M3/4/5P12 PROGRESS TEST 1

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group.
(a) What does it mean for a (non-zero) representation of G to be irreducible?
(b) Show that if V is an irreducible representation of G and

$$
f: V \rightarrow V
$$

is a G-linear map then f is equal to multiplication by a scalar $\lambda \in \mathbb{C}$. You may assume the fact that every linear map from V to V has an eigenvalue.
(c) Using part (b), show that a non-zero irreducible representation of a finite Abelian group is one-dimensional.
(d) Now let $G=C_{3}=\left\{e, g, g^{2}\right\}$ the cyclic group of order 3. Consider the regular representation $\mathbb{C} G$. What are the irreducible non-zero subrepresentations of $\mathbb{C} G$?
Solution 1. (a) It means that the only subrepresentations of V are $\{0\}$ and V. 1 mark

You have to mention that $\{0\}$ and V are allowed as subrepresentations!
(b) f has an eigenvalue λ. So $f-\lambda \mathrm{id}_{V}$ is a G-linear map from V to V (since g and id_{V} are both G-linear, $f-\lambda \mathrm{id}_{V}$ is G-linear), with non-zero kernel (because λ is an eigenvalue). The kernel is a subrepresentation of V (it's fine to just state this). By the definition of an irreducible representation the kernel of $f-\lambda \operatorname{id}_{V}$ must be $\{0\}$ or V and so it must be V. So $f-\lambda \mathrm{id}_{V}=0$ and hence so f is equal to multiplication by λ. $\mathbf{3}$ marks
(c) Let G be a finite Abelian group and let V be an irrep of G. For $g \in G$ the linear map $\rho_{V}(g): V \rightarrow V$ is G-linear, since $\rho_{V}(h) \circ \rho_{V}(g)=\rho_{V}(h g)=$ $\rho_{V}(g h)=\rho_{V}(g) \circ \rho_{V}(h)$ for all $h \in G$. So by part b) $\rho_{V}(g)$ is equal to multiplication by a scalar $\lambda_{g} \in \mathbb{C}$ (the scalar can depend on h). Since this is true for all $g \in G$, any one-dimensional subspace of V is G-stable. V is irreducible, so this one-dimensional subrepresentation must be all of V, and hence V is one-dimensional. 3 marks
(d) We know that the irreducible representations V_{0}, V_{1}, V_{2} of C_{3} are one dimensional, and that the action of g on V_{j} is multiplication by ω^{j}, where $\omega=e^{2 \pi i / 3}$. So we need to find three non-zero vectors v_{0}, v_{1}, v_{2} in $\mathbb{C} G$ with $\rho_{V}(g) v_{j}=\omega^{j} v_{j}$. Write $v_{j}=a_{j}[e]+b_{j}[g]+c_{j}\left[g^{2}\right]$. Then $\rho_{V}(g) v_{j}=a_{j}[g]+$ $b_{j}\left[g^{2}\right]+c_{j}[e]$. This implies that $b_{j}=\omega^{j} c_{j}$ and $c_{j}=\omega^{j} a_{j}$. Taking $a_{j}=1$ we conclude that the irreducible subrepresentations of $\mathbb{C} G$ are the three onedimensional subspaces spanned by $v_{0}=[e]+[g]+\left[g^{2}\right], v_{1}=[e]+\omega^{2}[g]+\omega\left[g^{2}\right]$ and $v_{2}=[e]+\omega[g]+\omega^{2}\left[g^{2}\right]$. 3 marks

If you listed the 3 isomorphism classes of irreps of C_{3}, I gave 2 marks - for full credit I wanted to see subrepresentations of $\mathbb{C} C_{3}$, i.e. explicit G-stable subspaces.

Question 2. Consider the dihedral group of order 8,

$$
D_{8}=\left\langle s, t: s^{4}=t^{2}=e, t s t=s^{-1}\right\rangle
$$

[^0]There is a three-dimensional representation of D_{8} on $V=\mathbb{C}^{3}$ defined by

$$
\rho_{V}(s)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) \quad \rho_{V}(t)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

You don't need to check that this defines a representation.
(a) Find a one-dimensional subrepresentation U_{1} of V. Can you find another one?
(b) Deduce that V is isomorphic as a representation of D_{8} to a direct sum $U_{1} \oplus U_{2}$ where U_{2} is a two-dimensional irreducible representation of D_{8}. You don't need to find U_{2}.
(c) Show that D_{8} has one isomorphism class of two-dimensional irreducible representations and four isomorphism classes of one-dimensional representations. You may assume any results you need from the course.

Solution 2. (a) We have to find a simultaneous eigenvector for $\rho_{V}(s)$ and $\rho_{V}(t)$. The eigenspaces for $\rho_{V}(t)$ are $\{(a, b, a): a, b \in \mathbb{C}\}$ with eigenvalue 1 , and $\{(a, 0,-a): a \in \mathbb{C}\}$ with eigenvalue -1 . We have $\rho_{V}(s)(a, b, a)=$ $(a, 0, a-b)$ so a simultaneous eigenspace is given by $(a, 0, a)$. So let U_{1} be the span of $(1,0,1)$. (1 mark if you recognised that we need to find a simultaneous eigenvector, 1 more mark for finding U_{1}).

There are no other one-dimensional subrepresentations of $V .2$ more marks for proving this. Here are two possible arguments:

- Since $\rho_{V}(s)$ takes (a, b, a) to $(a, 0,-a)$ the only eigenvectors for $\rho_{V}(s)$ in the 1-eigenspace for $\rho_{V}(t)$ are multiples of $(1,0,1)$. So these are the only (non-zero) simultaneous eigenvectors with $\rho_{V}(t)$ eigenvalue equal to 1.
Now we consider the -1 -eigenspace for $\rho_{V}(t)$. These are all scalar multiples of $(1,0,-1)$, and this is not an eigenvector for $\rho_{V}(s)$, so there are no (non-zero) simultaneous eigenvectors with $\rho_{V}(t)$ eigenvalue equal to -1 . We deduce that U_{1} is the only one-dimensional subrepresentation.
- Here's an alternative proof. Suppose there was another one-dimensional subrep of V. Since V is isomorphic to a direct sum of irreducibles, and it has dimension three, if it has two one-dimensional subreps then it has to be a direct sum of three one-dimensional representations. This implies that $\rho_{V}(s)$ and $\rho_{V}(t)$ are diagonal with respect to some basis, so $\rho_{V}(s)$ and $\rho_{V}(t)$ commute. But you can check that $\rho_{V}(s) \rho_{V}(t) \neq \rho_{V}(t) \rho_{V}(s)$.

Total: 4 marks

Note that we are looking for a simultaneous eigenvector of $\rho_{V}(s)$ and $\rho_{V}(t)$ - this eigenvector does not have to have the same eigenvalue for $\rho_{V}(s)$ and $\rho_{V}(t)$.

A trick to remember: we know that $\rho_{V}(t)^{2}=\mathrm{id}_{V}$, so the only possible eigenvalues for $\rho_{V}(t)$ are 1 and -1 . So you don't need to work out the characteristic polynomial, you can just look for eigenvectors with these eigenvalues.
(b) By Maschke's theorem, there is a subrepresentation $U_{2} \subset V$ which is complementary to U_{1}. The dimension of U_{2} is equal to 2 . (1 mark for applying Maschke's theorem). Since there are no other one-dimensional subrepresentations of V, U_{2} is irreducible. (1 mark for explaining why U_{2} is irreducible) Total: 2 marks
(c) We have shown that there is at least one irreducible two-dimensional rep of D_{8}. We also know that there's at least one one-dimensional rep of D_{8}.

We have $8=\sum_{i=1}^{r} d_{i}^{2}$ where d_{i} denotes the dimensions of the irreps. Since $8-2^{2}-1^{2}=3<2^{2}$ the remaining irreps must all be one-dimensional. So the only possibility for the d_{i} 's is four 1 s and one 2.4 marks

[^0]: Date: Tuesday $23^{\text {rd }}$ February, 2016.

