M3/4/5P12 PROBLEM SHEET 4 (EXTRA EXERCISES)

Please send any corrections or queries to j.newton@imperial.ac.uk. These additional exercises work out the character tables of S_{5} and A_{5}. They are fairly long/tricky but I've included them because it's good to see the computation of these character tables!

Exercise 1. Let $G=S_{n}$ and set $\Omega=\{1, \ldots, n\}$. Recall that we have an n-dimensional rep $\mathbb{C} \Omega$ of S_{n}, with a one-dimensional subrepresentation spanned by $\sum_{i=1}^{n}[i]$. Let $V \subset \mathbb{C} \Omega$ be a complementary subrepresentation to this onedimensional rep. The aim of this exercise is to show that V is irreducible.

For $g \in S_{n}$ write Fix $x_{\Omega}(g)$ for the subset $\{i \in \Omega: g i=i\} \subset \Omega$. Recall that

$$
\chi_{\mathbb{C} \Omega}(g)=\left|F i x_{\Omega}(g)\right| .
$$

(See Exercise 7 on Problem Sheet 3).
(1) For $i, j \in \Omega$ define $\delta_{i, j}=0$ if $i \neq j$ and $\delta_{i, i}=1$. Show that

$$
\left|F i x_{\Omega}(g)\right|=\sum_{i=1}^{n} \delta_{g i, i}
$$

(2) Show that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C} \Omega}\right\rangle=\frac{1}{n!} \sum_{g \in S_{n}}\left(\sum_{i=1}^{n} \delta_{g i, i}\right)^{2} .
$$

(3) By multiplying out the square in the previous equation, and reordering the sum, show that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C} \Omega}\right\rangle=\frac{1}{n!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j} .
$$

(4) Show that if $i=j$ then

$$
\sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j}=(n-1)!
$$

(5) Show that if $i \neq j$ then

$$
\sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j}=(n-2)!
$$

(6) Deduce that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C} \Omega}\right\rangle=2 .
$$

(7) Finally, show that

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=1
$$

and deduce that V is an irreducible representation of S_{n}.
Solution 1. (1) The sum $\sum_{i=1}^{n} \delta_{g i, i}$ simply counds the number of i such that $g i=i$. This is the number of fixed points of g in Ω.
(2) We have $\chi_{\mathrm{C} \Omega}(g)=\sum_{i=1}^{n} \delta_{g i, i}$ by part (1). By definition

$$
\langle\chi \mathbb{C} \Omega, \chi \subset \mathbb{C} \Omega\rangle=\frac{1}{\left|S_{n}\right|} \sum_{g \in S_{n}} \chi_{\mathbb{C} \Omega}(g) \overline{\chi_{\mathbb{C}}(g)}
$$

and substituting in $\chi_{\mathbb{C} \Omega}(g)=\sum_{i=1}^{n} \delta_{g i, i}$ we get the desired answer.
(3) I think I gave too much of a hint for this part! You multiply out the square, reorder the sum and then you get what is written.
(4) If $i=j$ then the sum $\sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j}$ counts the number of g which fix the single element i. There are $n-1$ other elements of Ω, and we can have any permutation of these, so we get $(n-1)$! elements g in total.
(5) If $i \neq j$ then the sum counts the number of g which fix the two distinct elements i, j. There are $n-2$ other elements, giving $(n-2)$! permutations in total.
(6) Combining parts (3), (4) and (5) we get that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C} \Omega}\right\rangle=\frac{1}{n!}\left(\sum_{i=j}(n-1)!+\sum_{i \neq j}(n-2)!\right) .
$$

There are n terms in the first sum and $n(n-1)$ in the second sum, so we get

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C} \Omega}\right\rangle=\frac{1}{n!}(n!+n!)=2
$$

(7) We have $\mathbb{C} \Omega \cong V \oplus U$ where U is isomorphic to the trivial rep. So

$$
\left\langle\chi_{\mathbb{C}}, \chi_{\mathbb{C}} \Omega=\left\langle\chi_{V}, \chi_{V}\right\rangle+\left\langle\chi_{V}, \chi_{U}\right\rangle+\left\langle\chi_{U}, \chi_{V}\right\rangle+\left\langle\chi_{U}, \chi_{U}\right\rangle\right.
$$

Since $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$ and $\left\langle\chi_{U}, \chi_{V}\right\rangle=\left\langle\chi_{V}, \chi_{U}\right\rangle=\operatorname{dim} \operatorname{Hom}_{S_{n}}(U, V) \geq 0$ and $\left\langle\chi_{V}, \chi_{V}\right\rangle$ is a positive integer, we conclude that $\left\langle\chi_{V}, \chi_{V}\right\rangle=1$ (and $\left\langle\chi_{U}, \chi_{V}\right\rangle=0$). So V is an irrep.

Exercise 2. There are 7 conjugacy classes in S_{5}, with representatives

$$
e,(12),(123),(1234),(12345),(12)(34),(12)(345)
$$

and sizes

$$
1,10,20,30,24,15,20
$$

respectively.
Recall that the one-dimensional characters of S_{5} are given by $\chi_{\text {triv }}$ and $\chi_{\text {sign }}$.
(1) In the previous exercise we found a four-dimensional irrep V for S_{5}. Write down the character χ_{V} of V and show that $V^{\prime}:=V \otimes V_{\text {sign }}$ gives a fourdimensional irrep which is not isomorphic to V.
(2) Using Exercise 6 on Problem Sheet 3, find the character of $\wedge^{2} V$ and show that $\wedge^{2} V$ is irreducible.
(3) Again using Exercise 6 on Problem Sheet 3, find the character of $S^{2} V$ and show that $S^{2} V \cong V_{\text {triv }} \oplus V \oplus W$, where W is a representation of dimension 5. Show moreover that W is irreducible, and $W^{\prime}:=W \otimes V_{\text {sign }}$ is another, non-isomorphic, irrep of dimension 5.
We have now found all the irreps of S_{5}, and their characters. There are 7 isomorphism classes of irreps: $V_{\text {triv }}, V_{\text {sign }}, V, V^{\prime}, \wedge^{2} V, W$ and W^{\prime}.

Solution 2. (1) We have $\chi_{V}(g)=\left|F i x_{\Omega}(g)\right|-1$. So we get

$$
\begin{array}{c|ccccccc}
& e & (12) & (123) & (1234) & (12345) & (12)(34) & (12)(345) \\
\chi_{V} & 4 & 2 & 1 & 0 & -1 & 0 & -1
\end{array}
$$

Since (12) is odd and $\chi_{V}(12)$ is non-zero, we get that $\chi_{V^{\prime}} \neq \chi_{V}$ so V^{\prime} is a four-dimensional irrep, not isomorphic to V.
(2) We have

$$
\chi_{\wedge^{2} V}(g)=\frac{\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)}{2}
$$

So we compute

$$
\begin{array}{c|ccccccc}
e & (12) & (123) & (1234) & (12345) & (12)(34) & (12)(345) \\
\chi_{\wedge^{2} V} & 6 & 0 & 0 & 0 & 1 & -2 & 0
\end{array}
$$

We then get that $\left\langle\chi_{\wedge^{2} V}, \chi_{\wedge^{2} V}\right\rangle=1$, so $\wedge^{2} V$ is irreducible.
(3) We have

$$
\chi_{S^{2} V}+\chi_{\wedge^{2} V}=\chi_{V \otimes V}=\left(\chi_{V}\right)^{2}
$$

So we compute

$$
\begin{array}{c|ccccccc}
& e & (12) & (123) & (1234) & (12345) & (12)(34) & (12)(345) \\
\chi_{S^{2} V} & 10 & 4 & 1 & 0 & 0 & 2 & 1
\end{array}
$$

We then get that $\left\langle\chi_{S^{2} V}, \chi_{\text {triv }}\right\rangle=\left\langle\chi_{S^{2} V}, \chi_{V}=1\right.$, so $S^{2} V \cong V_{\text {triv }} \oplus V \oplus W$ where W has dimension 5 . We now compute $\chi_{W}=\chi_{S^{2} V}-\chi_{\text {triv }}-\chi_{V}$:

	e	(12)	(123)	(1234)	(12345)	$(12)(34)$	$(12)(345)$
χ_{W}	5	1	-1	-1	0	1	1

We can now check that $\left\langle\chi_{W}, \chi_{W}\right\rangle=1$, so W is irreducible. Finally, since $\chi_{W}(12)$ is non-zero, we get that W^{\prime} is non-isomorphic to W.

Exercise 3. There are 5 conjugacy classes in A_{5}, with representatives

$$
e,(123),(12345),(13452),(12)(34)
$$

and sizes

$$
1,20,12,12,15
$$

respectively.
(1) Show that the representations V and W of the previous exercise restrict to irreducible representations of A_{5} (which we still call V, W).
(2) Show that the representation $\wedge^{2} V$ restricts to a representation X of A_{5} whose character χ_{X} has $\left\langle\chi_{X}, \chi_{X}\right\rangle=2$. Deduce that X decomposes as a direct sum of two non-isomorphic irreducible representations Y, Z of A_{5}.
(3) Deduce that the complete list of irreps (up to isomorphism) of A_{5} is given by $V_{\text {triv }}, V, W, Y, Z$, and show that $\operatorname{dim}(Y)^{2}+\operatorname{dim}(Z)^{2}=18$, hence $\operatorname{dim}(Y)=$ $\operatorname{dim}(Z)=3$.

Here's the character table so far (note that we know $\chi_{Y}+\chi_{Z}$ because we know χ_{X}):

	e	(123)	(12345)	(13452)	$(12)(34)$
$\chi_{\text {triv }}$	1	1	1	1	1
χ_{V}	4	1	-1	-1	0
χ_{W}	5	-1	0	0	1
χ_{Y}	3	a	b	c	d
χ_{Z}	3	$-a$	$1-b$	$1-c$	$-2-d$

(4) Show that if V is a rep of A_{5} then $\overline{\chi_{V}(g)}=\chi_{V}(g)$. Hint: If $g \in A_{5}$ then g^{-1} is conjugate to g, so $\chi_{V}\left(g^{-1}\right)=\chi_{V}(g)$.
(5) Using the column orthogonality relations

$$
\sum_{i=1}^{r}\left|\chi_{i}(g)\right|^{2}=|G| /|C(g)|
$$

where $C(g)$ is the conjugacy class of g, show that $a=0, d=-1$ and b, c are both solutions to the quadratic equation $x^{2}-x-1=0$.
(6) Conclude that the character table of A_{5} is given by

	e	(123)	(12345)	(13452)	$(12)(34)$
$\chi_{\text {triv }}$	1	1	1	1	1
χ_{V}	4	1	-1	-1	0
χ_{W}	5	-1	0	0	1
χ_{Y}	3	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	-1
χ_{Z}	3	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	-1

Solution 3. (1) We just need to restrict the characters χ_{V}, χ_{W} to A_{5} and check that the inner products with themselves are equal to 1 .
(2) Again we just compute that inner product of χ_{X} with itself. If we write

$$
X \cong \bigoplus_{i=1}^{r} V_{i}^{\oplus m_{i}}
$$

with V_{i} non-isomorphic irreps, then we get that $\left\langle\chi_{X}, \chi_{X}\right\rangle=\sum_{i=1}^{r} m_{i}^{2}$, so we must have two non-zero m_{i} 's, both equal to 1 . This says that X decomposes as a direct sum of two non-isomorphic irreps.
(3) We have produced 5 non-isomorphic irreps, and there are 5 conjugacy classes in A_{5}, so these are all the irreps. The formula $|G|=\sum_{i=1}^{r} d_{i}^{2}$ now says that

$$
60=1+16+25+\operatorname{dim}(Y)^{2}+\operatorname{dim}(Z)^{2}
$$

so we get $18=\operatorname{dim}(Y)^{2}+\operatorname{dim}(Z)^{2}$. Therefore the only possibility for the dimensions is $\operatorname{dim}(Y)=\operatorname{dim}(Z)=3$.
(4) Using the hint, we see that $\chi_{V}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$ as required.
(5) Part two implies that the unknows a, b, c, d are all real. Now column orthogonality for the first column says $3+2 a^{2}=3$ and for the fourth says $2+2 d^{2}+4 d+4=4$ which says that $d^{2}+2 d+1=(d+1)^{2}=0$. Finally, we get the same relation for the second and third column, and it looks like $2+2 b^{2}-2 b+1=5$ which gives $b^{2}-b-1=0$, and similarly for c.
(6) We didn't distinguish between Y and Z yet, and b, c must be the two distinct roots of $x^{2}-x-1$ in some order. We can therefore choose b to be the root $\frac{1+\sqrt{5}}{2}$, and this gives the character table written out in the question.

