PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RESULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group.
(a) What does it mean for a (non-zero) representation of G to be irreducible?
(b) Show that if V is an irreducible representation of G and

$$
f: V \rightarrow V
$$

is a G-linear map then f is equal to multiplication by a scalar $\lambda \in \mathbb{C}$. You may assume the fact that every linear map from V to V has an eigenvalue.
(c) Using part (b), show that a non-zero irreducible representation of a finite Abelian group is one-dimensional.
(d) Now let $G=C_{3}=\left\{e, g, g^{2}\right\}$ the cyclic group of order 3. Consider the regular representation $\mathbb{C} G$. What are the irreducible non-zero subrepresentations of $\mathbb{C} G$?

Question 2. Consider the dihedral group of order 8,

$$
D_{8}=\left\langle s, t: s^{4}=t^{2}=e, t s t=s^{-1}\right\rangle
$$

There is a three-dimensional representation of D_{8} on $V=\mathbb{C}^{3}$ defined by

$$
\rho_{V}(s)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) \quad \rho_{V}(t)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

You don't need to check that this defines a representation.
(a) Find a one-dimensional subrepresentation U_{1} of V. Can you find another one?
(b) Deduce that V is isomorphic as a representation of D_{8} to a direct sum $U_{1} \oplus U_{2}$ where U_{2} is a two-dimensional irreducible representation of D_{8}. You don't need to find U_{2}.
(c) Show that D_{8} has one isomorphism class of two-dimensional irreducible representations and four isomorphism classes of one-dimensional representations. You may assume any results you need from the course.

