M3/4/5P12 PROGRESS TEST 1

PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RE-SULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group.

- (a) What does it mean for a (non-zero) representation of G to be *irreducible*?
- (b) Show that if V is an irreducible representation of G and

 $f: V \to V$

is a G-linear map then f is equal to multiplication by a scalar $\lambda \in \mathbb{C}$. You may assume the fact that every linear map from V to V has an eigenvalue.

- (c) Using part (b), show that a non-zero irreducible representation of a finite Abelian group is one-dimensional.
- (d) Now let $G = C_3 = \{e, g, g^2\}$ the cyclic group of order 3. Consider the regular representation $\mathbb{C}G$. What are the irreducible non-zero subrepresentations of $\mathbb{C}G$?

Question 2. Consider the dihedral group of order 8,

$$D_8 = \langle s, t : s^4 = t^2 = e, tst = s^{-1} \rangle.$$

There is a three-dimensional representation of D_8 on $V = \mathbb{C}^3$ defined by

	(0	0	1	$\int 0$	0	1	
$\rho_V(s) =$	-1	0	1	$\rho_V(t) = \begin{bmatrix} 0 \end{bmatrix}$	1	0	
	0	-1	1/	$\langle 1 \rangle$	0	0/	

You don't need to check that this defines a representation.

- (a) Find a one-dimensional subrepresentation U_1 of V. Can you find another one?
- (b) Deduce that V is isomorphic as a representation of D₈ to a direct sum U₁ ⊕ U₂ where U₂ is a two-dimensional irreducible representation of D₈. You don't need to find U₂.
- (c) Show that D_8 has one isomorphism class of two-dimensional irreducible representations and four isomorphism classes of one-dimensional representations. You may assume any results you need from the course.

Date: Tuesday February 16, 2016.