Analysis I — Examples Sheet 4

Lent Term 2013 V. Neale

- 1. Show directly from the definition of an integral that $\int_0^a x^2 dx = a^3/3$ for a > 0.
- 2. Let $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Does $\int_0^1 f$ exist?
- 3. Give an example of a continuous function $f:[0,\infty)\to[0,\infty)$ such that $\int_0^\infty f$ exists but f is unbounded.
- 4. Give an example of an integrable function $f:[0,1]\to\mathbb{R}$ with $f\geqslant 0$ and $\int_0^1 f=0$ and f(x)>0 for some value of x.

Show that this cannot happen if f is continuous.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R} : f \text{ is discontinuous at } x\}$ is countable. Let $(x_n)_{n=1}^{\infty}$ be a sequence of distinct points in (0,1]. Let $f_n(x) = 0$ if $0 \le x < x_n$ and $f_n(x) = 1$ if $x_n \le x \le 1$. Let $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Show that this series converges for every $x \in [0,1]$.

Show that f is increasing (and so is integrable).

Show that f is discontinuous at every x_n .

6. Let $f(x) = \log(1 - x^2)$. Use the mean value theorem to show that $|f(x)| \le 8x^2/3$ for $0 \le x \le 1/2$.

Now let $I_n = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \log x \, dx - \log n$ for $n \in \mathbb{N}$. Show that $I_n = \int_0^{\frac{1}{2}} f(t/n) \, dt$ and hence that $|I_n| \leq \frac{1}{\Omega n^2}$.

By considering $\sum_{j=1}^{n} I_j$, deduce that $\frac{n!}{n^{n+\frac{1}{2}}e^{-n}} \to \ell$ for some constant ℓ .

7. Let $I_n = \int_0^{\pi/2} \cos^n x \, dx$. Prove that $nI_n = (n-1)I_{n-2}$, and hence that $\frac{2n}{2n+1} \leqslant \frac{I_{2n+1}}{I_{2n}} \leqslant 1$. Deduce Wallis's product:

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 2n \cdot 2n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots (2n-1) \cdot (2n+1)} = \lim_{n \to \infty} \frac{2^{4n}}{2n+1} {2n \choose n}^{-2}.$$

By taking note of the previous exercise, prove that $\frac{n!}{n^{n+\frac{1}{2}}e^{-n}} \to \sqrt{2\pi}$ (Stirling's formula).

- 8. Do these improper integrals converge?
 - (i) $\int_{1}^{\infty} \sin^2(1/x) \, dx$.
 - (ii) $\int_0^\infty x^p \exp(-x^q) dx$ where p, q > 0.
- 9. Show that $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \to \log 2$ as $n \to \infty$, and find the limit as $n \to \infty$ of $\frac{1}{n+1} \frac{1}{n+2} + \cdots + \frac{(-1)^{n-1}}{2n}$.
- 10. Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that $\int_a^b f(x)g(x)\,\mathrm{d}x=0$ for every continuous function $g:[a,b]\to\mathbb{R}$ with g(a)=g(b)=0. Must f vanish identically?
- 11. Suppose that $f:[0,1] \to \mathbb{R}$ has a continuous derivative, that f(0)=0, and that $|f'(x)| \leq M$ for $x \in [0,1]$. Prove carefully that $|\int_0^1 f| \leq M/2$. Prove carefully that if, in addition, f(1)=0, then $|\int_0^1 f| \leq M/4$. What could you say (and prove) if $|f'(x)| \leq Mx$ for all $x \in [0,1]$?
- 12. Let $f:[0,1] \to \mathbb{R}$ be continuous. Let G(x,t) = t(x-1) for $t \leq x$ and G(x,t) = x(t-1) for $t \geq x$. Let $g(x) = \int_0^1 f(t)G(x,t) dt$. Show that g''(x) exists for $x \in (0,1)$ and equals f(x).
- 13. Let $I_n(\theta) = \int_{-1}^1 (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} 4n(n-1)I_{n-2}$ for $n \ge 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$, where P_n and Q_n are polynomials of degree at most 2n with integer coefficients.

Deduce that π is irrational.

14. Let $f_1, f_2 : [-1,1] \to \mathbb{R}$ be increasing, and let $g = f_1 - f_2$. Show that there is some K such that for any dissection $\mathcal{D} = \{x_0 < x_1 < \dots < x_n\}$ of [-1,1], we have $\sum_{j=1}^n |g(x_j) - g(x_{j-1})| \leq K.$

Now let $g(x) = x \sin(1/x)$ for $x \neq 0$ and g(0) = 0. Show that g is integrable, but that it is not the difference of two increasing functions.

15. Show that if $f:[0,1]\to\mathbb{R}$ is integrable then f has infinitely many points of continuity.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).