M3/4/5P12 PROBLEM SHEET 2

Please send any corrections or queries to j.newton@imperial.ac.uk.

Exercise 1. Let V, ρ_V and W, ρ_W be representations of a group G with dimension m and n respectively. Let $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ be bases for V and W.

Let $A \oplus B$ be the basis for $V \oplus W$ given by $(a_1, 0), \ldots, (a_m, 0), (0, b_1), \ldots, (0, b_n)$. Describe the matrix representation

$$(\rho_V \oplus \rho_W)_{A \oplus B} : G \to \mathrm{GL}_{m+n}(\mathbb{C})$$

in terms of the matrix representations $(\rho_V)_A$ and $(\rho_W)_B$.

Exercise 2. Let V and W be representations of a group G. Recall that $\operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the complex vector space of linear maps from V to W.

(1) Let $g \in G$ act on $\operatorname{Hom}_{\mathbb{C}}(V, W)$ by taking a linear map $f: V \to W$ to the linear map

 $g \cdot f : v \mapsto \rho_W(g) f(\rho_V(g^{-1})v).$

Show that this defines a representation of G on $\operatorname{Hom}_{\mathbb{C}}(V, W)$. What is the dimension of this representation, in terms of the dimensions of V and W?

(2) Show that the invariants $\operatorname{Hom}_{\mathbb{C}}(V, W)^G$ in this representation of G are the G-linear maps $\operatorname{Hom}_G(V, W)$.

Exercise 3. Recall that we proved in lectures that if U is a subrepresentation of a representation V of a finite group, then there exists a complementary subrepresentation $W \subset V$ with $V \cong U \oplus W$ (Maschke's theorem).

Prove by induction that if V is a representation of a finite group G, then V is isomorphic to a direct sum

$$V_1 \oplus V_2 \oplus \cdots \oplus V_d$$

with each V_i an irreducible representation of G. A proof is written in the typed lecture notes if you get stuck!

Exercise 4. (1) Let G be a group and

$$\chi: G \to \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^{\times}$$

a group homomorphism (i.e. a one-dimensional matrix representation). Show that if $g, h \in G$ then $\chi(g) = \chi(hgh^{-1})$.

- (2) We let $G = S_n$. Let $2 \le j \le n$ be an integer. Show that there is an element $h \in S_n$ such that $h(12)h^{-1} = (1j)$. Show moreover that if $g \in S_n$ is any transposition (i.e. g = (jk) for $j \ne k$) then there exists an $h \in G$ such that $h(12)h^{-1} = g$.
- (3) Show that there are only two one-dimensional representations of S_n (up to isomorphism), given by the trivial map $S_n \to \{1\}$ and the sign homomorphism $S_n \to \{\pm 1\}$. Recall that every element of S_n is a product of transpositions.

Date: Tuesday 9th February, 2016.

Exercise 5. (1) Let G be a finite group. Write Z(G) for the centre of the group:

$$Z(G) = \{ z \in G : zg = gz \forall g \in G \}.$$

Note that Z(G) is a subgroup of G. Let V be an irreducible representation of G. Show that for each $z \in Z(G)$ there exists $\lambda_z \in \mathbb{C}$ such that

$$\rho_V(z)v = \lambda_z v$$

for all $v \in V$.

- (2) Suppose V is a faithful irreducible representation of G. Show that Z(G) is a cyclic group. *Hint: A finite subgroup of* \mathbb{C}^{\times} *is cyclic.*
- **Exercise 6.** (1) Let D_{2n} be the dihedral group of order 2n, generated by a rotation s of order n and a reflection t of order 2. Recall that we have $tst = s^{-1}$. Let $\zeta \in \mathbb{C}$ be an nth root of unity and let V_{ζ} be the representation of D_{2n} on the vector space \mathbb{C}^2 (with the standard basis) given by

$$\rho_{V_{\zeta}}(s) = \begin{pmatrix} \zeta & 0\\ 0 & \zeta^{-1} \end{pmatrix} \qquad \qquad \rho_{V_{\zeta}}(t) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

Verify that this defines a representation of D_{2n} on V.

Show that if $\zeta \neq \pm 1$ then this representation is irreducible.

- (2) What are the one-dimensional matrix representations of D_{2n} ?
- (3) Show that if n is even, there are (n+6)/2 isomorphism classes of irreducible representations of D_{2n} : 4 of dimension one and (n-2)/2 of dimension 2.
- (4) Show that if n is odd, there are (n+3)/2 isomorphism classes of irreducible representations of D_{2n} : 2 of dimension one and (n-1)/2 of dimension 2.