M3/4/5P12 PROGRESS TEST 2

PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RE-SULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces. Unless a question specifies otherwise, all results from the course may be assumed if they are clearly stated.

Question 1. Let G be a finite group. Let V be a representation of G, with character χ_V .

- (a) What is the definition of the dual representation V^* ?
- (b) What is the character χ_{V^*} of the dual representation V^* , in terms of χ_V ? Justify your answer.
- (c) Let W be another representation of G, with character χ_W . What is the character $\chi_{V\otimes W}$ of the tensor product representation $V \otimes W$, in terms of χ_V and χ_W ? You just need to state the answer.
- (d) Let V_{triv} be the one-dimensional trivial representation of G, with character χ_{triv} . Show that

$$\langle \chi_{V\otimes W}, \chi_{triv} \rangle = \langle \chi_V, \chi_{W^*} \rangle.$$

(e) Suppose V and W are irreducible representations. If W^* is not isomorphic to V, how many copies of V_{triv} appear in the decomposition of $V \otimes W$ into irreducibles? How many copies of V_{triv} appear in the decomposition of $V \otimes V^*$ into irreducibles? Justify your answers.

Question 2. (a) Let G be a finite group. State the column orthogonality relations for the irreducible characters of G.

(b) Here is an incomplete character table for a group of order 24, with 7 conjugacy classes.

	$g_1 = e$	g_2	g_3	g_4	g_5	g_6	g_7
Size of conj. class	1	1	6	$\frac{g_4}{4}$	4	4	4
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2	ω^2	ω
χ_4	2	-2	0	-1	-1	1	1

In the table, $\omega = e^{2\pi i/3}$.

- (i) Find another irreducible character χ_3 of dimension 1 (i.e. with $\chi_3(e) = 1$).
- (ii) Find two more distinct irreducible characters χ_5, χ_6 of dimension two.
- (iii) Work out the complete character table for this group of order 24, justifying your answer.

Date: Tuesday March 15, 2016.