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Please send any corrections or queries to j.newton@imperial.ac.uk.

Exercise 1. (1) Let G = C4 × C2 = 〈s, t : s4 = t2 = e, st = ts〉. Let V = C2

with the standard basis. Consider the linear transformations of V defined
by the matrices

S =

(
1 0
0 i

)
T =

(
−1 0
0 1

)
.

Verify that sending s to S and t to T defines a representation of G on V .
Is this representation faithful?

(2) Now let

Q =

(
i 0
1 1

)
R =

(
−1 0
i+ 1 1

)
.

Verify that sending s to Q and t to R also defines a representation of G on
V . Is this representation faithful?

(3) Show that S is conjugate to Q and T is conjugate to R. Are the two
representations we have defined isomorphic?

Solution 1. (1) To show that we have defined a representation of G we need
to check that the matrices S and T satisfy the relations which are given for
s and t. So we need to check that

S4 = T 2 =

(
1 0
0 1

)
and

ST = TS.

These should be straightforward computations.
The representation is faithful. We need to check that the linear map

associated to an element g ∈ G is the identity if and only if g is the identity.
We can write g = satb, so ρV (g) has matrix

SaT b =

(
(−1)b 0

0 i4

)
.

This matrix is the identity matrix if and only if a is divisible by 4 and b is
divisible by 2. But if these divisibilities hold then sa = tb = e and so g = e.

(2) Again we just need to check the relations. We have

Q2 =

(
−1 0
i+ 1 1

)
= R

and

Q4 = R2 =

(
1 0
0 1

)
.

We also have QR = Q3 = RQ.
Finally, this representation is not faithful. We have

Q2R = R2 =

(
1 0
0 1

)
Date: Monday 18th April, 2016.

1

j.newton@imperial.ac.uk


2 M3/4/5P12 PROBLEM SHEET 1

so s2t is send to the identity under this representation. Since s2t 6= e the
representation is not faithful.

(3) To show that S is conjugate to Q and T is conjugate to R you can either
find explicit matrices conjugating one to the other, or compute eigenvalues.
For example S and Q both have eigenvalues 1, i, which are distinct, so both

S and Q are conjugate to the diagonal matrix

(
i 0
0 1

)
and are therefore

conjugate to each other. The two representations are not isomorphic be-
cause one is faithful and the other is not. Call the first representation ρ
and the second σ. The 1-eigenspace for Q is equal to the 1-eigenspace for
R. An isomorphism of representations from σ to ρ would take this common
1-eigenspace for Q = σ(s) and R = σ(t) to a common 1-eigenspace for
S = ρ(s) and T = ρ(t), but there is no non-zero simultaneous eigenvector
for S and T with eigenvalue 1.

Exercise 2. (1) Let G be a finite group, and (V, ρV ) a representation of G,
with V a finite dimensional complex vector space. Let g be an element of
G. Show that there is a positive integer n ≥ 1 such that ρV (g)n = idV .
What can you conclude about the minimal polynomial of ρV (g)?

(2) Show that ρV (g) is diagonalisable.

Solution 2. (1) Since G is a finite group there is a positive integer n ≥ 1 such
that gn = e. This implies that ρV (g)n = ρV (gn) = ρV (e) = idV . Since
the linear map ρV (g) satisfies the polynomial Xn− 1, we conclude that the
minimal polynomial of ρV (g) divides Xn − 1.

(2) Putting ρV (g) in Jordan normal form, we get that the minimal polynomial

of ρV (g) is equal to
∏d
i=1(X − λi)ei where λ1, . . . λd are the eigenvalues of

ρV (g) and ei is the size of the largest Jordan block with diagonal entry λi.
Now Xn − 1 =

∏n
j=1(X − ζn) where ζ = e2πi/n is a primitive nth root of

unity. Since the minimal polynomial of ρV (g) divides Xn−1 it is a product
of distinct linear factors. So all the numbers ei are equal to 1 and ρV (g) is
diagonalisable.

If you don’t like using Jordan normal form you can also prove directly
that if the minimal polynomial of a linear map f : V → V is a product of

distinct factors
∏d
i=1(X −λi) then f is diagonalisable. First show that the

polynomial

g(X) =

d∑
j=1

d∏
i 6=j,i=1

(X − λi)
λj − λi

= 1

Hint: for each j = 1, . . . , d we have g(λj) = 1 but g has degree d− 1. Then
show that the linear map

d∏
i6=j,i=1

(f − λi)
λj − λi

has image Vj ⊂ V such that f |Vj is multiplication by λj . The fact that
g(X) = 1 implies that V1, . . . Vd span V and so V has a basis of eigenvectors
for f .

Exercise 3. (1) Consider S3 acting on Ω = {1, 2, 3} and write V for the asso-
ciated permutation representation CΩ. Write down the matrices giving the
action of (123), (23) with respect to the standard basis ([1], [2], [3]) of V .
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(2) Write U for the subspace of V consisting of vectors {λ1[1] + λ2[2] + λ3[3] :
λ1 + λ2 + λ3 = 0}. Show that U is mapped to itself by the action of S3.
Find a basis of U with respect to which the action of (23) is given by a
diagonal matrix and write down the matrix giving the action of (123) with
respect to this basis.

Can you find a basis of U with respect to which the actions of both (23)
and (123) are given by diagonal matrices?

Solution 3. (1) The action of (123) is given by0 0 1
1 0 0
0 1 0

 .

The action of (23) is given by1 0 0
0 0 1
0 1 0

 .

(2) Let g ∈ S3 and suppose λ1 + λ2 + λ3 = 0. We have

g ·(λ1[1]+λ2[2]+λ3[3]) = λ1[g ·1]+λ2[g ·2]+λ3[g ·3] = λg−1·1[1]+λg−1·2[2]+λg−1·3[3]

and λg−1·1 + λg−1·2 + λg−1·3 = λ1 + λ2 + λ3. So if v = λ1[1] + λ2[2] + λ3[3]
is in U then g · v is in U . Let v1 = 2[1]− [2]− [3] and v2 = −[2] + [3]. Then
v1, v2 give a basis for U and we have (23) · v1 = v1, (23) · v2 = −v2. So this
gives a basis of U with respect to which the action of (23) is diagonal. If
we modify the basis by multiplying v1 or v2 by a non-zero scalar we get a
new basis, but these are the only possible choices.

Let’s compute the action of (123) with respect to the basis v1, v2. We
have

(123)v1 = 2[2]− [3]− [1] = −1/2v1 − 3/2v2

and

(123)v2 = −[3] + [1] = 1/2v1 − 1/2v2.

So we get a matrix (
−1/2 1/2
−3/2 −1/2

)
.

Note that if we rescale our basis to v1,
√

3v2 we get a matrix(
−1/2

√
3/2

−
√

3/2 −1/2

)
which is the same as the matrix we wrote down when giving the two-
dimensional rep of S3 arising from viewing S3 as the symmetry group of
the triangle.

Finally, the only bases of U with respect to which the action of (23) is
diagonal are given by αv1, βv2, and the action of (123) with respect to these
bases is not diagonal. So it is not possible to find a basis of U with respect
to which the actions of both (23) and (123) are diagonal.

Exercise 4. (1) Let V,W be two representations of G and f : V → W an
invertible G-linear map. Show that f−1 is G-linear.

(2) Show that a composition of two G-linear maps is G-linear.
(3) Deduce that ‘being isomorphic’ is an equivalence relation on representations

of a group G.
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Solution 4. (1) We want to show that

f−1 ◦ ρW (g) = ρV (g) ◦ f−1

for all g ∈ G. Equivalently, we want to show that

ρV (g−1) ◦ f−1 ◦ ρW (g) = f−1

for all g ∈ G. Composing with f on both sides, we see that it’s enough to
show that

f ◦ ρV (g−1) ◦ f−1 ◦ ρW (g) = idW

and since f is G-linear we can simplify the left hand side

f ◦ ρV (g−1) ◦ f−1 ◦ ρW (g) = ρW (g−1) ◦ f ◦ f−1 ◦ ρW (g) = ρW (g−1) ◦ ρW (g) = idW .

(2) Suppose f1 : U → V and f2 : V →W are G-linear maps. We want to show
that the composition f2 ◦ f1 : U →W is G-linear. We have

f2 ◦ f1 ◦ ρU (g) = f2 ◦ ρV (g) ◦ f1 = ρW (g) ◦ f2 ◦ f1
where we use G-linearity of f1 for the first inequality and G-linearity of f2
for the second. We conclude that f2 ◦ f1 is G-linear.

(3) Being isomorphic is reflexive, since the identity map is a G-linear iso-
morphism. Part (1) shows that being isomorpic is symmetric, since if
f : V → W is a G-linear isomorphism, the inverse f−1 is a G-linear iso-
morphism from W to V . Finally, transitivity follows from part (2).

Exercise 5. (1) Let G,H be two finite groups, and let f : G → H be a
group homomorphism. Suppose we have a representation V of H. Show
that ρV ◦ f : G → GL(V ) defines a representation of G. We call this
representation the restriction of V from H to G along f , written Resf (V ).

(2) Let Sn act on the set of cosets Ω = {eAn, (12)An} for the alternating group
An ⊂ Sn by left multiplication. We get a two-dimensional representation
CΩ of Sn. Show that CΩ is isomorphic to Ressgn(V ) where sgn : Sn →
{±1} is the sign homomorphism1 and V is the regular representation of
{±1}.

Solution 5. (1) We just need to check that ρV ◦ f is a group homomorphism.
Since f and ρV are group homomorphisms, the composition ρV ◦ f is too.

(2) We need to write down an Sn-linear isomorphism

α : CΩ→ Ressgn(V ).

We define α([eAn]) = [+1] and α([(12)An]) = [−1]. Then α is clearly an
invertible linear map. It remains to check that α is Sn-linear. For g ∈ Sn
we have gAn = eAn if sgn(g) = +1 and gAn = (12)An if sgn(g) = −1.
So we can check that α(g · [eAn]) = α([gAn]) = (sgn(g))α([eAn]) and
α(g · [(12)An]) = α([g(12)An]) = (sgn(g))α([(12)An]). This shows that α
is Sn-linear, as desired.

Exercise 6. (1) Let Cn = 〈g : gn = e〉 be a cyclic group of order n. Let Vreg be
the regular representation of Cn. What is the matrix for the action of g on
Vreg, with respect to the basis [e], [g], . . . [gn−1]? What are the eigenvalues
of this matrix?

(2) Find a basis for Vreg consisting of eigenvectors for ρVreg
(g).

1taking even permutations to +1 and odd permutations to −1
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(3) Let G be a finite Abelian group, and let V be a representation of G. Show
that V has a basis consisting of simultaneous eigenvectors for the linear
maps {ρV (g) : g ∈ G}. Hint: recall the fact from linear algebra that a
commuting family of diagonalisable linear operators is simultaneously diag-
onalisable.

Solution 6. (1) The matrix of g has 1 in the entries below the diagonal, and
a 1 in the top right hand corner. Let’s compute the eigenvalues. Suppose v
is a non-zero eigenvector for g with eigenvalue µ. We write v =

∑n−1
i=0 λi[g

i]
we have

g ·

(
n−1∑
i=0

λi[g
i]

)
= µ

n−1∑
i=0

λi[g
i].

The left hand side is equal to

n−1∑
i=0

λi[g
i+1]

so equating coefficients we get µλ1 = λ0, µλ2 = λ1,. . . ,µλn−1 = λn−2 and
µλ0 = λn−1. Putting everything together we find that λi = µn−iλ0 for
i = 0λn− 1. In particular we have µn = 1 and given an nth root of unity µ∑n−1
i=0 µ

n−i[gi] is a non-zero eigenvector for g with eigenvalue µ. So there
are n distinct eigenvalues, each of the nth roots of unity.

(2) I already did this in part (1): the basis is given by the n vectors vµ =∑n−1
i=0 µ

n−i[gi] for µ an nth root of unity.
(3) The linear operators ρV (g) are all diagonalisable, by Exercise 2, and they

all commute with each other because G is Abelian, so for g, h ∈ G gh = hg
and therefore ρV (g)ρV (h) = ρV (h)ρV (g). So the linear algebra fact quoted
in the exercise tells us that we have a basis of simultaneous eigenvectors.


