M3/4/5P12 PROBLEM SHEET 1

Please send any corrections or queries to j.newton@imperial.ac.uk.
Exercise 1. (1) Let $G=C_{4} \times C_{2}=\left\langle s, t: s^{4}=t^{2}=e, s t=t s\right\rangle$. Let $V=\mathbb{C}^{2}$ with the standard basis. Consider the linear transformations of V defined by the matrices

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Verify that sending s to S and t to T defines a representation of G on V. Is this representation faithful?
(2) Now let

$$
Q=\left(\begin{array}{ll}
i & 0 \\
1 & 1
\end{array}\right) \quad R=\left(\begin{array}{cc}
-1 & 0 \\
i+1 & 1
\end{array}\right)
$$

Verify that sending s to Q and t to R also defines a representation of G on V. Is this representation faithful?
(3) Show that S is conjugate to Q and T is conjugate to R. Are the two representations we have defined isomorphic?

Exercise 2. (1) Let G be a finite group, and $\left(V, \rho_{V}\right)$ a representation of G, with V a finite dimensional complex vector space. Let g be an element of G. Show that there is a positive integer $n \geq 1$ such that $\rho_{V}(g)^{n}=\mathrm{id}_{V}$. What can you conclude about the minimal polynomial of $\rho_{V}(g)$?
(2) Show that $\rho_{V}(g)$ is diagonalisable.

Exercise 3. (1) Consider S_{3} acting on $\Omega=\{1,2,3\}$ and write V for the associated permutation representation $\mathbb{C} \Omega$. Write down the matrices giving the action of (123), (23) with respect to the standard basis ([1], [2], [3]) of V.
(2) Write U for the subspace of V consisting of vectors $\left\{\lambda_{1}[1]+\lambda_{2}[2]+\lambda_{3}[3]\right.$: $\left.\lambda_{1}+\lambda_{2}+\lambda_{3}=0\right\}$. Show that U is mapped to itself by the action of S_{3}. Find a basis of U with respect to which the action of (23) is given by a diagonal matrix and write down the matrix giving the action of (123) with respect to this basis.

Can you find a basis of U with respect to which the actions of both (23) and (123) are given by diagonal matrices?

Exercise 4. (1) Let V, W be two representations of G and $f: V \rightarrow W$ an invertible G-linear map. Show that f^{-1} is G-linear.
(2) Show that a composition of two G-linear maps is G-linear.
(3) Deduce that 'being isomorphic' is an equivalence relation on representations of a group G.

Exercise 5. (1) Let G, H be two finite groups, and let $f: G \rightarrow H$ be a group homomorphism. Suppose we have a representation V of H. Show that $\rho_{V} \circ f: G \rightarrow \mathrm{GL}(V)$ defines a representation of G. We call this representation the restriction of V from H to G along f, written $\operatorname{Res}_{f}(V)$.
(2) Let S_{n} act on the set of cosets $\Omega=\left\{e A_{n},(12) A_{n}\right\}$ for the alternating group $A_{n} \subset S_{n}$ by left multiplication. We get a two-dimensional representation $\mathbb{C} \Omega$ of S_{n}. Show that $\mathbb{C} \Omega$ is isomorphic to $\operatorname{Res}_{\text {sgn }}(V)$ where $\operatorname{sgn}: S_{n} \rightarrow$ $\{ \pm 1\}$ is the sign homomorphism ${ }^{1}$ and V is the regular representation of $\{ \pm 1\}$.

Exercise 6. (1) Let $C_{n}=\left\langle g: g^{n}=e\right\rangle$ be a cyclic group of order n. Let $V_{\text {reg }}$ be the regular representation of C_{n}. What is the matrix for the action of g on $V_{\text {reg }}$, with respect to the basis $[e],[g], \ldots\left[g^{n-1}\right]$? What are the eigenvalues of this matrix?
(2) Find a basis for $V_{\text {reg }}$ consisting of eigenvectors for $\rho_{V_{\text {reg }}}(g)$.
(3) Let G be a finite Abelian group, and let V be a representation of G. Show that V has a basis consisting of simultaneous eigenvectors for the linear maps $\left\{\rho_{V}(g): g \in G\right\}$. Hint: recall the fact from linear algebra that a commuting family of diagonalisable linear operators is simultaneously diagonalisable.

[^0]
[^0]: $1_{\text {taking even permutations to }}+1$ and odd permutations to -1

