Analysis I - Examples Sheet 4

Lent Term 2013
V. Neale

1. Show directly from the definition of an integral that $\int_{0}^{a} x^{2} \mathrm{~d} x=a^{3} / 3$ for $a>0$.
2. Let $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Does $\int_{0}^{1} f$ exist?
3. Give an example of a continuous function $f:[0, \infty) \rightarrow[0, \infty)$ such that $\int_{0}^{\infty} f$ exists but f is unbounded.
4. Give an example of an integrable function $f:[0,1] \rightarrow \mathbb{R}$ with $f \geqslant 0$ and $\int_{0}^{1} f=0$ and $f(x)>0$ for some value of x.
Show that this cannot happen if f is continuous.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R}: f$ is discontinuous at $x\}$ is countable. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of distinct points in $(0,1]$. Let $f_{n}(x)=0$ if $0 \leqslant x<x_{n}$ and $f_{n}(x)=1$ if $x_{n} \leqslant x \leqslant 1$. Let $f(x)=\sum_{n=1}^{\infty} 2^{-n} f_{n}(x)$. Show that this series converges for every $x \in[0,1]$.
Show that f is increasing (and so is integrable).
Show that f is discontinuous at every x_{n}.
6. Let $f(x)=\log \left(1-x^{2}\right)$. Use the mean value theorem to show that $|f(x)| \leqslant 8 x^{2} / 3$ for $0 \leqslant x \leqslant 1 / 2$.
Now let $I_{n}=\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \log x \mathrm{~d} x-\log n$ for $n \in \mathbb{N}$. Show that $I_{n}=\int_{0}^{\frac{1}{2}} f(t / n) \mathrm{d} t$ and hence that $\left|I_{n}\right| \leqslant \frac{1}{9 n^{2}}$.
By considering $\sum_{j=1}^{n} I_{j}$, deduce that $\frac{n!}{n^{n+\frac{1}{2}} e^{-n}} \rightarrow \ell$ for some constant ℓ.
7. Let $I_{n}=\int_{0}^{\pi / 2} \cos ^{n} x \mathrm{~d} x$. Prove that $n I_{n}=(n-1) I_{n-2}$, and hence that $\frac{2 n}{2 n+1} \leqslant \frac{I_{2 n+1}}{I_{2 n}} \leqslant 1$. Deduce Wallis's product:

$$
\frac{\pi}{2}=\lim _{n \rightarrow \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 2 n \cdot 2 n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots(2 n-1) \cdot(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2^{4 n}}{2 n+1}\binom{2 n}{n}^{-2}
$$

By taking note of the previous exercise, prove that $\frac{n!}{n^{n+\frac{1}{2}} e^{-n}} \rightarrow \sqrt{2 \pi}$ (Stirling's formula).
8. Do these improper integrals converge?
(i) $\int_{1}^{\infty} \sin ^{2}(1 / x) \mathrm{d} x$.
(ii) $\int_{0}^{\infty} x^{p} \exp \left(-x^{q}\right) \mathrm{d} x$ where $p, q>0$.
9. Show that $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \rightarrow \log 2$ as $n \rightarrow \infty$, and find the limit as $n \rightarrow \infty$ of $\frac{1}{n+1}-\frac{1}{n+2}+\cdots+\frac{(-1)^{n-1}}{2 n}$.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose that $\int_{a}^{b} f(x) g(x) \mathrm{d} x=0$ for every continuous function $g:[a, b] \rightarrow \mathbb{R}$ with $g(a)=g(b)=0$. Must f vanish identically?
11. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative, that $f(0)=0$, and that $\left|f^{\prime}(x)\right| \leqslant M$ for $x \in[0,1]$. Prove carefully that $\left|\int_{0}^{1} f\right| \leqslant M / 2$. Prove carefully that if, in addition, $f(1)=0$, then $\left|\int_{0}^{1} f\right| \leqslant M / 4$. What could you say (and prove) if $\left|f^{\prime}(x)\right| \leqslant M x$ for all $x \in[0,1]$?
12. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Let $G(x, t)=t(x-1)$ for $t \leqslant x$ and $G(x, t)=x(t-1)$ for $t \geqslant x$. Let $g(x)=\int_{0}^{1} f(t) G(x, t) \mathrm{d} t$. Show that $g^{\prime \prime}(x)$ exists for $x \in(0,1)$ and equals $f(x)$.
13. Let $I_{n}(\theta)=\int_{-1}^{1}\left(1-x^{2}\right)^{n} \cos (\theta x) \mathrm{d} x$. Prove that $\theta^{2} I_{n}=2 n(2 n-1) I_{n-1}-4 n(n-1) I_{n-2}$ for $n \geqslant 2$, and hence that $\theta^{2 n+1} I_{n}(\theta)=n!\left(P_{n}(\theta) \sin \theta+Q_{n}(\theta) \cos \theta\right)$, where P_{n} and Q_{n} are polynomials of degree at most $2 n$ with integer coefficients.

Deduce that π is irrational.
14. Let $f_{1}, f_{2}:[-1,1] \rightarrow \mathbb{R}$ be increasing, and let $g=f_{1}-f_{2}$. Show that there is some K such that for any dissection $\mathcal{D}=\left\{x_{0}<x_{1}<\cdots<x_{n}\right\}$ of $[-1,1]$, we have $\sum_{j=1}^{n}\left|g\left(x_{j}\right)-g\left(x_{j-1}\right)\right| \leqslant K$.
Now let $g(x)=x \sin (1 / x)$ for $x \neq 0$ and $g(0)=0$. Show that g is integrable, but that it is not the difference of two increasing functions.
15. Show that if $f:[0,1] \rightarrow \mathbb{R}$ is integrable then f has infinitely many points of continuity.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).

