M3/4/5P12 PROGRESS TEST 1 (ALTERNATIVE VERSION)

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group and let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism. Let V be a representation of G. We define a map

$$
e_{\chi}: V \rightarrow V
$$

by

$$
e_{\chi}(v)=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_{V}(g) v
$$

We also define a subspace V^{χ} of V by

$$
V^{\chi}=\left\{v \in V: \rho_{V}(g) v=\chi(g) v \text { for all } g \in G\right\}
$$

(a) Show that V^{χ} is a subrepresentation of V.
(b) Show that e_{χ} is a G-linear map, that $e_{\chi} \circ e_{\chi}=e_{\chi}$, and that the image of e_{χ} is equal to V^{χ} (i.e. e_{χ} is a G-linear projection with image V^{χ}).
(c) Now suppose we have another group homomorphism $\chi^{\prime}: G \rightarrow \mathbb{C}^{\times}$. Show that if $\chi \neq \chi^{\prime}$ then $e_{\chi^{\prime}} \circ e_{\chi}=0$.
(d) Consider the linear map $f: V \rightarrow V$ given by $\sum_{\chi} e_{\chi}$, where the sum runs over all the homomorphisms $\chi: G \rightarrow \mathbb{C}^{\times}$. Show that f is a G-linear projection, and that the kernel of f has no one-dimensional subrepresentations.

Solution 1. (a) We need to show that V^{χ} is G-stable. Suppose $v \in V^{\chi}$ and $h \in G$. We need to show that $\rho_{V}(h) v \in V^{\chi}$. But we have $\rho_{V}(h) v=\chi(h) v$ so for any $g \in G$ we have

$$
\rho_{V}(g)\left(\rho_{V}(h) v\right)=\chi(g) \chi(h) v=\chi(g)\left(\rho_{V}(h) v\right) .
$$

Therefore we have $\rho_{V}(h) v \in V^{\chi} .2$ marks
(b) First we check that e_{χ} is G-linear. We have

$$
e_{\chi}\left(\rho_{V}(h) v\right)=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_{V}(g h) v=\rho_{V}(h) \frac{1}{|G|} \sum_{g \in G} \chi\left(h^{-1} g h\right)^{-1} \rho_{V}\left(h^{-1} g h\right) v
$$

where in the last equality we use that $\chi\left(h^{-1} g h\right)=\chi(g)$. Since conjugation by h gives a permutation of G, this is equal to $\rho_{V}(h) e_{\chi}(v)$, so e_{χ} is G-linear.

Next we check that the image of e_{χ} is contained in V^{χ}. We have

$$
\rho_{V}(h) e_{\chi}(v)=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_{V}(h g) v=\chi(h) \frac{1}{|G|} \sum_{g \in G} \chi(h g)^{-1} \rho_{V}(h g) v=\chi(h) e_{\chi}(v)
$$ since multiplication by h gives a permutation of G.

Finally, it remains to check that e_{χ} is equal to the identity on V^{χ}. This shows that e_{χ} is a G-linear projection with image V^{χ}. If $v \in V^{\chi}$ we have

$$
e_{\chi} v=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_{V}(g) v=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \chi(g) v=v
$$

so we are done. 4 marks
(c) The G-linear map e_{χ} has image equal to V^{χ}. The restriction of $e_{\chi^{\prime}}$ to V^{χ} gives a map from V^{χ} to $\left(V^{\chi}\right)^{\chi^{\prime}}$ but if $\chi^{\prime} \neq \chi$ we have $\left(V^{\chi}\right)^{\chi^{\prime}}=0$. So the composition $e_{\chi^{\prime}} \circ e_{\chi}$ is equal to 0.2 marks
(d) Using parts b) and c) we can check that

$$
\left(\sum_{\chi} e_{\chi}\right) \circ\left(\sum_{\chi} e_{\chi}\right)=\sum_{\chi} e_{\chi} \circ e_{\chi}=\sum_{\chi} e_{\chi}
$$

so $\sum_{\chi} e_{\chi}$ is a G-linear projection. Suppose we have a one-dimensional subrepresentation U of V. The action of G on U is given by $\rho_{U}(g) u=\chi(g) u$ for some homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$. So we conclude that e_{χ} is equal to the identity on U and the other maps $e_{\chi^{\prime}}$ are equal to 0 . This implies that U is not in the kernel of $f .2$ marks

Question 2. Consider the symmetric group S_{4} of permutations of $\{1,2,3,4\}$. Write Ω for the subset $\{(12)(34),(13)(24),(14)(23)\} \subset S_{4}$.

Define an action of S_{4} on Ω by $g \cdot \omega=g \omega g^{-1}$. Consider the representation of S_{4} on the vector space $\mathbb{C} \Omega$ with basis $\{[\omega]: \omega \in \Omega\}$ and group action defined by

$$
\rho_{\mathbb{C} \Omega}(g)[\omega]=[g \cdot \omega] .
$$

(a) By computing eigenspaces for $\rho_{\mathbb{C} \Omega}(12)$ and $\rho_{\mathbb{C} \Omega}(13)$, or otherwise, show that $\mathbb{C} \Omega$ has a unique one-dimensional subrepresentation U_{1}, which is spanned by $\sum_{\omega \in \Omega}[\omega]$.
(b) Deduce that $\mathbb{C} \Omega$ is isomorphic as a representation of S_{4} to $U_{1} \oplus U_{2}$ where U_{2} is an irreducible two-dimensional representation of S_{4}. You don't need to find U_{2} explicitly.
(c) Show that S_{4} has an irreducible representation of dimension 3. You may assume without proof that S_{4} has exactly two isomorphism classes of onedimensional representations. Again, you don't need to find this representation explicitly.

Solution 2. (a) Let's write down the matrices for $\rho_{\mathbb{C} \Omega}(12)$ and $\rho_{\mathbb{C} \Omega}(13)$ with respect to the basis $\{[(12)(34)],[(13)(24)],[(14)(23)]\}$ of $\mathbb{C} \Omega$. We have

$$
\rho_{\mathbb{C} \Omega}(12)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

and

$$
\rho_{\mathbb{C} \Omega}(13)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

The eigenspaces for (13) are given by: $\mathrm{a}+1$ eigenspace of vectors (a, b, a) and a -1 eigenspace of vectors $(a, 0,-a)$.

The eigenspaces for (12) are given by: a +1 eigenspace of vectors (a, b, b) and a -1 eigenspace of vectors $(0, b,-b)$.

Suppose $v=(a, b, c)$ is a non-zero simultaneous eigenvector. If it is a -1 -eigenvector for (13) then we have $b=0$. Looking at the possibilities for (12) then tells us that $v=0$. The same argument applies if v is a $-1-$ eigenvector for (12). So v must have eigenvalue +1 for both (12) and (13). We deduce that v is in the span of $(1,1,1)$. This shows that the only onedimensional subrepresentation is the one spanned by $(1,1,1)=\sum_{\omega \in \Omega}[\omega]$.

4 marks

(b) By Maschke's theorem, we know that $\mathbb{C} \Omega$ is isomorphic to $U_{1} \oplus U_{2}$ where U_{2} is two-dimensional. Since U_{1} is the unique one-dimensional subrepresentation of $\mathbb{C} \Omega$, we deduce that U_{2} is irreducible. 2 marks
(c) We have $24=\sum_{i=1}^{r} d_{i}^{2}$, where the d_{i} are the dimensions of the irreps (up to isomorphism). We know that S_{4} has two one-dimensional and one twodimensional irrep. So we get

$$
24=1+1+4+\cdots
$$

so we have $18=\sum_{i=4}^{r} d_{i}^{2}$. The only possibility is then that we have two more irreps of dimension 3 , since 4 does not divide 18 and there are no more representations of dimension 1. 4 marks

