M3/4/5P12 PROBLEM SHEET ON MASTERY MATERIAL

Please send any corrections or queries to j.newton@imperial.ac.uk.
Exercise 1. Let G be a finite group, with $H \subset G$ a subgroup and let V be a representation of G. Suppose $W \subset \operatorname{Res}_{H}^{G} V$ is a subrepresentation of the restriction of V to a representation of H.
(a) Let $g \in G$, and consider the subspace $\rho_{V}(g) W \subset V$. Show that this subspace depends only on the left coset $g H$ of g.
(b) If $C \in G / H$ is a left coset, write W_{C} for the subspace $\rho_{V}(g) W \subset V$, where $g \in C$. Fix a representative g_{C} for each left coset C and let $f: G \rightarrow W$ be an element of $\operatorname{Ind}_{H}^{G} W$. Show that

$$
\rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right) \in W_{C}
$$

is independent of the choice of coset representative g_{C}.
(c) Suppose the subspaces $\left\{W_{C}: C \in G / H\right\}$ together sum to give V and, the sum is direct. In other words, we have

$$
V=\bigoplus_{C \in G / H} W_{C}
$$

Show that V is isomorphic to the induced representation $\operatorname{Ind}_{H}^{G} W$.
Hint: consider the map which takes $f \in \operatorname{Ind}_{H}^{G} W$ to $\sum_{C \in G / H} \rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right)$.
This exercise shows that our definition of the induced representation gives something satisfying the (alternative) definition given by Serre in Linear representations of finite groups.
Exercise 2. Let G be a finite group and suppose we have a subgroup $H \subset G$ and a subgroup $K \subset H$. Let W be a representation of K. Consider the representation

$$
I W=\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} W\right)
$$

(a) Show that if V is a representation of G, we have

$$
\left\langle\chi_{I W}, \chi_{V}\right\rangle=\left\langle\chi_{W}, \chi_{\operatorname{Res}_{K}^{G} V}\right\rangle
$$

(b) Show, using part a), that $I W$ is isomorphic to $\operatorname{Ind}_{K}^{G} W$. You can also try to show this directly, without using character theory.
Exercise 3. Let $G=S_{5}$ and let $H=A_{4}$ be the subgroup of G given by even permutations of $\{1,2,3,4\}$ which fix 5 .

Let V be a three-dimensional irreducible representation of H (there's a unique such V up to isomorphism, see Question 3 on Sheet 4). Use Frobenius reciprocity to compute the decomposition of $\operatorname{Ind}_{H}^{G} V$ as a direct sum of irreducible representations of G (you can freely refer to the character table of S_{5} - this is computed in Exercise 2 in the 'extra exercises' for Sheet 4).

Exercise 4. Suppose H is a subgroup of a finite group G, and let V be an irreducible representation of H. Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of G and suppose that

$$
\chi_{\operatorname{Ind}_{H}^{G} V}=\sum_{i=1}^{r} d_{i} \chi_{i} .
$$

Date: Tuesday $12^{\text {th }}$ April, 2016.

Show that $\sum_{i=1}^{r} d_{i}^{2} \leq[G: H]$.
Exercise 5. Suppose H is a subgroup of a finite group G, and let V be a representation of H. Let $g \in G$ with conjugacy class $C(g)$. Suppose that $C(g) \cap H=$ $D_{1} \cup D_{2} \cup \cdots \cup D_{t}$, where the D_{i} are conjugacy classes in H. Note that we can evaluate the character χ_{V} of V on each conjugacy class D_{i}, by defining $\chi_{V}\left(D_{i}\right)=\chi_{V}(h)$ for $h \in D_{i}$.
(a) Show that the character χ of $\operatorname{Ind}_{H}^{G} V$ is given by

$$
\chi(g)=\frac{|G|}{|H|} \sum_{i=1}^{t} \frac{\left|D_{i}\right|}{|C(g)|} \chi_{V}\left(D_{i}\right)
$$

(b) If V is the trivial one-dimensional representation, show that the character χ of $\operatorname{Ind}_{H}^{G} V$ is given by

$$
\chi(g)=\frac{|G||C(g) \cap H|}{|H||C(g)|}
$$

