M3/4/5P12 PROBLEM SHEET 1

Please send any corrections or queries to j.newton@imperial.ac.uk.
Exercise 1. (1) Let $G=C_{4} \times C_{2}=\left\langle s, t: s^{4}=t^{2}=e, s t=t s\right\rangle$. Let $V=\mathbb{C}^{2}$ with the standard basis. Consider the linear transformations of V defined by the matrices

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Verify that sending s to S and t to T defines a representation of G on V. Is this representation faithful?
(2) Now let

$$
Q=\left(\begin{array}{ll}
i & 0 \\
1 & 1
\end{array}\right) \quad R=\left(\begin{array}{cc}
-1 & 0 \\
i+1 & 1
\end{array}\right)
$$

Verify that sending s to Q and t to R also defines a representation of G on V. Is this representation faithful?
(3) Show that S is conjugate to Q and T is conjugate to R. Are the two representations we have defined isomorphic?

Solution 1. (1) To show that we have defined a representation of G we need to check that the matrices S and T satisfy the relations which are given for s and t. So we need to check that

$$
S^{4}=T^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
S T=T S
$$

These should be straightforward computations.
The representation is faithful. We need to check that the linear map associated to an element $g \in G$ is the identity if and only if g is the identity. We can write $g=s^{a} t^{b}$, so $\rho_{V}(g)$ has matrix

$$
S^{a} T^{b}=\left(\begin{array}{cc}
(-1)^{b} & 0 \\
0 & i^{4}
\end{array}\right)
$$

This matrix is the identity matrix if and only if a is divisible by 4 and b is divisible by 2. But if these divisibilities hold then $s^{a}=t^{b}=e$ and so $g=e$.
(2) Again we just need to check the relations. We have

$$
Q^{2}=\left(\begin{array}{cc}
-1 & 0 \\
i+1 & 1
\end{array}\right)=R
$$

and

$$
Q^{4}=R^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

We also have $Q R=Q^{3}=R Q$.
Finally, this representation is not faithful. We have

$$
Q^{2} R=R^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

[^0]so $s^{2} t$ is send to the identity under this representation. Since $s^{2} t \neq e$ the representation is not faithful.

(3) To show that S is conjugate to Q and T is conjugate to R you can either find explicit matrices conjugating one to the other, or compute eigenvalues. For example S and Q both have eigenvalues 1, i, which are distinct, so both S and Q are conjugate to the diagonal matrix $\left(\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right)$ and are therefore conjugate to each other. The two representations are not isomorphic because one is faithful and the other is not. Call the first representation ρ and the second σ. The 1-eigenspace for Q is equal to the 1 -eigenspace for R. An isomorphism of representations from σ to ρ would take this common 1-eigenspace for $Q=\sigma(s)$ and $R=\sigma(t)$ to a common 1-eigenspace for $S=\rho(s)$ and $T=\rho(t)$, but there is no non-zero simultaneous eigenvector for S and T with eigenvalue 1 .

Exercise 2. (1) Let G be a finite group, and $\left(V, \rho_{V}\right)$ a representation of G, with V a finite dimensional complex vector space. Let g be an element of G. Show that there is a positive integer $n \geq 1$ such that $\rho_{V}(g)^{n}=\operatorname{id}_{V}$. What can you conclude about the minimal polynomial of $\rho_{V}(g)$?
(2) Show that $\rho_{V}(g)$ is diagonalisable.

Solution 2. (1) Since G is a finite group there is a positive integer $n \geq 1$ such that $g^{n}=e$. This implies that $\rho_{V}(g)^{n}=\rho_{V}\left(g^{n}\right)=\rho_{V}(e)=\mathrm{id}_{V}$. Since the linear map $\rho_{V}(g)$ satisfies the polynomial $X^{n}-1$, we conclude that the minimal polynomial of $\rho_{V}(g)$ divides $X^{n}-1$.
(2) Putting $\rho_{V}(g)$ in Jordan normal form, we get that the minimal polynomial of $\rho_{V}(g)$ is equal to $\prod_{i=1}^{d}\left(X-\lambda_{i}\right)^{e_{i}}$ where $\lambda_{1}, \ldots \lambda_{d}$ are the eigenvalues of $\rho_{V}(g)$ and e_{i} is the size of the largest Jordan block with diagonal entry λ_{i}. Now $X^{n}-1=\prod_{j=1}^{n}\left(X-\zeta^{n}\right)$ where $\zeta=e^{2 \pi i / n}$ is a primitive nth root of unity. Since the minimal polynomial of $\rho_{V}(g)$ divides $X^{n}-1$ it is a product of distinct linear factors. So all the numbers e_{i} are equal to 1 and $\rho_{V}(g)$ is diagonalisable.

If you don't like using Jordan normal form you can also prove directly that if the minimal polynomial of a linear map $f: V \rightarrow V$ is a product of distinct factors $\prod_{i=1}^{d}\left(X-\lambda_{i}\right)$ then f is diagonalisable. First show that the polynomial

$$
g(X)=\sum_{j=1}^{d} \prod_{i \neq j, i=1}^{d} \frac{\left(X-\lambda_{i}\right)}{\lambda_{j}-\lambda_{i}}=1
$$

Hint: for each $j=1, \ldots, d$ we have $g\left(\lambda_{j}\right)=1$ but g has degree $d-1$. Then show that the linear map

$$
\prod_{i \neq j, i=1}^{d} \frac{\left(f-\lambda_{i}\right)}{\lambda_{j}-\lambda_{i}}
$$

has image $V_{j} \subset V$ such that $\left.f\right|_{V_{j}}$ is multiplication by λ_{j}. The fact that $g(X)=1$ implies that $V_{1}, \ldots V_{d}$ span V and so V has a basis of eigenvectors for f.

Exercise 3. (1) Consider S_{3} acting on $\Omega=\{1,2,3\}$ and write V for the associated permutation representation $\mathbb{C} \Omega$. Write down the matrices giving the action of $(123),(23)$ with respect to the standard basis ([1], [2], [3]) of V.
(2) Write U for the subspace of V consisting of vectors $\left\{\lambda_{1}[1]+\lambda_{2}[2]+\lambda_{3}[3]\right.$: $\left.\lambda_{1}+\lambda_{2}+\lambda_{3}=0\right\}$. Show that U is mapped to itself by the action of S_{3}. Find a basis of U with respect to which the action of (23) is given by a diagonal matrix and write down the matrix giving the action of (123) with respect to this basis.

Can you find a basis of U with respect to which the actions of both (23) and (123) are given by diagonal matrices?
Solution 3. (1) The action of (123) is given by

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

The action of (23) is given by

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(2) Let $g \in S_{3}$ and suppose $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. We have

$$
g \cdot\left(\lambda_{1}[1]+\lambda_{2}[2]+\lambda_{3}[3]\right)=\lambda_{1}[g \cdot 1]+\lambda_{2}[g \cdot 2]+\lambda_{3}[g \cdot 3]=\lambda_{g^{-1} \cdot 1}[1]+\lambda_{g^{-1} \cdot 2}[2]+\lambda_{g^{-1 \cdot 3}}[3]
$$

and $\lambda_{g^{-1.1}}+\lambda_{g^{-1.2}}+\lambda_{g^{-1.3}}=\lambda_{1}+\lambda_{2}+\lambda_{3}$. So if $v=\lambda_{1}[1]+\lambda_{2}[2]+\lambda_{3}[3]$ is in U then $g \cdot v$ is in U. Let $v_{1}=2[1]-[2]-[3]$ and $v_{2}=-[2]+[3]$. Then v_{1}, v_{2} give a basis for U and we have (23) $\cdot v_{1}=v_{1},(23) \cdot v_{2}=-v_{2}$. So this gives a basis of U with respect to which the action of (23) is diagonal. If we modify the basis by multiplying v_{1} or v_{2} by a non-zero scalar we get a new basis, but these are the only possible choices.

Let's compute the action of (123) with respect to the basis v_{1}, v_{2}. We have

$$
(123) v_{1}=2[2]-[3]-[1]=-1 / 2 v_{1}-3 / 2 v_{2}
$$

and

$$
(123) v_{2}=-[3]+[1]=1 / 2 v_{1}-1 / 2 v_{2}
$$

So we get a matrix

$$
\left(\begin{array}{cc}
-1 / 2 & 1 / 2 \\
-3 / 2 & -1 / 2
\end{array}\right)
$$

Note that if we rescale our basis to $v_{1}, \sqrt{3} v_{2}$ we get a matrix

$$
\left(\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & -1 / 2
\end{array}\right)
$$

which is the same as the matrix we wrote down when giving the twodimensional rep of S_{3} arising from viewing S_{3} as the symmetry group of the triangle.

Finally, the only bases of U with respect to which the action of (23) is diagonal are given by $\alpha v_{1}, \beta v_{2}$, and the action of (123) with respect to these bases is not diagonal. So it is not possible to find a basis of U with respect to which the actions of both (23) and (123) are diagonal.

Exercise 4. (1) Let V, W be two representations of G and $f: V \rightarrow W$ an invertible G-linear map. Show that f^{-1} is G-linear.
(2) Show that a composition of two G-linear maps is G-linear.
(3) Deduce that 'being isomorphic' is an equivalence relation on representations of a group G.

Solution 4. (1) We want to show that

$$
f^{-1} \circ \rho_{W}(g)=\rho_{V}(g) \circ f^{-1}
$$

for all $g \in G$. Equivalently, we want to show that

$$
\rho_{V}\left(g^{-1}\right) \circ f^{-1} \circ \rho_{W}(g)=f^{-1}
$$

for all $g \in G$. Composing with f on both sides, we see that it's enough to show that

$$
f \circ \rho_{V}\left(g^{-1}\right) \circ f^{-1} \circ \rho_{W}(g)=\operatorname{id}_{W}
$$

and since f is G-linear we can simplify the left hand side
$f \circ \rho_{V}\left(g^{-1}\right) \circ f^{-1} \circ \rho_{W}(g)=\rho_{W}\left(g^{-1}\right) \circ f \circ f^{-1} \circ \rho_{W}(g)=\rho_{W}\left(g^{-1}\right) \circ \rho_{W}(g)=\mathrm{id}_{W}$.
(2) Suppose $f_{1}: U \rightarrow V$ and $f_{2}: V \rightarrow W$ are G-linear maps. We want to show that the composition $f_{2} \circ f_{1}: U \rightarrow W$ is G-linear. We have

$$
f_{2} \circ f_{1} \circ \rho_{U}(g)=f_{2} \circ \rho_{V}(g) \circ f_{1}=\rho_{W}(g) \circ f_{2} \circ f_{1}
$$

where we use G-linearity of f_{1} for the first inequality and G-linearity of f_{2} for the second. We conclude that $f_{2} \circ f_{1}$ is G-linear.
(3) Being isomorphic is reflexive, since the identity map is a G-linear isomorphism. Part (1) shows that being isomorpic is symmetric, since if $f: V \rightarrow W$ is a G-linear isomorphism, the inverse f^{-1} is a G-linear isomorphism from W to V. Finally, transitivity follows from part (2).

Exercise 5. (1) Let G, H be two finite groups, and let $f: G \rightarrow H$ be a group homomorphism. Suppose we have a representation V of H. Show that $\rho_{V} \circ f: G \rightarrow \mathrm{GL}(V)$ defines a representation of G. We call this representation the restriction of V from H to G along f, written $\operatorname{Res}_{f}(V)$.
(2) Let S_{n} act on the set of cosets $\Omega=\left\{e A_{n},(12) A_{n}\right\}$ for the alternating group $A_{n} \subset S_{n}$ by left multiplication. We get a two-dimensional representation $\mathbb{C} \Omega$ of S_{n}. Show that $\mathbb{C} \Omega$ is isomorphic to $\operatorname{Res}_{\text {sgn }}(V)$ where $\operatorname{sgn}: S_{n} \rightarrow$ $\{ \pm 1\}$ is the sign homomorphism ${ }^{11}$ and V is the regular representation of $\{ \pm 1\}$.

Solution 5. (1) We just need to check that $\rho_{V} \circ f$ is a group homomorphism. Since f and ρ_{V} are group homomorphisms, the composition $\rho_{V} \circ f$ is too.
(2) We need to write down an S_{n}-linear isomorphism

$$
\alpha: \mathbb{C} \Omega \rightarrow \operatorname{Res}_{\text {sgn }}(V)
$$

We define $\alpha\left(\left[e A_{n}\right]\right)=[+1]$ and $\alpha\left(\left[(12) A_{n}\right]\right)=[-1]$. Then α is clearly an invertible linear map. It remains to check that α is S_{n}-linear. For $g \in S_{n}$ we have $g A_{n}=e A_{n}$ if $\operatorname{sgn}(g)=+1$ and $g A_{n}=(12) A_{n}$ if $\operatorname{sgn}(g)=-1$. So we can check that $\alpha\left(g \cdot\left[e A_{n}\right]\right)=\alpha\left(\left[g A_{n}\right]\right)=(\operatorname{sgn}(g)) \alpha\left(\left[e A_{n}\right]\right)$ and $\alpha\left(g \cdot\left[(12) A_{n}\right]\right)=\alpha\left(\left[g(12) A_{n}\right]\right)=(\operatorname{sgn}(g)) \alpha\left(\left[(12) A_{n}\right]\right)$. This shows that α is S_{n}-linear, as desired.

Exercise 6. (1) Let $C_{n}=\left\langle g: g^{n}=e\right\rangle$ be a cyclic group of order n. Let $V_{\text {reg }}$ be the regular representation of C_{n}. What is the matrix for the action of g on $V_{\text {reg }}$, with respect to the basis $[e],[g], \ldots\left[g^{n-1}\right]$? What are the eigenvalues of this matrix?
(2) Find a basis for $V_{r e g}$ consisting of eigenvectors for $\rho_{V_{\text {reg }}}(g)$.

[^1](3) Let G be a finite Abelian group, and let V be a representation of G. Show that V has a basis consisting of simultaneous eigenvectors for the linear maps $\left\{\rho_{V}(g): g \in G\right\}$. Hint: recall the fact from linear algebra that a commuting family of diagonalisable linear operators is simultaneously diagonalisable.

Solution 6. (1) The matrix of g has 1 in the entries below the diagonal, and a 1 in the top right hand corner. Let's compute the eigenvalues. Suppose v is a non-zero eigenvector for g with eigenvalue μ. We write $v=\sum_{i=0}^{n-1} \lambda_{i}\left[g^{i}\right]$ we have

$$
g \cdot\left(\sum_{i=0}^{n-1} \lambda_{i}\left[g^{i}\right]\right)=\mu \sum_{i=0}^{n-1} \lambda_{i}\left[g^{i}\right] .
$$

The left hand side is equal to

$$
\sum_{i=0}^{n-1} \lambda_{i}\left[g^{i+1}\right]
$$

so equating coefficients we get $\mu \lambda_{1}=\lambda_{0}, \mu \lambda_{2}=\lambda_{1}, \ldots, \mu \lambda_{n-1}=\lambda_{n-2}$ and $\mu \lambda_{0}=\lambda_{n-1}$. Putting everything together we find that $\lambda_{i}=\mu^{n-i} \lambda_{0}$ for $i=0 \lambda n-1$. In particular we have $\mu^{n}=1$ and given an nth root of unity μ $\sum_{i=0}^{n-1} \mu^{n-i}\left[g^{i}\right]$ is a non-zero eigenvector for g with eigenvalue μ. So there are n distinct eigenvalues, each of the nth roots of unity.
(2) I already did this in part (1): the basis is given by the n vectors $v_{\mu}=$ $\sum_{i=0}^{n-1} \mu^{n-i}\left[g^{i}\right]$ for μ an nth root of unity.
(3) The linear operators $\rho_{V}(g)$ are all diagonalisable, by Exercise 2, and they all commute with each other because G is Abelian, so for $g, h \in G g h=h g$ and therefore $\rho_{V}(g) \rho_{V}(h)=\rho_{V}(h) \rho_{V}(g)$. So the linear algebra fact quoted in the exercise tells us that we have a basis of simultaneous eigenvectors.

[^0]: Date: Monday $18^{\text {th }}$ April, 2016.

[^1]: $1_{\text {taking even permutations to }}+1$ and odd permutations to -1

