cannot happen if f is continuous.

5. Let f : R → R be monotonic. Show that {x ∈ R : f is discontinuous at x} is countable.

Let (xn)∞n=1 be a sequence of distinct points in (0, 1]. Let fn(x) = 0 if 0 6 x < xn and

fn(x) = 1 if xn 6 x 6 1. Let f(x) =
∞∑

n=1

2−nfn(x). Show that this series converges for

every x ∈ [0, 1].

Show that f is increasing (and so is integrable).

Show that f is discontinuous at every xn.

6. Let f(x) = log(1 − x2). Use the mean value theorem to show that |f(x)| 6 8x2/3 for

0 6 x 6 1/2.

Now let In =
∫ n+ 1

2

n− 1
2

log x dx − log n for n ∈ N. Show that In =
∫ 1

2

0
f(t/n) dt and hence

that |In| 6
1

9n2
.

By considering
n∑

j=1

Ij, deduce that
n!

nn+ 1
2 e−n

→ ` for some constant `.

7. Let In =
∫ π/2

0
cosn x dx. Prove that nIn = (n−1)In−2, and hence that 2n

2n+1
6 I2n+1

I2n
6 1.

Deduce Wallis’s product:

π

2
= lim

n→∞

2 · 2 · 4 · 4 · · · 2n · 2n
1 · 3 · 3 · 5 · · · (2n− 1) · (2n + 1)

= lim
n→∞

24n

2n + 1

(
2n

n

)−2

.

By taking note of the previous exercise, prove that
n!

nn+ 1
2 e−n

→
√

2π (Stirling’s formula).
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8. Do these improper integrals converge?

(i)
∫∞

1
sin2(1/x) dx.

(ii)
∫∞

0
xp exp(−xq) dx where p, q > 0.

9. Show that 1
n+1

+ 1
n+2

+ · · · + 1
2n
→ log 2 as n → ∞, and find the limit as n → ∞ of

1
n+1

− 1
n+2

+ · · ·+ (−1)n−1

2n
.

10. Let f : [a, b] → R be continuous and suppose that
∫ b

a
f(x)g(x) dx = 0 for every contin-

uous function g : [a, b] → R with g(a) = g(b) = 0. Must f vanish identically?

11. Suppose that f : [0, 1] → R has a continuous derivative, that f(0) = 0, and that

|f ′(x)| 6 M for x ∈ [0, 1]. Prove carefully that |
∫ 1

0
f | 6 M/2. Prove carefully that if, in

addition, f(1) = 0, then |
∫ 1

0
f | 6 M/4. What could you say (and prove) if |f ′(x)| 6 Mx

for all x ∈ [0, 1]?

12. Let f : [0, 1] → R be continuous. Let G(x, t) = t(x− 1) for t 6 x and G(x, t) = x(t− 1)

for t > x. Let g(x) =
∫ 1

0
f(t)G(x, t) dt. Show that g′′(x) exists for x ∈ (0, 1) and equals

f(x).

13. Let In(θ) =
∫ 1

−1
(1− x2)n cos(θx) dx. Prove that θ2In = 2n(2n− 1)In−1 − 4n(n− 1)In−2

for n > 2, and hence that θ2n+1In(θ) = n!
(
Pn(θ) sin θ + Qn(θ) cos θ

)
, where Pn and Qn

are polynomials of degree at most 2n with integer coefficients.

Deduce that π is irrational.

14. Let f1, f2 : [−1, 1] → R be increasing, and let g = f1 − f2. Show that there is

some K such that for any dissection D = {x0 < x1 < · · · < xn} of [−1, 1], we have
n∑

j=1

|g(xj)− g(xj−1)| 6 K.

Now let g(x) = x sin(1/x) for x 6= 0 and g(0) = 0. Show that g is integrable, but that

it is not the difference of two increasing functions.

15. Show that if f : [0, 1] → R is integrable then f has infinitely many points of continuity.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).
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