M3/4/5P12 PROBLEM SHEET 5

Please send any corrections or queries to j.newton@imperial.ac.uk. The first exercise is left over from the chapter on character theory.

Exercise 1. Let G, H be two finite groups, let V be a representation of G and let W be a representation of H. Define a natural action of the product group $G \times H$ on the vector space $V \otimes W$ by

$$
\rho_{V \otimes W}(g, h)(v \otimes w)=\rho_{V}(g) v \otimes \rho_{W}(h) w .
$$

This defines a representation of $G \times H$.
(a) Find the character of $V \otimes W$ as a representation of $G \times H$, in terms of the characters χ_{V} of V and χ_{W} of W.
(b) Suppose V is an irrep of G and W is an irrep of H. Show that $V \otimes W$ is an irrep of $G \times H$.
(c) Supposes G has r distinct irreducible characters and H has s distinct irreducible characters. Show that $G \times H$ has at least $r s$ distinct irreducible characters. By computing dimensions, show that $G \times H$ has exactly $r s$ distinct irreducible characters and describe them in terms of the irreducible characters of G and of H.

The rest of the exercises are on algebras and modules.
Exercise 2. Find an isomorphism of algebras between $\mathbb{C}\left[C_{3}\right]$ and $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$.
Exercise 3. Let A and B be algebras. Show that the projection map $p: A \oplus B \rightarrow A$ defined by $p(a, b)=a$ is an algebra homomorphism, but that the inclusion map $i: A \rightarrow A \oplus B$ defined by $i(a)=(a, 0)$ is not.

Exercise 4. Let A and B be algebras. Suppose M is an A-module and N is a B-module. The vector space $M \oplus N$ is naturally an $A \oplus B$-module, with action of $A \oplus B$ given by

$$
(a, b) \cdot(m, n)=(a \cdot m, b \cdot n) .
$$

(a) Let X be an $A \oplus B$-module. Show that multiplication by $e_{A}:=\left(1_{A}, 0\right)$ defines an $A \oplus B$-linear projection map

$$
e_{A}: X \rightarrow X
$$

(b) Write $e_{A} X$ for the image of multiplication by e_{A}. Show that for $x \in e_{A} X$ we have $(a, b) \cdot x=(a, 0) \cdot x$ for all $a \in A, b \in B$.
(c) Show that there is an A-module M and a B-module N such that X is isomorphic to $M \oplus N$ as an $A \oplus B$-module.
(d) Describe the simple modules for $A \oplus B$ in terms of the simple modules for A and the simple modules for B.

Exercise 5. Show that the matrix algebra $M_{n}(\mathbb{C})$ is isomorphic to its own opposite algebra.
Exercise 6. (a) What is the centre of $M_{n}(\mathbb{C})$?
Hint: $M_{n}(\mathbb{C})$ has a basis given by matrices $E_{i j}$ with a 1 in the (i, j) entry and 0 everywhere else. Work out what it means for a matrix to commute with $E_{i j}$.
(b) If A and B are algebras, show that $Z(A \oplus B)=Z(A) \oplus Z(B)$.
(c) Let n_{1}, \ldots, n_{r} be positive integers. What is the centre of the algebra

$$
\bigoplus_{i=1}^{r} M_{n_{i}}(\mathbb{C}) ?
$$

Exercise 7. Let A be an algebra. Show that the map $f \mapsto f\left(1_{A}\right)$ gives an isomorphism of algebras between $\operatorname{Hom}_{A}(A, A)$ and $A^{o p}$.

Exercise 8. Let $A=\mathbb{C}[x] /\left(x^{2}\right)$ - recall that this has as a basis $\{1, x\}$, with 1 a unit and $x^{2}=0$. Show that A itself is not a semisimple A-module.

