M3/4/5P12 PROBLEM SHEET 4 (EXTRA EXERCISES)

Please send any corrections or queries to j.newton@imperial.ac.uk. These additional exercises work out the character tables of S_5 and A_5 . They are fairly long/tricky but I've included them because it's good to see the computation of these character tables!

Exercise 1. Let $G = S_n$ and set $\Omega = \{1, \ldots, n\}$. Recall that we have an *n*-dimensional rep $\mathbb{C}\Omega$ of S_n , with a one-dimensional subrepresentation spanned by $\sum_{i=1}^{n} [i]$. Let $V \subset \mathbb{C}\Omega$ be a complementary subrepresentation to this one-dimensional rep. The aim of this exercise is to show that V is irreducible.

For $g \in S_n$ write $Fix_{\Omega}(g)$ for the subset $\{i \in \Omega : gi = i\} \subset \Omega$. Recall that

$$\chi_{\mathbb{C}\Omega}(g) = |Fix_{\Omega}(g)|.$$

(See Exercise 7 on Problem Sheet 3).

(1) For $i, j \in \Omega$ define $\delta_{i,j} = 0$ if $i \neq j$ and $\delta_{i,i} = 1$. Show that

$$|Fix_{\Omega}(g)| = \sum_{i=1}^{n} \delta_{gi,i}$$

(2) Show that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \sum_{g \in S_n} \left(\sum_{i=1}^n \delta_{gi,i} \right)^2.$$

(3) By multiplying out the square in the previous equation, and reordering the sum, show that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j}.$$

(4) Show that if i = j then

$$\sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j} = (n-1)!$$

(5) Show that if $i \neq j$ then

$$\sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j} = (n-2)!$$

(6) Deduce that

 $\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = 2.$

(7) Finally, show that

$$\langle \chi_V, \chi_V \rangle = 1$$

and deduce that V is an irreducible representation of S_n .

Solution 1. (1) The sum $\sum_{i=1}^{n} \delta_{gi,i}$ simply counds the number of *i* such that gi = i. This is the number of fixed points of *g* in Ω .

Date: Tuesday 8th March, 2016.

(2) We have $\chi_{\mathbb{C}\Omega}(g) = \sum_{i=1}^{n} \delta_{g_{i,i}}$ by part (1). By definition

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{|S_n|} \sum_{g \in S_n} \chi_{\mathbb{C}\Omega}(g) \overline{\chi_{\mathbb{C}\Omega}(g)}$$

and substituting in $\chi_{\mathbb{C}\Omega}(g) = \sum_{i=1}^n \delta_{gi,i}$ we get the desired answer.

- (3) I think I gave too much of a hint for this part! You multiply out the square, reorder the sum and then you get what is written.
- (4) If i = j then the sum $\sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j}$ counts the number of g which fix the single element i. There are n-1 other elements of Ω , and we can have any permutation of these, so we get (n-1)! elements g in total.
- (5) If $i \neq j$ then the sum counts the number of g which fix the two distinct elements i, j. There are n-2 other elements, giving (n-2)! permutations in total.
- (6) Combining parts (3), (4) and (5) we get that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \left(\sum_{i=j} (n-1)! + \sum_{i \neq j} (n-2)! \right).$$

There are n terms in the first sum and n(n-1) in the second sum, so we get

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \left(n! + n! \right) = 2.$$

(7) We have $\mathbb{C}\Omega \cong V \oplus U$ where U is isomorphic to the trivial rep. So

 $\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \langle \chi_V, \chi_V \rangle + \langle \chi_V, \chi_U \rangle + \langle \chi_U, \chi_V \rangle + \langle \chi_U, \chi_U \rangle.$

Since $\langle \chi_U, \chi_U \rangle = 1$ and $\langle \chi_U, \chi_V \rangle = \langle \chi_V, \chi_U \rangle = \dim \operatorname{Hom}_{S_n}(U, V) \geq 0$ and $\langle \chi_V, \chi_V \rangle$ is a positive integer, we conclude that $\langle \chi_V, \chi_V \rangle = 1$ (and $\langle \chi_U, \chi_V \rangle = 0$). So V is an irrep.

Exercise 2. There are 7 conjugacy classes in S_5 , with representatives

e, (12), (123), (1234), (12345), (12)(34), (12)(345)

and sizes

respectively.

Recall that the one-dimensional characters of S_5 are given by χ_{triv} and χ_{sign} .

- (1) In the previous exercise we found a four-dimensional irrep V for S_5 . Write down the character χ_V of V and show that $V' := V \otimes V_{sign}$ gives a four-dimensional irrep which is not isomorphic to V.
- (2) Using Exercise 6 on Problem Sheet 3, find the character of $\wedge^2 V$ and show that $\wedge^2 V$ is irreducible.
- (3) Again using Exercise 6 on Problem Sheet 3, find the character of S^2V and show that $S^2V \cong V_{triv} \oplus V \oplus W$, where W is a representation of dimension 5. Show moreover that W is irreducible, and $W' := W \otimes V_{sign}$ is another, non-isomorphic, irrep of dimension 5.

We have now found all the irreps of S_5 , and their characters. There are 7 isomorphism classes of irreps: $V_{triv}, V_{sign}, V, V', \wedge^2 V, W$ and W'.

Solution 2. (1) We have
$$\chi_V(g) = |Fix_\Omega(g)| - 1$$
. So we get
 $\begin{pmatrix} e & (12) & (123) & (1234) & (12345) & (12)(34) & (12)(345) \\ 4 & 2 & 1 & 0 & -1 & 0 & -1 \\ 4 & 2 & 1 & 0 & -1 & 0 & -1 \\ \end{pmatrix}$

Since (12) is odd and $\chi_V(12)$ is non-zero, we get that $\chi_{V'} \neq \chi_V$ so V' is a four-dimensional irrep, not isomorphic to V.

 $\mathbf{2}$

(2) We have

$$\chi_{\wedge^2 V}(g) = \frac{\chi_V(g)^2 - \chi_V(g^2)}{2}.$$

So we compute

(3) We have

$$\chi_{S^2V} + \chi_{\wedge^2V} = \chi_{V\otimes V} = (\chi_V)^2$$

So we compute

e (12) (123) (1234) (12345) (12)(34) (12)(345) $\chi_{S^2V} \mid 10 \quad 4$ 1 0 0 21 We then get that $\langle \chi_{S^2V}, \chi_{triv} \rangle = \langle \chi_{S^2V}, \chi_V = 1$, so $S^2V \cong V_{triv} \oplus V \oplus W$ where W has dimension 5. We now compute $\chi_W = \chi_{S^2V} - \chi_{triv} - \chi_V$: e (12) (123) (1234) (12345) (12)(34) (12)(345) $\chi_W \mid 5$ 1 -1 -1 0 1 1 We can now check that $\langle \chi_W, \chi_W \rangle = 1$, so W is irreducible. Finally, since $\chi_W(12)$ is non-zero, we get that W' is non-isomorphic to W.

Exercise 3. There are 5 conjugacy classes in A_5 , with representatives

e, (123), (12345), (13452), (12)(34)

and sizes

respectively.

- Show that the representations V and W of the previous exercise restrict to irreducible representations of A₅ (which we still call V, W).
 Show that the representation ∧²V restricts to a representation X of A₅
- (2) Show that the representation $\wedge^2 V$ restricts to a representation X of A_5 whose character χ_X has $\langle \chi_X, \chi_X \rangle = 2$. Deduce that X decomposes as a direct sum of two non-isomorphic irreducible representations Y, Z of A_5 .
- (3) Deduce that the complete list of irreps (up to isomorphism) of A_5 is given by V_{triv}, V, W, Y, Z , and show that $\dim(Y)^2 + \dim(Z)^2 = 18$, hence $\dim(Y) = \dim(Z) = 3$.

Here's the character table so far (note that we know $\chi_Y + \chi_Z$ because we know χ_X):

	e	(123)	(12345)	(13452)	(12)(34)
χ_{triv}	1	1	1	1	1
χ_V	4	1	-1	-1	0
χ_W	5	-1	0	0	1
χ_Y	3	a	b	c	d
χ_Z	3	-a	1-b	1 - c	-2 - d

- (4) Show that if V is a rep of A_5 then $\chi_V(g) = \chi_V(g)$. Hint: If $g \in A_5$ then g^{-1} is conjugate to g, so $\chi_V(g^{-1}) = \chi_V(g)$.
- (5) Using the column orthogonality relations

$$\sum_{i=1}^{r} |\chi_i(g)|^2 = |G|/|C(g)|$$

where C(g) is the conjugacy class of g, show that a = 0, d = -1 and b, c are both solutions to the quadratic equation $x^2 - x - 1 = 0$.

(6) Conclude that the character table of A_5 is given by

	e	(123)	(12345)	(13452)	(12)(34)
χ_{triv}	1	1	1	1	1
χ_V	4	1	-1	-1	0
χ_W	5	-1	0	0	1
χ_Y	3	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	-1
χ_Z	3	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	-1

- **Solution 3.** (1) We just need to restrict the characters χ_V, χ_W to A_5 and check that the inner products with themselves are equal to 1.
 - (2) Again we just compute that inner product of χ_X with itself. If we write

$$X \cong \bigoplus_{i=1}^{r} V_i^{\oplus m_i}$$

with V_i non-isomorphic irreps, then we get that $\langle \chi_X, \chi_X \rangle = \sum_{i=1}^r m_i^2$, so we must have two non-zero m_i 's, both equal to 1. This says that X decomposes as a direct sum of two non-isomorphic irreps.

(3) We have produced 5 non-isomorphic irreps, and there are 5 conjugacy classes in A_5 , so these are all the irreps. The formula $|G| = \sum_{i=1}^r d_i^2$ now says that

 $60 = 1 + 16 + 25 + \dim(Y)^2 + \dim(Z)^2$

so we get $18 = \dim(Y)^2 + \dim(Z)^2$. Therefore the only possibility for the dimensions is $\dim(Y) = \dim(Z) = 3$.

- (4) Using the hint, we see that $\chi_V(g) = \chi_V(g^{-1}) = \overline{\chi_V(g)}$ as required.
- (5) Part two implies that the unknows a, b, c, d are all real. Now column orthogonality for the first column says 3 + 2a² = 3 and for the fourth says 2 + 2d² + 4d + 4 = 4 which says that d² + 2d + 1 = (d + 1)² = 0. Finally, we get the same relation for the second and third column, and it looks like 2 + 2b² 2b + 1 = 5 which gives b² b 1 = 0, and similarly for c.
- (6) We didn't distinguish between Y and Z yet, and b, c must be the two distinct roots of $x^2 x 1$ in some order. We can therefore choose b to be the root $\frac{1+\sqrt{5}}{2}$, and this gives the character table written out in the question.