M3/4/5P12 PROBLEM SHEET 2

Please send any corrections or queries to j.newton@imperial.ac.uk
Exercise 1. Let V, ρ_{V} and W, ρ_{W} be representations of a group G with dimension m and n respectively. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be bases for V and W.

Let $A \oplus B$ be the basis for $V \oplus W$ given by $\left(a_{1}, 0\right), \ldots,\left(a_{m}, 0\right),\left(0, b_{1}\right), \ldots,\left(0, b_{n}\right)$. Describe the matrix representation

$$
\left(\rho_{V} \oplus \rho_{W}\right)_{A \oplus B}: G \rightarrow \mathrm{GL}_{m+n}(\mathbb{C})
$$

in terms of the matrix representations $\left(\rho_{V}\right)_{A}$ and $\left(\rho_{W}\right)_{B}$.

Exercise 2. Let V and W be representations of a group G. Recall that $\operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the complex vector space of linear maps from V to W.
(1) Let $g \in G$ act on $\operatorname{Hom}_{\mathbb{C}}(V, W)$ by taking a linear map $f: V \rightarrow W$ to the linear map

$$
g \cdot f: v \mapsto \rho_{W}(g) f\left(\rho_{V}\left(g^{-1}\right) v\right)
$$

Show that this defines a representation of G on $\operatorname{Hom}_{\mathbb{C}}(V, W)$. What is the dimension of this representation, in terms of the dimensions of V and W ?
(2) Show that the invariants $\operatorname{Hom}_{\mathbb{C}}(V, W)^{G}$ in this representation of G are the G-linear maps $\operatorname{Hom}_{G}(V, W)$.

Exercise 3. Recall that we proved in lectures that if U is a subrepresentation of a representation V of a finite group, then there exists a complementary subrepresentation $W \subset V$ with $V \cong U \oplus W$ (Maschke's theorem).

Prove by induction that if V is a representation of a finite group G, then V is isomorphic to a direct sum

$$
V_{1} \oplus V_{2} \oplus \cdots \oplus V_{d}
$$

with each V_{i} an irreducible representation of G. A proof is written in the typed lecture notes if you get stuck!.

Exercise 4. (1) Let G be a group and

$$
\chi: G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}
$$

a group homomorphism (i.e. a one-dimensional matrix representation). Show that if $g, h \in G$ then $\chi(g)=\chi\left(h g h^{-1}\right)$.
(2) We let $G=S_{n}$. Let $2 \leq j \leq n$ be an integer. Show that there is an element $h \in S_{n}$ such that $h(12) h^{-1}=(1 j)$. Show moreover that if $g \in S_{n}$ is any transposition (i.e. $g=(j k)$ for $j \neq k)$ then there exists an $h \in G$ such that $h(12) h^{-1}=g$.
(3) Show that there are only two one-dimensional representations of S_{n} (up to isomorphism), given by the trivial map $S_{n} \rightarrow\{1\}$ and the sign homomorphism $S_{n} \rightarrow\{ \pm 1\}$. Recall that every element of S_{n} is a product of transpositions.

Date: Tuesday $9^{\text {th }}$ February, 2016.

Exercise 5. (1) Let G be a finite group. Write $Z(G)$ for the centre of the group:

$$
Z(G)=\{z \in G: z g=g z \forall g \in G\} .
$$

Note that $Z(G)$ is a subgroup of G. Let V be an irreducible representation of G. Show that for each $z \in Z(G)$ there exists $\lambda_{z} \in \mathbb{C}$ such that

$$
\rho_{V}(z) v=\lambda_{z} v
$$

for all $v \in V$.
(2) Suppose V is a faithful irreducible representation of G. Show that $Z(G)$ is a cyclic group. Hint: A finite subgroup of \mathbb{C}^{\times}is cyclic.

Exercise 6. (1) Let $D_{2 n}$ be the dihedral group of order $2 n$, generated by a rotation s of order n and a reflection t of order 2. Recall that we have $t s t=s^{-1}$. Let $\zeta \in \mathbb{C}$ be an nth root of unity and let V_{ζ} be the representation of $D_{2 n}$ on the vector space \mathbb{C}^{2} (with the standard basis) given by

$$
\rho_{V_{\zeta}}(s)=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) \quad \quad \rho_{V_{\zeta}}(t)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Verify that this defines a representation of $D_{2 n}$ on V.
Show that if $\zeta \neq \pm 1$ then this representation is irreducible.
(2) What are the one-dimensional matrix representations of $D_{2 n}$?
(3) Show that if n is even, there are $(n+6) / 2$ isomorphism classes of irreducible representations of $D_{2 n}$: 4 of dimension one and $(n-2) / 2$ of dimension 2.
(4) Show that if n is odd, there are $(n+3) / 2$ isomorphism classes of irreducible representations of $D_{2 n}$: 2 of dimension one and $(n-1) / 2$ of dimension 2.

