PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RESULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces. Unless a question specifies otherwise, all results from the course may be assumed if they are clearly stated.

Question 1. Let G be a finite group. Let V be a representation of G, with character χ_{V}.
(a) What is the definition of the dual representation V^{*} ?
(b) What is the character $\chi_{V^{*}}$ of the dual representation V^{*}, in terms of χ_{V} ? Justify your answer.
(c) Let W be another representation of G, with character χ_{W}. What is the character $\chi_{V \otimes W}$ of the tensor product representation $V \otimes W$, in terms of χ_{V} and χ_{W} ? You just need to state the answer.
(d) Let $V_{t r i v}$ be the one-dimensional trivial representation of G, with character $\chi_{\text {triv }}$. Show that

$$
\left\langle\chi_{V \otimes W}, \chi_{t r i v}\right\rangle=\left\langle\chi_{V}, \chi_{W^{*}}\right\rangle .
$$

(e) Suppose V and W are irreducible representations. If W^{*} is not isomorphic to V, how many copies of $V_{\text {triv }}$ appear in the decomposition of $V \otimes W$ into irreducibles? How many copies of $V_{\text {triv }}$ appear in the decomposition of $V \otimes V^{*}$ into irreducibles? Justify your answers.

Question 2. (a) Let G be a finite group. State the column orthogonality relations for the irreducible characters of G.
(b) Here is an incomplete character table for a group of order 24 , with 7 conjugacy classes.

	$g_{1}=e$	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
Size of conj. class	1	1	6	4	4	4	4
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	ω	ω^{2}	ω^{2}	ω
χ_{4}	2	-2	0	-1	-1	1	1
In the table, $\omega=e^{2 \pi i / 3}$.							

(i) Find another irreducible character χ_{3} of dimension 1 (i.e. with $\chi_{3}(e)=$ 1).
(ii) Find two more distinct irreducible characters χ_{5}, χ_{6} of dimension two.
(iii) Work out the complete character table for this group of order 24, justifying your answer.

