M3/4/5P12 PROGRESS TEST 1 (ALTERNATIVE VERSION)

Note: all representations are assumed to be on finite dimensional complex vector
spaces.

Question 1. Let G be a finite group and let x : G — C* be a group
homomorphism. Let V be a representation of G. We define a map

ex V=V
by
) = = 3 X0 ovs
Wbm
We also define a subspace VX of V' by

VX={veV:py(g)v=x(g)v for all g € G}.

(a) Show that VX is a subrepresentation of V.

(b) Show that e, is a G-linear map, that e, o e, = e,, and that the image of
ey is equal to VX (i.e. ey is a G-linear projection with image VX).

(¢) Now suppose we have another group homomorphism x’ : G — C*. Show
that if x # x’ then ey, oe, = 0.

(d) Consider the linear map f : V' — V given by >_ ey, where the sum runs
over all the homomorphisms y : G — C*. Show that f is a G-linear projec-
tion, and that the kernel of f has no one-dimensional subrepresentations.

Solution 1. (a) We need to show that VX is G-stable. Suppose v € VXand
h € G. We need to show that py (h)v € VX. But we have py (h)v = x(h)v
so for any g € G we have

pv(9)(pv (R)v) = x(9)x(h)v = x(9)(pv (h)v).

Therefore we have py (h)v € VX. 2 marks
(b) First we check that e, is G-linear. We have

1 _ _ _
ex(pv(h |G| > x(9) " pvigh)y (h)@ > x(htgh) oy (b gh)
Se geqG
where in the last equality we use that x(h~1gh) = x(g). Since conjugation
by h gives a permutation of G, this is equal to pv (h)ey (v), so e is G-linear.
Next we check that the image of eX is contained in VX. We have

pv (h)ex(v) |G| > x(9)"'pv (hg)v |G| > x(hg) " pv (hg)v = x(h)ey (v)
geG geG
since multiplication by h gives a permutation of G.
Finally, it remains to check that e, is equal to the identity on VX. This
shows that e, is a G-linear projection with image VX. If v € VX we have

e\ = |G|Z v(g)v |G|ZX gv="1v
geG geqG
so we are done. 4 marks
(c) The G-linear map e, has image equal to VX. The restriction of e, to VX
gives a map from VX to (VX)X but if y/ # x we have (VX)X = 0. So the
composition e, o e, is equal to 0. 2 marks
1



(d)
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Using parts b) and ¢) we can check that
(Zex) ° (Zex) = Zex 0€x = Zex
X X X X

SO Zx ey is a G-linear projection. Suppose we have a one-dimensional
subrepresentation U of V. The action of G on U is given by py(g)u = x(g)u
for some homomorphism x : G — C*. So we conclude that e, is equal to
the identity on U and the other maps e, are equal to 0. This implies that
U is not in the kernel of f. 2 marks

Question 2. Consider the symmetric group Sy of permutations of {1,2, 3, 4}.
Write Q for the subset {(12)(34), (13)(24), (14)(23)} C S4.

Define an action of S, on 2 by g-w = gwg~!. Consider the representation
of Sy on the vector space CQ2 with basis {[w] : w € Q} and group action
defined by

pea(g)lw] =g wl.
By computing eigenspaces for pcq(12) and pea(13), or otherwise, show that
C has a unique one-dimensional subrepresentation Uy, which is spanned
by ZwGQ[W]'
Deduce that CS2 is isomorphic as a representation of Sy to U; ® Uy where
Us is an irreducible two-dimensional representation of S4. You don’t need
to find Us explicitly.
Show that S; has an irreducible representation of dimension 3. You may
assume without proof that Sy has exactly two isomorphism classes of one-
dimensional representations. Again, you don’t need to find this representa-
tion explicitly.

Solution 2. (a) Let’s write down the matrices for pcq(12) and pca(13) with

respect to the basis {[(12)(34)], [(13)(24)],[(14)(23)]} of C. We have

100
p(cQ(12) =10 0 1
010

and
0 0 1
pca(l3)=(0 1 0
1 0 0

The eigenspaces for (13) are given by: a +1 eigenspace of vectors (a, b, a)
and a —1 eigenspace of vectors (a,0, —a).

The eigenspaces for (12) are given by: a +1 eigenspace of vectors (a, b, b)
and a —1 eigenspace of vectors (0, b, —b).

Suppose v = (a, b, ¢) is a non-zero simultaneous eigenvector. If it is a
—1-eigenvector for (13) then we have b = 0. Looking at the possibilities
for (12) then tells us that v = 0. The same argument applies if v is a —1-
eigenvector for (12). So v must have eigenvalue +1 for both (12) and (13).
We deduce that v is in the span of (1,1,1). This shows that the only one-
dimensional subrepresentation is the one spanned by (1,1,1) = > _q[w].
4 marks
By Maschke’s theorem, we know that CQ2 is isomorphic to U; @ U where
U, is two-dimensional. Since U;j is the unique one-dimensional subrepre-
sentation of CS2, we deduce that Us is irreducible.2 marks
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(c) We have 24 = >"7_ d?, where the d; are the dimensions of the irreps (up
to isomorphism). We know that S4 has two one-dimensional and one two-
dimensional irrep. So we get

U=1+1+4+- -

so we have 18 = >0, d?. The only possibility is then that we have two
more irreps of dimension 3, since 4 does not divide 18 and there are no
more representations of dimension 1. 4 marks



