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1. INTRODUCTION

We let F be a totally real number field, and fix a place p|p of F , with p an odd prime. Denote the local

field Fp by K0, and denote its residue field by k0. We have k0
∼= Fq with q = pf for some f ≥ 1. We

denote by X(p) a Shimura curve associated to a suitable indefinite quaternion algebra over F , with some

fixed level outside p and level at p corresponding to the principal congruence subgroup

U(p) = ker(GL2(OK0)→ GL2(k0)).

Then X(p) has semistable reduction over a finite extension K/K0 with ramification degree q2 − 1 and

residue field k some (explicit) extension of k0. An explicit semistable model X̃ , in the modular curve case,

is described in unpublished work of Edixhoven [Edi01]. The description of this model is also a special case

of the recent work of Weinstein [Wei], which describes semistable models for modular curves of any level.

The genesis of this work was the authors’ attempts to investigate the consequences for the mod p Lang-

lands programme of the geometry of X̃ . The étale cohomology group

H1
et(X(p)F ,Z/pZ)⊗Fp Fp

is of importance in the mod p Langlands programme — for example, the weight part of Serre’s conjecture

is a statement about its structure as a GL2(k0) ×Gal(F/F )-representation. This étale cohomology group

compares with the log-crystalline cohomology of X̃ over the base S appearing in Breuil’s integral p-adic

Hodge theory, but in the present paper we only consider the de Rham cohomology of the normalisation of

X̃k. The structure of this de Rham cohomology group already has some consequences for one direction

(weight elimination) of the weight part of Serre’s conjecture ([BDJ10],[Sch08a]).

Our first goal in this paper is to describe the analogous semistable model in the Shimura curve case. This

essentially follows from a special case of the generalised semistable models for Lubin–Tate spaces with

level p structure which are described in [Yos10]. The irreducible components of the special fibre X̃k are

of two kinds. The first kind have a purely local description, and are isomorphic to compactifications of the

Deligne-Lusztig curves for the group GL2(k0) (with the natural action of GL2(k0) on X(p) corresponding

to the natural action of GL2(k0) on the Deligne-Lusztig curves) — these curves are forms of the Drinfeld

curve with affine equation xyq − yxq = 1. The second kind of irreducible components are Igusa curves,

which already appear as irreducible components of the regular integral model for X(p) defined by Carayol

[Car86]. We denote the union of the ‘Drinfeld’ components by Y k and the union of the ‘Igusa’ components
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by Zk. For l 6= p, the l-adic cohomology of Y k is comprised of cuspidal representations of GL2(k0), whilst

the l-adic cohomology of Zk is comprised of induced representations.

Another goal of this paper is to indicate the way in which the ‘cuspidal’ and ‘induced’ pieces of coho-

mology blend together when one considers a cohomology theory with mod p coefficients (namely, de Rham

cohomology of the special fibre or mod p étale cohomology of the generic fibre). This blending can be ob-

served in the structure of finite flat group schemes which are naturally associated to Galois representations

appearing in the mod p étale cohomology of X(p). In what remains of the introduction, we describe the

contents of this paper in a little more detail.

1.1. Consequences for the weight part of Serre’s conjecture. We need to set up a little more notation in

order to state our results precisely.

We denote by I(K/K0) the inertia group of K/K0 and define a fundamental character of niveau 2f

ω2f : I(K/K0)→ k×

g 7→ g$

$
mod $,

where $ is any uniformiser of K. Set ωf = ω1+q
2f . Denote the ramification degree of K0/Qp by e0. We let

L be the unramified quadratic extension of K0 inside K, with residue field kL, and write GF and GK0 for

the absolute Galois groups of F and K0 respectively. Finally, we write I for the inertia subgroup of GK0
.

We prove the following in Corollaries 6.17 6.19, 6.24 and 6.26:

Theorem 1.1. Let W be an irreducible representation of GL2(k0)

W = deta
⊗

τ :k0↪→Fp

(Symmyτ k2
0)⊗τ Fp

with 1 ≤ yτ < p for every τ and not all the yτ equal to p− 1 (we say the weight W is weakly regular when

these conditions hold). If f = 1 we modify the definition of weakly regular slightly (see Definition 6.7).

If moreover we have e0 ≤ yτ ≤ p− 1− e0 for all τ , we say the weight W is strongly e0-regular.

Suppose r is an irreducible two dimensional Fp-representation ofGF , such that r appears as an Fp[GF ]-

submodule of HomGL2(k0)(W,H
1
et(X(p)F ,Fp)).

(i) Suppose that r|GK0
is irreducible (the supersingular case). Then there exists a subset J ⊂ Hom(kL,Fp),

which bijects with Hom(k0,Fp) on restriction to k0, together with integers −1 ≤ ετ ≤ e0 − 1 for

τ ∈ Hom(k0,Fp), such that r|I = ρ⊕ ρq where

ρ = ω−af

∏
τ∈J

τ ◦ ω−(1+yτ+ετ )
2f

∏
τ /∈J

τ ◦ ω−(e0−1−ετ )
2f .

The integers ετ are ≥ 0 unless τ and τ ◦ σ−1 are both in J , or both in the complement of J

(here σ−1 is the inverse of the q-power Frobenius morphism). If W is strongly e0-regular then all

of the ετ are ≥ 0.
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(ii) Suppose that r|GK0
is reducible (the ordinary case). Then there exists a subset J ⊂ Hom(k0,Fp)

together with integers −1 ≤ ετ ≤ e0 for τ ∈ Hom(k0,Fp) , such that r|I =

(
ρ′ ∗
0 ρ′′

)
where

ρ′ = ω−af

∏
τ∈J

τ ◦ ω−(1+yτ+ετ )
f

∏
τ /∈J

τ ◦ ω−(e0−1−ετ )
f

and

ρ′′ = ω−af

∏
τ /∈J

τ ◦ ω−(1+yτ+ετ )
f

∏
τ∈J

τ ◦ ω−(e0−1−ετ )
f .

The integers ετ are ≥ 0 unless τ and τ ◦ σ−1 are both in J . The integers ετ are ≤ e0− 1 unless

τ and τ ◦ σ−1 are both in the complement of J . If W is strongly e0-regular and we exclude the

cases where yτ = e0 for every τ or yτ = p−1−e0 for every τ , then all of the ετ are in the interval

[0, e0 − 1].

This result was already known in many cases [Gee11], [GS11a], [Sch08b], [Sch08a]. Whilst this work

was in preparation, Gee, Liu and Savitt [GLS] have established it in general, in the stronger form with the

ετ in the interval [0, e0 − 1] for all τ . However, our methods are completely different to theirs, and in many

situations we find a natural geometric interpretation for the sets J appearing in the above theorem. These

results are outlined in Section 1.2.

Since our argument is geometric, amongst the above references it is closest to the work of Schein in

[Sch08b], [Sch08a]. We work entirely in characteristic p, avoiding any combinatorics related to the ir-

reducible constituents of the reductions of characteristic 0 GL2(k0)-representations. It is plausible that

analogous arguments to Schein’s, using the semistable model X̃ , would be able to prove stronger results

in the ordinary case than those we present here. We avoid any computations with reductions of crystalline

representations, instead working only with finite flat group schemes killed by p and their associated Breuil–

Kisin modules.

1.2. Geometric interpretation of the weight part of Serre’s conjecture. In many cases, we are able

to give a geometric interpretation for the subset J appearing in Theorem 1.1 (and in the conjectures of

[BDJ10], [Sch08a]). For simplicity we here just state our result in the supersingular case, so we make all

the assumptions of Theorem 1.1, including the strongly e0-regular assumption on the weightW and suppose

r|GK0
is irreducible. We wish to understand the subset J appearing in the conclusion of the Theorem.

The inclusion of r in HomGL2(k0)(W,H
1
et(X(p)F ,Fp)) allows us to construct a finite flat Fp-module

scheme (in fact, we work over a finite coefficient field) H over OK with generic fibre descending to K0,

such that H(K) ∼= ρ(1) and such that the (contravariant) crystalline Dieudonné module D of H∨k naturally

embeds in

[H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗Fp Fp.

The free k⊗Fp Fp-module D breaks up as a direct sum⊕τDτ of one-dimensional Fp-vector spaces indexed

by embeddings τ : k ↪→ Fp, and we obtain natural embeddings

ιτ : Dτ ↪→ [H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗k,τ Fp.
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For each τ , the image of ιτ is contained in either H1
dR(Y k/k) ⊗k,τ Fp or H1

dR(Zk/k) ⊗k,τ Fp, we say

that τ is a ‘Drinfeld embedding’ for ρ in the first case, and an ‘Igusa embedding’ for ρ in the second

case. We prove that whether τ is Drinfeld or Igusa depends only on the restriction of τ to kL, that τ is a

Drinfeld embedding for ρ if and only if it is an Igusa embedding for ρq (this requires the strongly e0-regular

assumption), and give (in Theorem 6.18) the following description of the subset J ⊂ Hom(kL,Fp)

Theorem 1.2. An embedding τ : k ↪→ Fp is a Drinfeld embedding for ρ if and only if

τ |kL ∈ J.

1.3. Finite flat models and the mod p Langlands programme. Finally, our methods produce some in-

formation about the structure of some natural finite flat models over Spec(OK) for certain Gal(F p/Fp)×
GL2(k0)-subrepresentations of H1

et(X(p)F ,Fp). These finite flat models arise from the quasi-finite flat

group scheme Pic0(X̃/OK)[p] and we believe they are natural objects to study in the mod p Langlands

programme.

We sketch an outline of our motivation: given a maximal ideal m of a suitable Hecke algebra, one obtains

a (log) finite flat group scheme G = Pic0(X̃/OK)[m] with descent datum to Fp on the generic fibre. The

generic fibre of G gives representation ofGK0×GL2(k0) which is conjecturally described (up to multiplic-

ities) by [BP12] in many cases when p is unramified in K0. The GL2(k0)-socle of this representation is the

object of study in the weight part of Serre’s conjecture. In any case, one expects this representation to look

like (ρ⊗πm)⊕m, where m is some multiplicity (which will depend the global situation), ρ is the restriction

to GFp
of the mod p Galois representation attached to m and πm is a representation of GL2(k0). Moreover,

πm should depend only on the local Galois representation ρ. The results of [EGS], when p is unramified in

K0, prove that this is indeed the case.

One can also ask if the whole of G, not just its generic fibre, is determined by ρ. More precisely, do we

have G = (Gm)⊕m, with Gm a (log) finite flat model for ρ ⊗ πm, which depends only on the local Galois

representation ρ? We believe that the answer may be ‘Yes’, and that there should be some version of a mod

p Langlands philosophy incorporating these finite flat models. One of our goals is to provide some evidence

for this belief, and our results in this direction are collected in Section 7. Briefly, we are able to understand

the piece of G contributing to the strongly e0-regular Serre weights in πm. In future work we hope to go

‘beyond the socle’.

1.4. Outline of this paper. The structure of our paper is as follows: In Section 2 we describe the semistable

models of modular and Shimura curves which we will be studying over the course of the paper. These

models were first described by Edixhoven in the modular curve case [Edi01] and the necessary models for

the first covering of Lubin–Tate spaces appear in [Yos10] (in more generality).

In Section 3 we discuss some of the characteristic p representation theory of GL2(Fq) which we will

need to describe the structure of the de Rham cohomology of the irreducible components of the special fibre

of our semistable curves. In Section 4 we give this description.

We then use the theory of Breuil–Kisin modules to relate (pieces of) the mod p étale cohomology of

X(p) to the de Rham cohomology of the (normalisation of the) curve X̃k. For our applications to the weight
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part of Serre’s conjecture we could probably have used Raynaud’s theory of vector space schemes, as in

[Sch08b], [Sch08a], but we found working with Breuil–Kisin modules more convenient. Also, the results

of Section 7 are most easily phrased using Breuil–Kisin modules. Section 5 summarises the results we need

about Breuil–Kisin modules with coefficients and descent data. Everything we use is contained in [Kis09]

and [Sav08], except for some elementary facts about Breuil–Kisin modules with actions of GL2(Fq).

In Section 6 we explain the proof of Theorems 1.1 and 1.2. In Section 7 we discuss our results on the

finite flat models appearing in Pic0(X̃/OK). All the work for this final section is done in Section 6, we just

extract the statements from the proofs of that section.

1.5. Acknowledgements. We are grateful to the attendees at the arithmetic geometry study group in Cam-

bridge, where various parts of this work were presented.

2. GEOMETRY OF SHIMURA CURVES

In this section we describe semistable models of Shimura curves with full level at a prime dividing p.

The models are due to Edixhoven [Edi01] (unpublished) in the case of modular curves, and a generalisation

to unitary Shimura varieties of ‘Harris–Taylor’ type follows from the results of [Yos10].

Let F be a totally real field with [F : Q] = d. Let B be a central simple algebra over F of degree

4, and G be the algebraic group over Q defined by G(R) = (B ⊗Q R)× for any Q-algebra R. We look

at the Riemann surfaces G(Q)\G(A)/(U × U∞), with a sufficiently small open compact subgroup U of

G(A∞), where A∞ = Q⊗ Ẑ, and the maximal connected compact modulo centre subgroup U∞ of G(R).

We consider the cases where G(R)/U∞ ∼= C \ R, i.e. Shimura curves over F .

We let B be a quaternion algebra over F which is split at one infinite place τ : F → R and non-split at

every other infinite place. In the case B = M2(Q), G = GL2 we have U∞ = R×SO(2), and we let X(C)

be the compactification of G(Q)\G(A)/(U × U∞). Otherwise, we have U∞ = R×SO2(R) × (H×)d−1

in G(R) = GL2(R) × (H×)d−1, where H is the Hamiltonian quaternions over R, and we set X(C) =

G(Q)\G(A)/(U × U∞) (which is compact).

The proper smooth curve X/C has a canonical model over F , where we choose the Shimura data as in

[Car86]. Let det = NB/F : B× → F× be the reduced norm on B. Extended to (B ⊗Q R)× for any

Q-algebra R, it gives a homomorphism det : G → ResF/Q(Gm) of algebraic groups over Q. Note that

detU∞ = (R×>0)d and π0(X(C)) ∼= F×\A×F / det(U × U∞), the narrow ideal class group corresponding

to detU , where AF = F ⊗Q A. If F (U) is the abelian extension of F such that F×\A×F / det(U ×U∞) ∼=
Gal
(
F (U)/F

)
by the global Artin map, then X → SpecF factors through SpecF (U), with X/F (U)

geometrically connected.

2.1. No level at p. Let p be a prime and p = p1, . . . , pt be the primes of F above p. We assume that B is

split at p, i.e. B ⊗F Fp
∼= M2(Fp). Let Fpi be the completion of F at pi, a finite extension of Qp. Let Opi

be the ring of integers of Fpi , and Bpi = B ⊗F Fpi .

Note that G(A∞) = G(A∞,p) × G(Qp) where A∞,p = Q ⊗Z
∏
` 6=p Z`, and G(Qp) =

∏t
i=1B

×
pi , so

we write G(A∞) = G∞,p ×GL2(Fp) with G∞,p = G(A∞,p)×
∏t
i=2B

×
pi . Now we choose U ⊂ G(A∞)

to be of the form U = Up × GL2(Op) with a sufficiently small Up ⊂ G∞,p. The base change of X/F to
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Fp extends to a proper smooth curve over Op ([KM85], [Car86]). Also p is unramified in F (U)/F , and

lettingOF ,OU be the ring of integers of F , F (U) andOU,p := OU ⊗OF Op, the morphism X → SpecOp

factors through SpecOU,p with X/OU,p geometrically connected.

In the modular curve case X is obtained as a moduli of elliptic curves with level Up-structure ([KM85]),

and the Barsotti-Tate group G := A[p∞] for the universal elliptic curve A over X is of height 2 and

dimension 1. We denote by G1 = G[p] the finite flat group scheme over X obtained as the p-torsion of G.

In the Shimura curve case, except when F = Q, the canonical models are obtained only by relating them

to unitary Shimura curves of PEL-type over a CM extension of F ([Car86]). We recall this construction.

Let E0 be an imaginary quadratic field in which p splits and E = FE0, which is a CM field. Let z 7→ z

be the complex conjugation of E/F , so that NE/F (z) = zz. Extended to (E ⊗Q R)× for any Q-algebra

R, it gives NE/F : ResE/Q(Gm)→ ResF/Q(Gm). Now we define the algebraic group G′ over Q by

G′(R) = {(g, z) ∈ G(R)× (E ×Q R)× | det(g) = NE/F (z), det(g) ·NE/F (z) ∈ R×}.

Then it has a homomorphism ν : G′ → Gm defined by ν(g, z) = det(g) ·NE/F (z). Then G and G′ have

the same derived subgroup G1 = Ker (det), and Ker ν = G1 ×Ker (NE/F ).

We interpret G′ as a unitary similitude group. Let B′ := B ⊗F E, which is a quaternion algebra over

E. Let trB′/E be its reduced trace, and tr := trE/Q ◦ trB′/E : B′ → Q. Define an involution on B′

by b⊗ z = b ⊗ z, where b 7→ b is the canonical involution on B. We can choose δ ∈ B′ with δ = δ

so that the involution ∗ : B′ → B′op defined as b∗ := δ−1bδ is of second kind (i.e. ∗|E is z 7→ z) and

positive (tr(bb∗) > 0 for every b ∈ B \ {0}). Let V = B′, considered as a left B′-module of rank 1. Let

( , ) : V ×V → Q be an alternating pairing defined by (x, y) = tr(xβy∗) for some β ∈ B′ with β∗ = −β.

Then (bx, y) = (x, b∗y) for all b ∈ B′. Then for any choice of δ and β we have

G′(R) = {g ∈ AutB′⊗QR(V ⊗Q R) | (gx, gy) = νg(x, y) for νg ∈ R×},

and the character G′ 3 g 7→ νg ∈ Gm is our previous ν.

For an E-algebra R such that B′⊗E R ∼= M2(R) (e.g. R = E⊗QR), once we fix such an isomorphism

we denote by ε the element corresponding to the diagonal matrix (1, 0) in EndB′⊗ER(V ⊗E R) ∼= M2(R)

(since B′op ∼= B′). We fix τ0 : E0 → C, which gives E → C above each F → R. Then the Hermitian

pairing on ε(V ⊗Q R) ∼= (E ⊗Q R)2 ∼= (Cd)2 (by τ0) associated to ( , ) has invariants (1, 1) at τ : F ↪→ R
and (0, 2) at all the other. Thus G ×Q R ∼= G

(
U(1, 1) × U(0, 2)d−1

)
, where G(·) denotes the unitary

similitude group. The associated PEL-type Shimura varities X ′ with X ′(C) = G′(Q)\G′(Q)/U ′ · U ′∞,

whereU ′ is a sufficiently small open compact subgroup ofG′(A∞) andU ′∞ is the maximal compact modulo

centre subgroup of G′(R), are the special cases of the ones treated in [HT01].

Now fix a prime p0 of E0 above p, and let q = q1, . . . , qt be the primes of E above p0 and p1, . . . , pt,

so that Eqi = Fpi and Bpi = B′ ⊗E Eqi . Let OE be the ring of integers of E and OE,(p) = OE ⊗Z Z(p).

We choose a maximal OE,(p)-order OB′ of B′ with O∗B′ = OB′ , and let OB,pi = OB′ ⊗OE,(p) Opi .

Note that G′(A∞) = G′(A∞,p) × G′(Qp) with G′(Qp) =
(∏t

i=1B
×
pi

)
× Q×p . Take U ′ ⊂ G′(A∞)

to be of the form U ′ = U ′p × U ′pp × GL2(Op) × Z×p , with a sufficiently small U ′p ⊂ G′(A∞,p) and

U ′pp :=
∏t
i=2 Ker

(
O×B,pi → (OB,pi/p

mi
i )×

)
⊂
∏t
i=2B

×
pi for mi ∈ N. Then the corresponding curve X ′



SHIMURA CURVES, THE DRINFELD CURVE AND SERRE WEIGHTS 7

has a canonical model over E, whose base change to Eq = Fp extends to a proper smooth curve over Op

([HT01], III.4).

We describe this integral model of X ′ over Op. Let Op0
be the ring of integers for E0,p0

. Choose an

isomorphism OB,p ∼= M2(Op), which gives B×p ∼= GL2(Fp), and let ε ∈ OB,p be the element corre-

sponding to the diagonal matrix (1, 0). We write Λ = εOB,p, a free Op-module of rank 2 with a fixed

isomorphism Λ ∼= O2
p. The Op-scheme X ′ represents a functor X from the category of pairs (S, s), where

S is a connected locally Noetherian Op-scheme and s is a geometric point of S, to the category of sets. It

sends (S, s) to the set of equivalence classes of quadruples (A, λ, i, ηp), where

• A/S is an abelian scheme of dimension 4d;

• i : OB′ ↪→ End(A)⊗Z Z(p) such that LieA⊗(Op0⊗ZpOS),1⊗1 OS is locally free of rank 2 and the

two actions of OF (from OB′ and OS) coincide;

• λ : A→ A∨ is a prime-to-p polarisation with λ ◦ i(b) = i(b∗)∨ ◦ λ for all b ∈ OB′ ;
• ηp :=

(
ηp, (ηi)2≤i≤t

)
is a level structure outside p, i.e.:

• ηp is a π1(S, s)-invariant U ′p-orbit of isomorphisms η : V ⊗Q A∞,p → V pAs of B′ ⊗Q A∞,p-

modules, which take the pairing ( , ) to an (A∞,p)×-multiple of the λ-Weil pairing on V pAs,

where V pAs :=
(

lim←−
p 6 |N

A[N ](k(s))
)
⊗Z Q;

• ηi :
(
p−mii OB,pi/OB,pi)S

∼→ A[pmii ] is an isomorphism of S-schemes with OB,pi -actions,

and two quadruples (A, λ, i, ηp), (A′, λ′, i′, η′p) are equivalent if there is a prime-to-p isogeny A → A′

which sends (i, ηp) to (i′, η′p) and λ to νλ′ for some ν ∈ Z×(p). For two geomteric points s, s′ of S the sets

X(S, s) and X(S, s′) are in canonical bijection, hence we think of X as a functor from connected locally

Noetherian Op-schemes, and extend it to a functor from all locally Noetherian Op-schemes by setting

X
(∐

i Si
)

=
∏
i X(Si).

Given (A, λ, i, ηp) as above, let GA = εA[p∞], a Barsotti-Tate Op-module; it has Op-height 2, i.e. the

multiplication by a uniformiser$0 ofOp has degree q2, where q is the order of the residue field kp = Op/p

of Fp. Over a base in which p is nilpotent it is 1-dimensional and compatible, i.e. the two actions of Op on

LieGA coincide ([HT01], II.1). Let A be the universal abelian scheme over X ′, and G = GA.

To relateX toX ′, let F ur
p be the maximal unramified extension of Fp. For each connected component of

X ⊗F F ur
p , we can choose U ′ so that it is canonically isomorphic to a connected component of X ′ ⊗E F ur

p

as F ur
p -schemes ([Car86], 4.5.4). By descent from X ⊗F F ur

p , the above integral model of X ′ gives an

integral model of X , a proper smooth scheme over Op ([Car86], 6.1). Let Xp = X ⊗Op
kp. At each

geometric point s of Xp, the completion ÔX,s of the strict henselisation of X at s is isomorphic to ÔX′,s′
for the corresponding point s′ ∈ X ′p(kp), hence is isomorphic to the universal deformation ring of Gs′
([Car86], 6.6). We write Gs = Gs′ . For each n, if we choose a sufficiently small U , there exists a finite flat

Op-module scheme Gn on X which pulls back over ÔX,s ∼= ÔX′,s′ to G[pn], the pn-torsion of G ([Car86],

6.5). Since we can vary Up, the Hecke algebra TU = Z[Up\G∞,p/Up] away from p acts on X from the

right by algebraic correspondences.

Now we describe the supersingular points on X . For any field κ of characteristic p, a point s ∈ Xp(κ) is

called supersingular if Gs is a formal (i.e. connected) Barsotti-TateOp-module for s ∈ Xp(κ) above s. Let
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Xss be the reduced closed subscheme of Xp, whose underlying set is (the closure of) the set of all closed

points of Xp which are supersingular. Then it is a finite étale kp-scheme, stable under the Hecke correspon-

dences in TU . Hence the q-th power Frobenius morphism Fr : X → X restricts to an automorphism of Xss

as a kp-scheme. In particular Fr acts on the set Xss(kp). Also, recall that Xp → Spec kp factors through

Spec(OU/p) with geometrically connected fibres, hence Xss is a finite étale OU/p-scheme and we have a

map

(2.1) Xss(kp)→ Spec(OU/p)(kp) ∼= F×\A×F / det(U × U∞),

equivariant with the Fr-action and the action of the inverse of a uniformiser of Fp.

To describe the Fr-set Xss(kp), let B be a totally definite quaternion algebra over F whose non-split

places are exactly the places where B is non-split together with p and τ , and define an algebraic group G

over Q by G(R) = (B ⊗Q R)×. Note G(A∞) = G∞,p × B×p , where Bp = B ⊗F Fp is the quaternion

algebra over Fp. Let OB,p be the maximal order of Bp, and v : B
×
p /O×B,p

∼=−→ Z be the normalised

valuation. Fix a supersingular point s0 ∈ Xss(kp). Then there is a bijection of finite sets with right TU -

actions ([Car86], 11.2)

(2.2) Xss(kp)
∼=−→ G(Q)\G(A∞)/(Up ×O×

B,p
)
∼=−→ G(Q)\

((
G∞,p/Up

)
× Z

)
,

which sends s0 to 1. Here the second bijection is defined by sending the class of δ ∈ G(A∞) to the class of

(δp,−v(δp)). The action of Fr on the left hand side coincides with the action of Π−1 ∈ B×p , on the middle

term, where v(Π) = 1. The action on the right hand side is therefore given by h 7→ h + 1 on Z. The map

(2.1) is given by the reduced norm det = NB/F : B
× → F×.

The right hand side is concretely described as follows. Fix a set of representatives Σ0 ⊂ G∞,p for the

double cosets in G(Q)\G∞,p/Up, with 1 ∈ Σ0. Then the image of g × Z for g ∈ Σ0 is given by Γg\Z,

where the subgroup Γg ⊂ G(Q) is the intersection G(Q) ∩ gUpg−1 inside G∞,p, considered as a discrete

subgroup of B
×
p and acting on Z via −v. We have Γg = δZg for a unique δg ∈ B

×
p with v(δg) > 0, hence

(2.3) G(Q)\
((
G∞,p/Up

)
× Z

) ∼=−→
∐
g∈Σ0

Γg\Z
∼=−→

∐
g∈Σ0

Z/v(δg)Z,

and Fr acts by h 7→ h + 1 in each Z/v(δg)Z. The order of the automorphism Fr on Xss(kp) is the least

common multiple of v(δg) for g ∈ Σ0.

We make (2.2) into an isomorphism of schemes with a descent datum to kp. Let n be the least common

multiple of two and the order of Fr on Xss(kp), and let k be a finite extension of kp with [k : kp] = n

(we ensure that n is even so that for x ∈ Xss(kp) the endomorphisms of Gx descend to k). Let Xss/k =

Xss ⊗kp k. We have Xss(k) = Xss(k) = Xss/k(k) by definition of n.

We define a k-scheme Zk =
∐

Z Spec k, where we write Zhk for the copy of Spec k at h ∈ Z. Let

Fr : Zk
∼=−→ Zk be an automorphism as k-schemes, defined by Zhk

∼=−→ Zh+1
k for every h ∈ Z. Let B

×
p

act on Zk from the left via δ 7→ Fr−v(δ). Using this left B
×
p -action, which clearly commutes with Fr, we

replace Z in (2.5) by Zk, and obtain an isomorphism of k-schemes with Fr-action

(2.4) Xss/k

∼=−→ G(Q)\
((
G∞,p/Up

)
× Zk

)
.
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By taking the base change to kp over k, we obtain an isomorphism

(2.5) Xss

∼=−→ G(Q)\
((
G∞,p/Up

)
× Z

)
of kp-schemes with Fr-action, where Xss = Xss ⊗kp kp and Z =

∐
Z Spec kp.

2.2. The Lubin-Tate spaces, and the full level at p. Let us relieve some of our notational burden by

writing K0 = Fp, O = Op, and k0 = kp ∼= Fq with q = pf . Let k ∼= Fqn be as above, and we write k for

kp ∼= Fp. We reserve K for a finite extension of K0 appearing later. Let D = Bp andOD = OB,p, with its

maximal ideal pD and residue field κ = OD/pD ∼= Fq2 . Let W be the completion of the ring of integers of

Kur
0 , and XW = X ⊗O W . A formal spectrum Spf R for a complete Noetherian local ring R will have its

maximal ideal as the ideal of definition if not otherwise mentioned.

We desribe the p-adic uniformisation for the formal neighbourhood of Xss in XW . Recall that we

fixed a supersingular point s0 ∈ Xss(k). Let G = Gs0 , the Barsotti-Tate O-module at s0. It is a (strict)

formal O-module of O-height 2 and dimension 1 over k, which is unique up to isomorphism. We denote

by LT the Lubin-Tate space for G (the Rapoport-Zink space [RZ96]); it is a formal scheme over Spf W ,

whose reduced subscheme is LTred = Z =
∐

Z Spec k. On the category C of Artinian local W -algebras

ι : W → R with the maximal ideal m ⊂ R such that ι induces k ∼= R/m, the set LT(R) is the set of

all isomorphism classes of pairs (G, ρ), where G is a Barsotti-Tate O-module over R and a quasi-isogeny

ρ : G ⊗k R/m −→ G ⊗R R/m. For h ∈ Z, we denote the locus where the O-height of ρ is h by LTh,

hence LT =
∐
h∈Z LTh. Then LT0 = Spf A0, where we let A0 be the universal deformation ring of G,

non-canonically isomorphic to W [[T ]].

Note that OD (resp. D×) is the endomorphism ring (resp. the self-quasi-isogeny group) of G, and v :

D×/O×D
∼=−→ Z is given by the O-height. Hence D× acts on LT from the right as ρ 7→ ρ ◦ δ for δ ∈ D×,

and we consider this as a left action by making δ act as δ−1 from the right. In particular, a uniformiser

Π ∈ D×, a self-isogeny of G with O-height 1 (degree q), defines an isomorphism Π : LTh
∼=−→ LTh−1 for

every h by ρ 7→ ρ ◦Π−1, hence an isomorphism LT ∼=
∐

Z Spf A0. This left D×-action extends the action

on Z defined previously, since O×D acts trivially on Z.

For any Fp-algebra R, let σq : R → R be the q-th power ring endomomorphism. Let G(q) be the base

change of G with respect to σ∗q : Spec k → Spec k, which is (non-canonically) isomorphic to G. Let LT(q)

be the Lubin-Tate space defined for G(q). Then:

(i) Let σq : W →W be the arithmetic Frobenius, the continuousO-automorphism lifting σq on k. Then(
LT ⊗W,σq W

)
(R) = LT

(
W

σq−→ W
ι→ R

)
is the set of isomorphism classes of (G, ρ), where G/R is as

before (since R is unchanged as an O-algebra), and ρ : G ⊗k, ι◦σq R/m = G(q) ⊗ R/m −→ G ⊗ R/m.

Therefore LT(q) = LT⊗W,σq W .

(ii) Letting LTp = LT ⊗W k, the formal scheme over k obtained by reduction mod p, its base change

LT
(q)
p with respect to σq on k is just LT

(q)
p = LT(q) ⊗W k by (i). The q-th power Frobenius morphism

Fr : LTp → LT
(q)
p is given by (G, ρ) 7→ (G(q), ρ(q)) on the R-valued points, where (·)(q) denotes the base

change with respect to σq on R.
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(iii) The q-th power Frobenius morphism FrG : G → G(q) is an isogeny of O-height 1, hence ρ 7→
ρ ◦ FrG defines an isomorphism w : LT(q) ∼=−→ LT of formal schemes over Spf W (the Weil descent), with

w : LT(q),h ∼=−→ LTh+1 for every h. The action of w ◦ Fr : LThp −→ LTh+1
p on LTred = Z is what we

denoted by Fr at the end of §2.2.

Using the left action of D× on LT, we replace the Z in the right hand side of (2.5) by LT, and claim that

the formal completion X̂W |Xss
of XW along its closed subscheme Xss is given by

(2.6) X̂W |Xss
=
∐

s∈Xss(k)

Spf ÔX,s
∼=−→ G(Q)\

((
G∞,p/Up

)
× LT

)
,

as formal schemes over Spf W with the TU -actions from the right. This is seen as follows. The right

hand side is a finite disjoint union of formal schemes of the form Γg\LT, as in (2.3), and Γg\LT ∼=∐
Z/v(δ)Z Spf A0 non-canonically. Since (2.5) says that the k-points of (2.6) are in TU -equivariant bijection,

and also ÔX,s ∼= A0 for each s ∈ Xss(k) (since Gs ∼= G), we see that (2.6) is an isomorphism of formal

schemes over Spf W .

For every s ∈ Xss(k), canonically GFr(s)
∼= G(q)

s (by the moduli interpretation of X ′), hence we have

ÔX,Fr(s)
∼= ÔX,s ⊗W,σq W as in (i) above.

This picture descends to Xss/k as follows. Let K ′0/K0 be the unramified extension with the residue field

extension k/k0 of degree n, and let |k| = qn = q′. Let O′ be its ring of integers, and XO′ = X ⊗O O′.
Since Frn = id on Xss defines a descent data G

∼=−→ G(q′), let Gk be the corresponding formal Barsotti-

Tate O-module over k with G = Gk ⊗k k. Let LTk be the Lubin-Tate space defined for Gk, which is a

formal scheme over Spf O′, non-canonically isomorphic to
∐

Z Spf O′[[T ]], with D×-action and the Weil

descent (note that k contains the quadratic extension of k0, hence all endomorphisms in End(G) = OD are

defined on Gk). Then LTk⊗O′W ∼= LT with theD×-action and Weil descent. Then the formal completion

of XO′ along its closed subscheme Xss/k is given by

(2.7) X̂O′ |Xss/k
=
∐

s∈Xss(k)

Spf ÔX,s = G(Q)\
((
G∞,p/Up

)
× LTk

)
,

as formal schemes over Spf O′ with the TU -actions from the right, where ÔX,s is the complete local ring

of XO′ at s.

Next we choose an open compact subgroup ofG(A∞) of the formU = Up×U1, withU1 = Ker
(
GL2(O)→

GL2(k0)
)
, and let X(p) be the corresponding canonical model over F , which is an étale GL2(k0)-covering

over X . Here we recall an integral model of X(p) over O, which is a regular scheme, proper flat over

O ([KM85], [Car86]). Choosing Up small enough so that we have the finite flat O-module scheme G1

over X , the integral model for X(p) over O is defined as the relative moduli over X of the Drinfeld level

p-structures on G1 ([KM85] 1.8, [HT01] II.2):

η : p−1Λ/Λ −→ G1,

where Λ = O2 (for Shimura curves Λ = εOB,p ∼= O2, and the corresponding model for X ′ is as appears

in [HT01], III.4). For each geometric point s ∈ X(p)(k), the completed strict henselisation ÔX(p),s is

isomorphic to the universal deformation ring of Gs with Drinfeld level p-structures ([Car86], 7.4), hence
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X(p) is regular and finite over X ([Dri74], §4). As X(p) → X is a finite morphism between regular

schemes of the same dimension, it is flat ([AK70] V, 3.6).

Now we look at the formal neighbourhood of Xss for X(p). For any field κ′ of characteristic p and

t ∈ Xss(κ
′), there is a unique Drinfeld level p-structure of (G1)t, hence a unique point s ∈ X(p)(κ′) above

t. Thus Xss can be considered as a reduced subscheme of X(p). We denote by LT(p) the first covering of

the Lubin-Tate space for G, non-canonically isomorphic to
∐

Z Spf A, whereA is the universal deformation

ring of G with Drinfeld level p-structures. Then LT(p) has a GL2(k0)-action from the right, and LT(p)→
LT is a D×-equivariant finite flat covering, which is an étale GL2(k0)-torsor on the associated rigid spaces.

Since ÔX(p),s
∼= A, the formal completion of X(p)W = X(p) ⊗O W along its closed subscheme Xss is

given by

(2.8) X̂(p)W |Xss
=
∐

s∈Xss(k)

Spf ÔX(p),s = G(Q)\
((
G∞,p/Up

)
× LT(p)

)
,

as formal schemes over Spf W with actions of TU and GL2(k0) from the right. This is a finite flat covering

of (2.6). It also descends to Xss/k as

(2.9) X̂(p)O′ |Xss/k
=
∐

s∈Xss(k)

Spf ÔX(p),s = G(Q)\
((
G∞,p/Up

)
× LT(p)k

)
,

as formal schemes over Spf O′ with actions of TU and GL2(k0) from the right, where ÔX(p),s is the

complete local ring of X(p)O′ at s and LT(p)k is the first covering of LTk. This will be our starting point

in constructing the Hecke-equivariant semistable models of X(p) in the next subsection.

Here we collect some facts on LT and LT(p) we will need, or rather its connected components Spf A0

and Spf A, all essentially due to Drinfeld [Dri74].

Let $0 be a uniformiser of K0. Recall that a (formal) coordinate for a 1-dimensional formal O-module

G over an O-algebra R is a choice of an isomorphism Spf R[[X]]
∼=−→ G, with the ideal of definition (X),

as formal schemes over R. It gives the formal O-module law X +G Y ∈ R[[X,Y ]] and [·] = [·]G : O −→
R[[X]]. The formal additive group law Ĝa is given by X + Y and [a](X) = aX for all a ∈ O, and every

G is congruent to Ĝa mod deg 2 by definition. A formal O-module over a k0-algebra R has O-height

h ∈ Z>0 if [$0](X) is a power series in Xqh but not in Xqh+1

. The O-height is independent of the choice

of coordinates, but a consequence of Lazard’s lemma is that if G has O-height h, then we can choose a

coordinate so that G ≡ Ĝa mod deg qh ([Dri74], 1.5).

For G/k of O-height 2 and a uniformiser $0 of K0, we can choose a coordinate so that (1) [$0](X) =

Xq2 , (2) G ≡ Ĝa mod deg q2 and (3) the formal O-module law is defined over a quadratic extension

of k0 ([Dri74], Proof of 1.7). Then an element δ mod p ∈ OD/p is determined by [δ](X) ≡ aδX +

bδX
q (mod deg q2) with aδ, bδ ∈ Fq2 ⊂ k ([Dri74], Proof of 1.7(c)). Since a uniformiser Π of OD =

End(G) has O-height 1, an element δ mod Π ∈ OD/pD is determined by the leading coefficient aδ ∈ Fq2
of [δ](X). Therefore G/k gives a k0-homomorphism κ = OD/pD → k by δ 7→ aδ/a1. Also for Gk/k,

since all endomorphisms are defined over k, looking at the leading coefficients gives κ→ k.

The deformation theory of Gk/k or G/k, height 2 and dimension 1 ([Dri74], 4.2), shows that the uni-

versal deformation G on A0 = O′[[T ]] or W [[T ]] has height 1 on A0/p and height 2 on A0/(p, T ). More
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precisely, by changing T by its unit multiple if needed, its formal O-module law satisfies

(2.10) [$0](X) ≡ $0X + TXq + uXq2 (mod deg q2 + 1),

with u ∈ A×0 , and since A0 is Henselian and u mod (p, T ) ∈ k or k has a (q2 − 1)-th root so does u,

hence we can make u = 1 by replacing X by X ′ = q2−1
√
uX . On the universal deformation ring A with

Drinfeld level p-structures, we have G ⊗A0 A with the universal object η : p−1Λ/Λ −→ G[p], a morphism

of finite flatO-module schemes. Once we fix a coordinate of G and take the A-valued points, it gives a map

η : p−1Λ/Λ ∼= k2
0 −→ m, where m is the maximal ideal of A. Then A is regular with m = (X1, X2),

where X1 = η(1, 0) and X2 = η(0, 1) ([Dri74], 4.3). Only the case of G/k is treated in [Dri74], but the

proofs are valid for Gk/k.

2.3. The Drinfeld curve and a semistable model. The goal of this subsection is to describe a semistable

model of X(p), obtained by blowing up in Xss/k. First we define the Drinfeld curve, which will appear in

the exceptional divisors. Let Dr0 be the affine curve over k0
∼= Fq defined as

Dr0 = Spec k0[X1, X2]/
(
(X1X

q
2 −X

q
1X2)q−1 − 1

)
(2.11)

= Spec k0[X1, X2]/
( ∏

(a1,a2)∈k20\{(0,0)}

(a1X1 + a2X2)− 1
)
,(2.12)

a closed subscheme of A2
k0

(in fact defined over Fp), with an action of GL2(k0) from the right, by its linear

action on (X1, X2). It has connected components labelled by µq−1(k0) = k×0 , and each component is

smoothly compactified by taking its closure in P2
k0

. We denote the resulting smooth compactification of

Dr0 by Dr
0
.

Let k be as in the end of §2.1, and Γ = µq2−1(k) ∼= F×q2 . The curve Dr0
k = Dr0 ⊗k0 k over k has an

action of Γ from the right, where ζ ∈ Γ acts as (X1, X2) 7→ (ζ−1X1, ζ
−1X2). This action commutes with

the right GL2(k0)-action.

Now recall κ = OD/pD ∼= Fq2 , and let ι± : κ → k be the two k0-homomorphisms. We have two left

actions of κ× on Dr0
k, where u ∈ κ× acts via ι±(u−1) ∈ Γ. We denote by Dr±k this curve over k with the

corresponding left κ×-action and the right GL2(k0) × Γ-action defined above, which commute with each

other. Now we define a k-scheme Drk

Drk =
∐
h∈Z

Drhk , where Drhk =

Dr+
k (h : even),

Dr−k (h : odd),

with the right GL2(k0)× Γ-action on each Drhk .

We extend the left action of κ× to an action of D× as follows. We define Π : Drhk
∼=−→ Drh−1

k to be the

identity morphisms, decreasing the index h by 1. Then since

1 // κ× = (OD/pD)× // D×/1 + pD
v // Z // 1

is exact and D×/1 + pD ∼= κ× o ΠZ with ΠuΠ−1 = uq for u ∈ κ×, the actions of κ× and Π combine to

give a left action of D×/1 + pD on Drk. The right GL2(k0) × Γ-action on Drk commutes with this left

D×-action, since it commutes with the actions of Π and κ×.
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Now let Dr
(q)
k be the base change of Drk with respect to σq on k. We have Drk ∼= Dr

(q)
k as k-schemes,

and the right Γ-action is twisted by ζ 7→ ζq . Since the κ×-actions on Dr+
k and Dr−k are exchanged, we

have Dr
(q),h
k

∼=−→ Drh+1
k equivariant with the left D×-action and the right GL2(k0)-action. If we forget the

Γ-action, we can consider the q-th power Frobenius morphism Fr : Drk → Dr
(q)
k as Fr : Drhk → Drh+1

k .

Using the above D×-action on Drk, we replace Z in (2.5) by Drk to obtain a k-scheme

(2.13)
∐

s∈Xss(k)

Dr0
k = G(Q)\

((
G∞,p/Up

)
×Drk

)
,

with the actions of TU and GL2(k0)× Γ from the right.

In section 2.4 we show that this scheme is a quotient by the κ×-action on

(2.14)
( ∐
s∈Xss(k)

κ×
)
×Dr0

k =
(
G(Q)\G(A∞)/

(
Up × (1 + pD)

))
×Dr0

k,

acting diagonally (from the right on the first and from the left on the second factor).

Recall that K ′0/K0 is the unramified extension with ring of integers O′ and residue field k. Let $0 be

a suitable uniformiser of K0. Let K = K ′0($) with $ = q2−1
√
−$0, a totally tamely ramified abelian

extension of K ′0, with the ring of integers OK and the residue field k. Then $ is a uniformiser of K, and

we identify its Galois group Gal(K/K ′0) with Γ by the canonical isomorphism

Gal(K/K ′0) 3 σ
∼=−→ σ($)

$
mod $ ∈ µq2−1(k) = Γ ⊂ k×.

Now we can state our main geometric input.

Theorem 2.1. Let F be a totally real field and p its finite place. Let X(p) be the regular integral model

over O = Op of the modular or Shimura curve with full level p and sufficiently small level Up outside p.

Let X(p)O′ = X(p)⊗OO′, whereO′/O be the unramified extension with the residue field k, the extension

of k0 = kp given in the end of §2.1.

Let X̃ be an OK-scheme obtained from X(p)O′ by (1) blowing up all s ∈ Xss(k), (2) taking the base

change from O′ to OK , and (3) normalising. Then:

(i) The curve X̃ has semistable reduction, and retains the actions of TU and GL2(k0) from the right.

It is a disjoint union of connected components Xξ labelled by ξ ∈ k×0 , and the special fibre of each

Xξ is a grid made of q + 1 Igusa components (horizontal) and an irreducible component of Dr0
k

above each s ∈ Xss(k) (vertical).

(ii) Let Yk be the complement of the Igusa components in X̃k := X̃ ⊗OK k and let Zk be the com-

plement of the Drinfeld components. Then the normalisation of X̃k is a disjoint union Y k
∐
Zk,

where Y k and Zk are the smooth compactifications of the (disjoint union of) smooth affine curves

Yk and Zk respectively.

Moreover, there is an isomorphism

Yk
∼=−→

∐
s∈Xss(k)

Dr0
k = G(Q)\

((
G∞,p/Up

)
×Drk

)
as k-schemes,(2.15)
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equivariant for the actions of TU and GL2(k0) from the right. Moreover in (2.15), the inertial

action of Γ on Yk, i.e. the action induced by the Γ ⊂ Gal(K/K ′0)-action on the base of X̃/OK , is

induced by the right Γ-action on Drk.

Proof. (i): Since the procedure (1),(2),(3) is invariant under the actions of TU and GL2(k0), the morphism

X̃ → X is equivariant under their actions. For the semistability and the configuration of components, the

question is étale local on X(p), and since the local picture around s depends only on Gs, everything is seen

near Xss (Deligne’s homogeneity principle, [KM85] 5.2). Hence we can perform (1),(2),(3) on (2.9) or

even (2.8), which is written out in detail in [Yos10], apart from proving that we have normal crossings at

the crossing points.

Here we sketch the argument in [Yos10]. Recall the remarks from the end of the last subsection. The

condition that the universal object η : k2
0 → m ⊂ A on G[p]/A is a Drinfeld level structure says

(2.16)
(
[$0](X)

)
=
(∏
a∈k20

(
X − η(a)

))
=

( ∏
(a1,a2)∈k20

(
X −

(
[a1](X1) +G [a2][X2]

)))

as principal ideals in A[[X]]. Since [$0](X) ≡ Xq2 (mod m), the quotient U(X) = [$0](X)/
(∏(

X −

η(a)
))

lies in 1 + m ·A[[X]]. Hence comparing the leading terms gives

(2.17) (−1)q
2

$0 = u ·
∏

(a1,a2)∈k20\{(0,0)}

(
[a1](X1) +G [a2][X2]

)
,

where u is the constant term of U(X), hence in 1 +m. Blowing up and normalisation over OK amounts to

the change of variables

(2.18) X1 = $X ′1, X2 = $X ′2

and dividing out by −$0 = $q2−1 on the exceptional divisor away from the crossings, i.e. after invert-

ing the Igusa components ([Yos10], §5.1). As [a1](X1) +G [a2][X2] ≡ a1X1 + a2X2 (mod deg 2), by

reducing mod$ we get the equation (2.12) of the Drinfeld curve.

Proving that the complete local rings at the crossing points are of the form OK [[V1, V2]]/($ − V1V2) is

done as in [Edi01]. Indeed, after blowing up, the exceptional divisor has multiplicity q2−1, whilst the proper

transforms of the Igusa components have multiplicity q−1. The normalisation of Spec(OK [[U, V ]]/(Uq
2−1V q−1−

$q2−1)) is a disjoint union of copies of Spec(OK [[V1, V2]]/($ − V1V2)), indexed by the q − 1 roots of

unity ξ, as can be seen by writing Uq
2−1V q−1 −$q2−1 =

∏
ξ∈k×0

(Uq+1V − ξ$q+1) and then computing

the normalisation of Spec(OK [[U, V ]]/(Uq+1V − ξ$q+1)) as in [Edi90, 2.2.2.4].

(ii): Now (2.15) is obtained by performing (1),(2),(3) on (2.9) as seen in (i), and the action of ζ ∈ Γ

on Yk induced from its action on the base of X̃/OK is given by $ 7→ ζ$, which has the same effect as

(X ′1, X
′
2) 7→ (ζ−1X ′1, ζ

−1X ′2) on Drk, in view of (2.18). �

2.4. Compactification of Drk and a κ× torsor. Recall that we denote by Dr
0

the smooth proper curve

over k0 obtained from Dr0 by taking the disjoint union of the closures of each of its connected components

in P2
k0

. The connected components of Dr0 are labelled by µq−1(k0), and the component labelled by ξ ∈
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µq−1(k0) is given by

Spec k0[X1, X2]/(X1X
q
2 −X

q
1X2 − ξ).

The closure of this connected component in P2
k0

is given by

Proj k0[X,Y, Z]/(XY q −XqY − ξZq+1).

The right action of G extends naturally to Dr
0
, and the right action of Γ on Dr0

k extends to Dr
0

k. We will

explicitly describe these actions on the boundary divisor ∆ := Dr
0

k\Dr0
k. We see that ∆ consists of q + 1

points [x : y : 0] in each component, with [x : y] ∈ P1(k0).

The right action of g ∈ G on ∆ (which is a map of k-schemes) is given by the usual right action of G

on P1(k0), together with changing the connected component from ξ to det(g)ξ. The action of ζ ∈ Γ =

µq2−1(k) is given by the identity, together with changing the connected component from ξ to ζ−(1+q)ξ.

We now have the obvious smooth compactification of Drk:

Drk =
∐
h∈Z

Dr
h

k

where each Dr
h

k is equal to Dr
0

k as a k-scheme but has the left κ× action extending that on Drhk . The

k-scheme Drk has a right action of G× Γ and a left action of D×, extending the actions on Drk.

When Up is sufficiently small, the action of G(Q) on
(
G∞,p/Up

)
×Drk remains free, so the quotient

G(Q)\
((
G∞,p/Up

)
×Drk

)
is a smooth proper k-scheme. Therefore, the isomorphism of (2.15) extends (uniquely) to an isomorphism

Y k
∼=−→ G(Q)\

((
G∞,p/Up

)
×Drk

)
.

The actions of Γ, G and TU on Yk all extend uniquely to Y k, and so coincide with the actions on the right

hand side of this isomorphism induced by the actions on Drk.

We now define étale κ×-torsors over the scheme Drk and its compactification Drk. This will allow us to

define κ×-torsors over Yk and Y k. We first define a k-scheme

Drk(1) =
∐

d∈D×/1+pD

Drdk

where Drdk is equal to the k-scheme Dr0
k. We give Drk(1) the right Γ×G-action induced by the right action

of this group on Dr0
k. We also consider a right κ×-action on Drk(1): u ∈ κ× acts via the map

ι+(u) : Drdk → Drduk

given by the right Γ-action on Dr0
k. Finally, we have a left action of D× on Drk(1) given by left multipli-

cation on D×/1 + pD. Now we define a map α : Drk(1) → Drk: on Drdk, α is given by composing the

identity map Drdk → Dr0
k with the inclusion Dr0

k ↪→ Drk and then applying the left action of d on Drk as

defined in 2.3. It is clear that α is equivariant with respect to the D× action on its source and target. We

can extend everything to smooth compactifications and obtain a map α : Drk(1)→ Drk.

Lemma 2.2. The map α : Drk(1)→ Drk defines an étale κ×-torsor.
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Proof. The map α is flat and of finite type, so by [Gro71, Exp. I, Proposition 5.7] and fpqc descent [Gro71,

Exp. VIII Corollaire 5.4], it suffices to check that the fibre of α over each geometric point of Drk is an

étale κ×-torsor. First we show that α restricts to an étale κ×-torsor over the affine curve Drk. Observe that

α restricts to a map
∐
d∈O×D/1+pD

Drdk → Dr0
k. Since α is D× equivariant (and in particular equivariant

with respect to the action of ΠZ), it suffices to show that this restriction is a κ× torsor. We can identify

O×D/1 + pD with κ×. Recall the well-known fact that the fppf quotient of Dr0
k by its right Γ-action is

representable by a scheme P . In fact

P ∼= P1
k\P1(k0).

In particular Dr0
k → P is an étale Γ-torsor. If we let u ∈ κ× act on Dr0

k by ι+(u) we obtain an étale

κ×-torsor. Consider the diagram ∐
d∈O×D/1+pD

Drdk
pr−−−−→ Dr0

kyα y
Dr0

k −−−−→ P

where the top row is just the identity map Drdk → Dr0
k on each component (note that this map is κ×-

equivariant). The diagram is Cartesian, by the definition of a torsor applied to Dr0
k → P , so the left hand

vertical map is also an étale κ×-torsor. It remains to show that α gives a torsor over geometric points of

the boundary Drk\Drk. This is easy to see from the explicit description of the boundary ∆ of Dr0
k and its

Γ-action given at the beginning of the section. �

Definition 2.3. Denote by Yk(1) the smooth affine scheme

G(Q)\
((
G∞,p/Up

)
×Drk(1)

)
.

Similarly, denote by Y k(1) the smooth proper scheme

G(Q)\
((
G∞,p/Up

)
×Drk(1)

)
.

Both these schemes have commuting right actions of κ×, G, Γ and TU . Denote by α : Y k(1) → Y k the

map induced by α : Drk(1)→ Drk. It follows from lemma 2.2 that α : Y k(1)→ Y k is an étale κ×-torsor.

We have an isomorphism

(2.19) Y k(1) ∼= G(Q)\G(A∞)/Up(1 + pD)×Dr
0

k

given by mapping (gp, x) with x ∈ Dr
d

k to (gpd, x). This isomorphism respects the G, Γ and TU actions

on each side – the G× Γ action on the right hand side comes from the action on Dr
0

k, the TU action comes

from its action on

G(Q)\G(A∞)/Up(1 + pD).

The action of u ∈ κ× on Y k(1) translates to the action (g, x) 7→ (gu, xι+(u)) on the right hand side, where

when we write gu we are thinking of u as an element of O×D/1 + pD.

In section 4.2, we will compute the de Rham cohomology of Y k by relating it to the de Rham cohomol-

ogy of Y k(1) (which, thanks to (2.19), has a simple description in terms of the cohomology of Dr
0

k).
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3. REPRESENTATION THEORETIC PRELIMINARIES

We write G for the algebraic group GL2/Fp, B for the upper triangular Borel and B for the lower

triangular Borel. Similarly, we write N, N for the upper and lower triangular matrices with diagonal entries

1. Write T for the diagonal matrices and Z for the centre of G. We denote the k0 points of each of these

algebraic groups by the appropriate Roman letter. We abusively confuse a rational representation of G with

its ‘Fp-points’, i.e. the attached Fp-vector space with an action of G(Fp).

Definition 3.1. A weight is a character λ : T→ Gm. If (a, b) ∈ Z2, we write λa,b for the weight(
α 0

0 β

)
7→ αaβb.

A weight λa,b is dominant (with respect to B) if b − a ≥ 0. Write w for the non-trivial element of the

Weyl group of G. The Weyl group acts on the set of weights, and in particular we have w ·λa,b = λb,a. We

denote by V0 the rational representation of G given by the dual of the standard representation. Explicitly, V0

has a basis x, y (dual to the standard basis of the standard representation) with the action of g =

(
α β

γ δ

)
given by

g · x = (det g−1)(δx− βy)

g · y = (det g−1)(−γx+ αy).

If λ = λa,b is a dominant weight, we write ∇(λ) for the rational representation of G given by detb⊗Symmb−aV0.

We denote by ∇(λ) the k0[G]-module obtained by restriction to G. These representations have as a basis

1⊗xiyj with i+j = b−a. These are the ‘dual Weyl modules’ or ‘induced modules’ for G (see Proposition

3.5). We denote by ∆(λ) the rational representation ∇(−w · λ)∗ and denote its restriction to G by ∆(λ).

These are the ‘Weyl modules’ for G.

If V is a rational representation of G then we say that a weight ν is a weight of V if HomT(ν, V ) 6= 0.

The multiplicity of a weight in V is defined to be dimFp(HomT(ν, V )). If λ is a dominant weight, then the

weights of ∇(λ) are (a, b), (a+ 1, b− 1), ..., (b, a), each having multiplicity one.

If 0 ≤ b− a ≤ q − 1 we say that λ is restricted. If 0 ≤ b− a ≤ p− 1 we say that λ is p-restricted. Any

restricted weight λ can be written as a sum
∑f−1
i=0 p

iλi, where the weights λi are p-restricted.

The p-power map σ induces a Frobenius endomorphism σ of G. If i ∈ Z≥0 and V is a rational G-

representation we write V (i) for the rational G-representation with the same underlying vector space as V

but with the g action given by the action of σi(g) on V .

The following are some well-known results in the representation theory of G and G in natural charac-

teristic.

Proposition 3.2. Let λ be a dominant weight. Then the representation ∇(λ) contains a unique irreducible

rational subrepresentation. Equivalently, ∆(λ) has a unique irreducible quotient. Both of these representa-

tions are isomorphic to the irreducible representation of G with highest weight λ. We denote it by L(λ) and

denote its restriction to G by L(λ). If λ is p-restricted then L(λ) = ∇(λ). If λ is restricted then L(λ) is an



18 JAMES NEWTON AND TERUYOSHI YOSHIDA

(absolutely) simple k0[G]-module. This construction gives all the simple k0[G]-modules. If λ =
∑f−1
i=0 p

iλi

with λi p-restricted, then

L(λ) ∼=
⊗
i

L(λi)
(i).

Proof. See, for example, chapter 2 of [Hum]. �

Lemma 3.3. Let λ be a restricted weight. Then Ext1
k0[G](L(λ), L(λ)) = 0.

Proof. This is a special case of [BP12, Corollary 5.6 (i)]. �

Definition 3.4. Let λ be a dominant weight. The algebraic induced representation IndG
B

(w ·λ) is a rational

representation of G given by the subspace of the regular functions on N\G consisting of functions f

satisfying f(tg) = w · λ(t)f(g) for every t ∈ T, g ∈ G. The action of G is given by right translation of

the argument of a function.

Proposition 3.5. Let λ be a dominant weight. Then

∇(λ) ∼= IndG
B

(w · λ).

Proof. We can think of ∇(λa,b) as homogeneous polynomial functions f on the standard representation

V ∗0 of degree b− a. Denote by e1 and e2 the standard basis vectors of V ∗0 (the G-action is twisted by detb

from the standard one). Consider the map

Φ : ∇(λ)→ Fp[N\G]

given by

Φ(f) : g 7→ det(g)bf(g−1e2).

This is G-equivariant for the left G-action on these spaces. Moreover, for t ∈ T we have Φ(f)(tg) =

w · λ(t)Φ(f)(g). So Φ gives a map ∇(λ) → IndG
B

(w · λ). We can deduce that this is an isomorphism if

we know that summing over all dominant weights gives an isomorphism⊕
λ dominant

∇(λ) ∼= Fp[N\G].

This is standard. �

Corollary 3.6. Restricting functions from G(Fp) to G gives a G-equivariant map

IndG
B

(w · λ)→ IndG
B

(w · λ)⊗k0 Fp,

which descends to a map∇(λ)→ IndG
B

(w · λ). If λ is restricted this map is injective.

Proof. The only thing requiring proof is the injectivity. We use the notation of the preceding proof. Suppose

we have a polynomial function f on V ∗0 , with coefficients fi in k0 and degree b−a, such that Φ(f) restricts

to zero on G. We have f(ue1 + ve2) =
∑b−a
i=0 fiu

ivb−a−i. In particular, f(ue1 + ve2) is a polynomial in

u with at least q distinct roots (one for each u ∈ k0). Hence b− a ≥ q. �

Lemma 3.7. We have an isomorphism

IndG
B

(w · λ)∗ ∼= IndG
B

(−w · λ).
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Proof. By [CL76, Proposition 3.5] IndG
B

(w ·λ) contains a vector ϕ on whichB acts viaw ·λ and such that ϕ

generates theG-representation IndG
B

(w·λ). This gives us aB-equivariant mapw·λ→ IndG
B

(w·λ) such that

the image is contained in no proper k0[G]-submodule. Dually we get a B-equivariant map IndG
B

(w ·λ)∗ →
−w · λ such that there is no proper k0[G]-submodule contained in the kernel. Frobenius reciprocity gives

us the desired map

IndG
B

(w · λ)∗ → IndG
B

(−w · λ),

and it is injective since its kernel is a G-stable submodule of the kernel of IndG
B

(w · λ)∗ → −w · λ. Since

the dimensions are equal, the map is an isomorphism. �

Corollary 3.8. Let λ = λa,b be a restricted weight, and let λ′ = λb−q+1,a (note that λ′ is again a restricted

weight). Then the map of Corollary 3.6 together with its dual induce a short exact sequence

0→ ∇(λ)→ IndG
B

(w · λ)→ ∆(λ′)→ 0.

Proof. The above corollary and lemma give an injective map

∇(λ)→ IndG
B

(w · λ)

and, dually, a surjective map

IndG
B

(w · λ)→ ∆(λ′).

Since

dim ∆(λ′) + dim∇(λ) = q + 1 = dim IndG
B

(w · λ)

we need only to show that the composite of the two maps is zero. In fact, we will show that HomG(∇(λ),∆(λ′)) =

0. First suppose that b− a = 0. Then ∇(λ) = L(λ) = detb and ∆(λ′) = L(λ′) = detb ⊗ Symmq−1(V0)

and it is clear that HomG(∇(λ),∆(λ′)) = 0. Now suppose that b− a > 0. Let θ ∈ HomG(∇(λ),∆(λ′)).

The weights of∇(λ) are λa,b, λa+1,b−1, ..., λb,a whilst the weights of ∆(λ′) are λb−q+1,a, λb−q+2,a, ..., λa,b−q+1.

Therefore ker(θ) contains the weight spaces for λa+1,b−1, ..., λb−1,a+1 (since these weights of T do not ap-

pear in ∆(λ′)). In particular, θ(1⊗ xb−a−1y) = θ(1⊗ xyb−a−1) = 0. But we have(
1 0

1 1

)
1⊗ xb−a−1y = −1⊗ xb−a + 1⊗ xb−a−1y

(
1 1

0 1

)
1⊗ xyb−a−1 = 1⊗ xyb−a−1 − 1⊗ yb−a.

Since ker(θ) is G-stable, we have shown that ker(θ) is all of ∇(λ), as required. �

Proposition 3.9. Suppose λ = λa,b is restricted. Suppose 0 < b− a < q − 1. Then

socG(IndG
B

(w · λ)) = L(λ).

Proof. This follows from [CL76, Theorem 7.4]. �

Remark. If b− a = 0 or q − 1 then IndG
B

(w · λ) = L(λ)⊕ L(λ′). Note that Proposition 3.9 implies that

the short exact sequence of Corollary 3.8 is non-split when 0 < b− a < q − 1.

We will need to know the socle of a Weyl module in one particular case:
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Lemma 3.10. Let λa,b be a restricted weight. Suppose b− a = q − 2. Then

socG(∆(λ)) = L(λa+pf−1−1,a+pf−1(p−1)−1)

Proof. This is a consequence of [CC76], [Der81]. In fact, these references completely describe the sub-

module structure of ∆(λ). We refer to [Dot85, 2.3] for an elegant description of the submodule structure of

certain dual Weyl modules for SLn, and explain the necessary computation in the case b− a = q − 2. For

0 ≤ r ≤ q − 2 and 0 ≤ i ≤ f − 2, set αi(r) to be the carry into the coefficient of pi+1 when adding (the

p-adic expansions of) r and q − 2− r. This defines an element α(r) of {0, 1}f−1. Denote by E the subset

of {0, 1}f−1 comprising α(r) for each 0 ≤ r ≤ q− 2. A partial ordering on E is given by defining α � α′

if αi ≤ αi for all 0 ≤ i ≤ f − 2. We say that a subset S of E is closed if S contains the predecessors of

all of its elements. For closed S we get a submodule FS of ∇(λa,b) by taking the submodule generated by

the vectors of weights λa+r,b−r for 0 ≤ r ≤ q − 2 and α(r) ∈ S. It is proved in the references cited above

that every submodule of∇(λa,b) has this form. To compute cosoc(∇(λa,b)), or equivalently soc(∆(λa,b)),

we must determine the maximal elements in the poset E. We observe that α(pf−1 − 1) = (1, 1, ..., 1) so

this is clearly the greatest element in E, which implies that cosoc(∇(λa,b)) is irreducible. Moreover, it is

straightforward to check that pf−1 − 1 is the smallest integer r satisfying α(r) = (1, 1, ..., 1), so

cosoc(∇(λa,b)) = L(λa+pf−1−1,b−pf−1+1) = L(λa+pf−1−1,a+pf−1(p−1)−1).

Dualising gives the desired result for socG(∆(λ)). �

4. COHOMOLOGY

We return to the setting of section 2. The aim of this section is to describe the first de Rham cohomology

groups of Y k and Zk as Γ×G-modules (and as TU -modules).

4.1. Igusa part of the cohomology. The connected components of Zk are parameterised by pairs (ξ, P ),

with ξ ∈ k×0 labelling the connected components Xξ of X̃ and P denoting a one dimensional k0-vector

subspace of p−1Λ/Λ. Denote such an irreducible component by Igξ,P . Each k-scheme Igξ,P is isomorphic

to the relative moduli over Xk of Drinfeld level structures η : p−1Λ/Λ → G1,k such that P ⊂ ker(η).

The group G acts on Zk from the right. The description of this action on the components is that the map

η 7→ η ◦ g induces an isomorphism Igξ,P → Igξ det(g),g−1P , which gives the action of g on the component

Igξ,P . The action of ζ ∈ Γ on Zk is given by the identity map Igξ,P → Igξζ−(q+1),P .

Denote by P0 the unique P such that g−1P = P for all g ∈ B — recall that B is the lower triangular

matrices in G. Write Ig0 for
∐
ξ Igξ,P0

.

Lemma 4.1. We have an isomophism of G× Γ-modules

H1
dR(Zk/k) ∼= IndG

B
H1
dR(Ig0/k).

Proof. This is clear from the description of the action ofG on the components, and the fact thatB stabilises

Ig0. �

Lemma 4.2. The action of B on Ig0 factors through the diagonal matrices T .
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Proof. See [KM85, Theorem 13.10.3 (3)]. �

For λa,b a restricted weight, write H1
dR(Ig0/k)a,b for the direct summand of H1

dR(Ig0/k) on which T

acts via the character λa,b (recall that k is an extension of k0).

Lemma 4.3. The group Γ acts on H1
dR(Ig0/k)a,b via the character ζ 7→ ζ−b(q+1).

Proof. This follows immediately from the fact that (ζ,

(
1 0

0 ζq+1

)
) ∈ Γ× T acts trivially on Ig0. �

Proposition 4.4. We have a Γ×G and TU equivariant isomorphism

H1
dR(Zk/k) ∼=

⊕
(a,b)

[IndG
B
H1
dR(Ig0/k)a,b].

The action of Γ on H1
dR(Ig0/k)a,b is given by the character ζ 7→ ζ−b(q+1). As a k[G]-module, we have an

isomorphism

IndG
B
H1
dR(Ig0/k)a,b ∼= (IndG

B
λa,b)

⊕m ⊗k0 k

for some multiplicity m.

Proof. This follows immediately from the above lemmas. �

Remark. In fact, by considering the relative Frobenius morphism Zk/k → Z
(p)

k /k we can see that the

above isomorphism sends the action of ϕ on the left hand side to the action on the right hand side induced

from the σ-linear maps ϕ : H1
dR(Ig0/k)a,b → H1

dR(Ig0/k)ap,bp. As a consequence, Fil1 of the Hodge

filtration on the left hand side is given by⊕
(a,b)

[IndG
B

Fil1(H1
dR(Ig0/k)a,b)].

However, we will not use these facts in what follows.

Note that since λa,b is restricted, so is λb,a+q−1, and w · λb,a+q−1 = λa,b as weights of T . So we have

IndG
B

(λa,b) = IndG
B

(w · λb,a+q−1).

Recall that the structure of these representations was discussed in Corollary 3.8 and Proposition 3.9.

4.2. Drinfeld part of the cohomology. In this subsection we use the construction of the κ× torsor over Y k
in section 2.4 to relate the de Rham cohomology of Y k to a space of mod p modular forms for G. We write

H1
dR(Y k/k) for the hypercohomology of the de Rham complex of coherent sheaves Ω•

Y k/k
of the smooth

proper curve Y k/k. This cohomology group is a k-vector space with the following additional structures:

• Commuting left actions of TU , Γ, G.

• A one step Hodge filtration Fil1.

• A σ-linear map ϕ.
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We can similarly consider a cohomology groupH1
dR(Y k(1)/k), which is a filtered ϕ-module over k with

commuting left actions of TU , Γ, G and κ×. The cohomology group H1
dR(Dr

0

k/k) is a filtered ϕ-module

over k with commuting left actions of Γ, G and κ× – the left action of κ× is given by composing ι+ and

the left action of Γ. Recall that we have an étale κ× torsor

α : Y k(1)→ Y k

which restricts to a torsor over the affine curve Yk. The map α induces k-linear maps

α∗ : H1
dR(Y k/k)→ H1

dR(Y k(1)/k)

which commute with all the additional structures.

Lemma 4.5. The map α∗ gives an isomorphism (respecting all the structures listed above)

α∗ : H1
dR(Y k/k) ∼= H1

dR(Y k(1)/k)κ
×

where the superscript κ× denotes taking invariants under the left κ×-action.

Proof. Let Ω•(1) denote the de Rham complex for Y (1)/k and let Ω• denote the de Rham complex for Y k.

Since α is étale, we have an isomorphism of complexes α∗Ω• ∼= Ω•(1). Pulling back an acyclic resolution

of Ω• by α gives an acyclic, κ×-equivariant resolution of Ω•(1). Since Y k(1) → Y k is a torsor, for any

quasicoherent sheaf F on Y k we have α∗(α∗F)κ
×

= F (by étale descent for quasicoherent sheaves), so

by considering the double complex obtained by applying α∗()κ
×

to our acyclic κ×-equivariant resolution

of Ω•(1) we obtain a spectral sequence

Ei,j2 : Hi(κ×, Hj
dR(Y (1)/k))⇒ Hi+j

dR (Y k/k).

Recall that κ× is a cyclic group of order q2 − 1. Since multiplication by q2 − 1 is an isomorphism on the

k-vector space Hi+j
dR (Y k/k), the Ei,j2 term of the spectral sequence vanishes except when i = 0, and we

obtain the desired isomorphism from the exact sequence of low degree terms, since the map E1
∞ → E0,1

2

coincides with the composition of α∗ and the inclusion

H1
dR(Y k(1)/k)κ

×
↪→ H1

dR(Y k(1)/k).

�

Remark. Note that we could abbreviate the above proof by computing the hypercohomology of the de

Rham complex on the étale site and using the Hochschild-Serre spectral sequence in étale cohomology.

We can now use lemma 4.5 together with equation (2.19) to give a simple description of the cohomology

groups of interest.

Definition 4.6. Suppose we have a finite set Σ and a k-vector space V . Then we denote by L(Σ, V ) the k-

vector space of functions from Σ to V . Note that if V is finite dimensional there is a canonical isomorphism

L(Σ, k)⊗k V → L(Σ, V ).
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We write ΣU for the finite set G(Q)\G(A∞)/Up(1 + pD). Recall that this finite set has a right action

(by correspondences) of TU and a right action of κ× = O×D/1 + pD by right multiplication. We suppose

V is a filtered ϕ-module over k, equipped with commuting left actions of κ× and Γ ×G. Then we endow

L(ΣU , V ) with

• the obvious commuting left actions of TU and Γ×G
• a left action of κ× defined by

u : L(ΣU , V )→ L(ΣU , V )

f 7→ (s 7→ uf(su)),

We also make L(ΣU , V ) into a filtered ϕ-module by giving it

• a filtration Fil1(L(ΣU , V )) = L(ΣU ,Fil1(V ))

• a σ-linear map ϕ given by (ϕf)(σ) = ϕ(f(σ))

Note that H1
dR(Dr

0

k/k) has the structures required of V in the above definition.

Lemma 4.7. We have an isomorphism

H1
dR(Y (1)/k) ∼= L(ΣU , H

1
dR(Dr

0

k/k))

which respects all the structures in the above itemized list.

Proof. This follows from equation (2.19). �

Putting together lemma 4.5 and lemma 4.7, we obtain the following Proposition:

Proposition 4.8. We have isomorphisms of filtered ϕ-modules

H1
dR(Y k/k) ∼= L(ΣU , H

1
dR(Dr

0

k/k))κ
×

compatible with the TU and Γ×G actions.

We think of the right hand sides of the isomorphisms in this Proposition as spaces of mod p modular

forms for G, with coefficients in the filtered ϕ-module (with κ× action) H1
dR(Dr

0

k/k).

4.3. De Rham cohomology of the Drinfeld curve. Proposition 4.8 reduces the computation of the de

Rham cohomology of Y k to the computation of the cohomology of Dr
0

k, which is essentially done in [HJ90].

Throughout this subsection k will denote any finite extension of k0 containing a quadratic extension of k0.

To simplify notation we will denote the proper curve Dr
0

k by C and denote the affine curve Dr0
k by C.

Proposition 4.9. We have a decomposition

H1
dR(C/k) =

⊕
i∈Z/(q2−1)Z
i 6=0 mod q+1

H1
dR(C/k)(i),

where H1
dR(C/k)(i) is the direct summand on which Γ acts via the character ζ 7→ ζ−i. For every i there is

a short exact sequence

(4.1) 0 −−−−→ H0(C,Ω1
C/k

)(i) −−−−→ H1
dR(C/k)(i) −−−−→ H1(C,OC)(i) −−−−→ 0.
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If we write i = i0 + i1(q + 1), with 1 ≤ i0 ≤ q and 0 ≤ i1 ≤ q − 2 then we have isomorphisms of

k[G]-modules

H0(C,Ω1
C/k

)(i) ∼= ∇(λi1+1,i0+i1−1)⊗k0 k

H1(C,OC)(i) ∼= ∆(λi0+i1,i1+q−1)⊗k0 k,

where if λ is not a dominant weight we set ∇(λ) = ∆(λ) = 0. Note that the weights appearing in the

above are restricted. The extension in (4.1) is non-split (unless i0 = 1 or q, in which case one of the terms

in (4.1) is zero).

Proof. This is a mild generalisation of [HJ90, Proposition 2.8, Proposition 4.8]. It can be deduced directly

from loc. cit. by keeping track of connected components. Note also that the central characters of the G-

representations appearing in H1
dR(C/k)(i) are determined by the fact that the action of the centre of G is

inverse to the action of k×0 ⊂ µq−1(Γ) ⊂ Γ. Therefore the weights λa,b appearing in H1
dR(C/k)(i) satisfy

a+ b = i = i0 + 2i1 mod (q − 1). �

Corollary 4.10. For each i, the weights of H1
dR(C/k)(i) all appear with multiplicity one. They are

λa,b : 0 ≤ a, b ≤ q − 2, a+ b = i mod q − 1.

In fact, [HJ90, Proposition 4.7] allows us to determine the G-socle of H1
dR(C/k)(i). To state things

precisely, we need the following

Definition 4.11. Let λ = λa,b be a restricted weight. The weights of ∆(λ) are λa+c,b−c where c runs over

integers satisfying 0 ≤ c ≤ b − a. We define ∆(λ)1 to be 0 if b − a 6= −2 mod p, and otherwise to be

the direct summand of ∆(λ) (as a k0[T ]-module) given by taking the direct sum of the weight spaces for

λa+c,b−c where 0 ≤ c ≤ b− a and c = −1 mod p.

Remark. Note that the condition b− a = −2 mod p implies that the set of weights appearing in ∆(λ)1 is

closed under the action of the Weyl group (since b− a− c = −1 mod p).

Lemma 4.12. ∆(λ)1 is a G-stable submodule of ∆(λ).

Proof. This can be shown by an elementary calculation. It also follows from [HJ90, Proposition 4.8]. �

Lemma 4.13. Suppose µ = λa,b is a restricted weight such that L(µ) is an irreducible constituent of ∆(λ)1

for a restricted weight λ. Then b− a = 0 mod p.

Proof. Suppose L(µ) is an irreducible constituent of ∆(λ)1. It follows from the definition of ∆(λ)1 that

the weights of L(µ) are a subset of

{λa+kp,b−kp : 0 ≤ k ≤ q − 1

p
}.

In particular, (b, a) = (a+kp, b−kp) (an equality in (Z/(q−1)Z)2) for some k, but since 0 ≤ kp < q−1

we have b− a = kp in Z. So b− a = 0 mod p, as required. �
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Definition 4.14. We use the notation of Proposition 4.9. Let i ∈ Z/(q2 − 1)Z, i 6= 0 mod q + 1 and let

a = i0 + i1, b = i1 + q − 1. We set H1
dR(C/k)(i)1 to be 0 if i0 6= 1 mod p, and otherwise to be the

direct summand of H1
dR(C/k)(i) (as a k[T ]-module) given by taking the direct sum of the weight spaces

for λa+c,b−c where 0 ≤ c ≤ b− a and c = −1 mod p.

It is immediate from the above definition that the image of H1
dR(C/k)(i)1 in H1(C,OC)(i) is G-stable,

and isomorphic to ∆(λa,b)1 ⊗k0 k.

Proposition 4.15. The k[T ]-module H1
dR(C/k)(i)1 is a G-stable subspace of H1

dR(C/k)(i). If i0 ≥ 2, it

is the maximal G-stable subspace of H1
dR(C/k)(i) which injects into H1(C,OC)(i).

Proof. This follows from [HJ90, Proposition 4.7], in particular the displayed equations 4), 5), 6) of that

Proposition, which explicitly describe the action of SL2(k0) × µq+1(Γ) on the de Rham cohomology of a

connected component of C. �

Remark. Note that if q = p, we have H1
dR(C/k)(i)1 = 0 for all i.

Putting everything together, we obtain the key result of this section:

Corollary 4.16. If i0 ≥ 2 then we have

socGH
1
dR(C/k)(i) = [L(λi1+1,i0+i1−1)⊕ socG∆(λi0+i1,i1+q−1)1]⊗k0 k.

In particular, if i0 ≥ 2 and ∆(λi0+i1,i1+q−1)1 = 0, then

socGH
1
dR(C/k)(i) = L(λi1+1,i0+i1−1)⊗k0 k.

If i0 = 1 then we have

socGH
1
dR(C/k)(i) = socG∆(λi0+i1,i1+q−1)⊗k0 k.

5. BREUIL–KISIN MODULES

We assume from now on that p > 2. For brevity, we will refer to Breuil–Kisin modules as Kisin modules

for the rest of this section.

5.1. Kisin modules with coefficients and tame descent data. In this section we let K be any finite ex-

tension of Qp, with ring of integers OK , and fix a uniformiser $. We write k for the residue field. Denote

the ramification index of K by e. Denote [k : Fp] by d. Let E be a finite field and denote [E : Fp] by

dE . We write S1 for the ring k[[u]]. Since S1 is an Fp-algebra we have a p-power ring homomorphism

σ : S1 → S1. For an S1-module M we write σ∗M for the S1-module S1 ⊗σ M .

Definition 5.1. A Kisin module over K is a free S1-module M , equipped with a S1-linear map ϕ :

σ∗M → M which satisfies ueM ⊂ Im (ϕ). Define morphisms between Kisin modules over K to be

S1-module morphisms respecting ϕ. We denote the resulting category by ModK .
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Write GrK for the category of finite flat group schemes over OK which are killed by p. It follows from

results of Breuil and Kisin (see [Kis09, Theorem 1.1.3, Proposition 1.1.11]) that there is an anti-equivalence

of categories Gr : ModK → GrK given by first forming the Breuil module S1 ⊗σ M and then taking the

corresponding finite flat group scheme. For G ∈ GrK we let Mod(G) denote a quasi-inverse of G with

respect to Gr.

Our discussion of coefficients and descent data will be entirely parallel to the exposition of [Sav08] in

the setting of Breuil modules.

Fix an algebraic closure K of K, together with a choice of compatible p-power roots $1/pn ∈ K.

Let K∞ = ∪n≥1K($1/pn) and write GK∞ = Gal(K/K∞). Denote by RepE(GK∞) the category of

continuous representations ofGK∞ on finite-dimensionalE-vector spaces. Denote byϕModK the category

of finite-dimensional k((u))-vector spaces V equipped with a bijective σ-linear map ϕ. As discussed in

[Kis09, 1.1.12] there is an equivalence of categories

T : ϕModK → RepFp(GK∞).

More explicitly, the functor T is given by sending M ∈ ϕModK to [M ⊗k((u)) kÊur ]
ϕ=1, where kÊur is

a separable closure of k((u)) with an action of GK∞ inducing the action of GK∞ on T (M). In particular

the action satisfies the following: suppose v ∈ kÊur satisfies vr = us for coprime integers r, s with s > 0

and p - s. Then for g ∈ GK∞ we have gv = g$v
$v

v where $v ∈ OK is some element satisfying $r
v = $s.

If µr(k) ⊂ k then this determines gv uniquely. Note that the field kÊur comes equipped with a GK∞ -

equivariant embedding k ↪→ kÊur , where GK∞ acts on k via Gal(k/k).

If M ∈ ModK then M[ 1
u ] ∈ ϕModK , and it follows from [Kis09, Proposition 1.1.13] that there is a

canonical isomorphism of GK∞ -representations

T (M[
1

u
])
∼→ Gr(M)∨(OK)(−1)|GK∞ = Gr(M)(OK)∗|GK∞ ,

where ∨ denotes the Cartier dual, ∗ denotes the dual representation and (−1) denotes a Tate twist.

Definition 5.2. Denote by ModK(E) the category whose objects are Kisin modules M over K equipped

with an Fp-algebra map E → EndModK (M). The morphisms are given by morphisms in ModK compati-

ble with the E action.

The functor Gr induces an anti-equivalence of categories between ModK(E) and the category GrK(E)

of finite flat E-module schemes over OK . We refer to the objects of ModK(E) as Kisin modules over

K with coefficients in E. The E action on M gives it the structure of a finite free module over SE :=

E ⊗Fp S1. We set rk(M) = rkSE (M).

We assume from now on that k embeds in E. We fix such an embedding

σ0 : k ↪→ E.

For i ∈ Z/dZ we recursively define σi+1 = σi ◦σ. The embeddings σi run over the d different embeddings

k ↪→ E. We have a decomposition E ⊗Fp k =
∏
iE ⊗σi,k k so for M ∈ ModK(E) we get a similar

decomposition M = ⊕i∈Z/dZMi where Mi is a finite free E[[u]] ∼= E ⊗σi,k S1-module and ϕ restricts to
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maps ϕi : Mi →Mi−1 for each i. Mi is the piece of M where the action of 1⊗ x ∈ E ⊗Fp k is the same

as the action of σi(x)⊗ 1. We again denote by σi the E-linear extension of σi to a map E ⊗Fp k → E.

Now we discuss tame descent data. Let K/L be a tamely ramified Galois extension, with ramification

degree e(K/L), residue field kL and Galois group Gal(K/L). We assume that the fixed uniformiser $ of

K satisfies $e(K/L) ∈ L, and denote by L∞ the field ∪n≥0L($e(K/L)/pn). Note that K∞/L∞ is a finite

Galois extension with Galois group canonically isomorphic to Gal(K/L). The group Gal(K/L) acts on

E ⊗Fp k via the trivial action on the first factor and via Gal(k/kL) on the second factor. Denote by η the

character Gal(K/L) → O×K given by γ 7→ γ($)/$ and let η : Gal(K/L) → k× be the reduction of η

mod $.

The choice of uniformiser $ such that $e(K/L) ∈ L induces an identification of Gal(K/L) with

Gal
(
k((u))/kL((ue(K/L)))

)
. The choice of compatible p-power roots $e(K/L)/pn ∈ K allows us to

extend the natural action of GK∞ on kÊur to a natural action of GL∞ .

We set D = [kL : Fp]. For i ∈ Z/dZ denote by [i] ∈ Z/DZ the residue class of i mod D. We have

[i] = [j] if and only if σi|kL = σj |kL .

Definition 5.3. Denote by ModK(E,L) the category whose objects are Kisin modules M over K with

coefficients in E equipped with additive bijections [γ] : M→M for each γ ∈ Gal(K/L) satisfying

• [γ] commutes with ϕ for each γ ∈ Gal(K/L)

• [1] is the identity and [γγ′] = [γ] ◦ [γ′]

• [γ](auim) = γ(a) · (1⊗ η(γ)i) · ui · [γ](m) for a ∈ E ⊗Fp k and m ∈M.

Note that the latter condition implies that γ : Mi → Mγi, where σγi = σi ◦ γ−1. The embedding σγi
only depends on the image of γ in Gal(k/kL).

If M ∈ ModK(E,L) we obtain M[ 1
u ] ∈ ϕModK , equipped with an action of Gal(K/L) which is

semi-linear with respect to the action of Gal(K/L) on k((u)) via its identification with

Gal
(
k((u))/kL((ue(K/L)))

)
.

Galois descent gives us a ϕ-module ML over kL((ueK/L)), so we obtain a GL∞ action on

T (M[
1

u
]) = T (ML) = [ML ⊗kL((u

eK/L )) kÊur ]
ϕ=1.

Proposition 5.4. The functor Gr induces an anti-equivalence of categories

ModK(E,L)→ GrK(E,L)

where GrK(E,L) denotes the category of finite flat E-module schemes G over OK with descent data

relative to L (in the sense of [BCDT01, 4.1]). There is a canonical isomorphism

T (M[
1

u
])
∼→ Gr(M)∨(L)(−1)|GL∞ = Gr(M)(L)∗|GL∞ .

Proof. This can be deduced from [Sav08, Proposition 3.2] using the comparison between Breuil and Kisin

modules. Alternatively, observe that giving a tame descent datum on the generic fibre of the finite flat

group scheme is equivalent to giving a Galois descent datum to kL((ueK/L)) on M[ 1
u ] ∈ ϕModK . This is

equivalent to a semilinear action of Gal(K/L) on M[ 1
u ], as we have described — the relevant cocycle is
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given by γ 7→ [γ] − id. The property that the descent datum extends to isomorphisms of group schemes

[γ] : G ∼= γG is equivalent to the property that the [γ] give bijections on M. �

The following is obtained by translating [Sav08, Theorem 3.5] from Breuil modules to Kisin modules:

Theorem 5.5. Let M ∈ ModK(E,L). Then there exist integers 0 ≤ ri ≤ e, 0 ≤ ki < e(K/L) for each

i ∈ Z/DZ, satisfying pki = ri + ki−1 mod e(K/L), together with c ∈ (E ⊗Fp kL)× such that M has the

following form:

• Mi = S1 ·mi for i ∈ Z/dZ
• ϕ(σ∗mi) = σi−1(c)ur[i]mi−1

• [γ]mi = η(γ)k[i]mγi.

Suppose we have integers 0 ≤ ri ≤ e, 0 ≤ ki < e(K/L) for each i ∈ Z/DZ, satisfying si :=

ri−pki+ki−1 = 0 mod e(K/L), together with c ∈ (E⊗Fp kL)× and let M be the Kisin module described

in the above Proposition. We denote by m the generator (m0, ...,md−1) of M as an SE-module. Denote

the corresponding finite flat E-module scheme over OK by G. The descent datum gives us a finite flat

E-module scheme GL over L. Denote the unramified extension of K corresponding to σ0 : k ↪→ E by K1,

so the field K1 has residue field E. We will compute the representation ψ of IL given by GL(L). Since it is

a character ψ : IL → E×, it is necessarily finite and tamely ramified, so it is determined by its restriction

to IL∞ . So we just need to work with the Kisin module M⊗σ0,k E ∈ModK1
(E,L). For this reason, from

now on we may assume that k = E.

Lemma 5.6. Choose α ∈ (E ⊗Fp k)× such that [(1⊗ σ)(α)]c = α. We claim that such an α exists and is

unique up to scaling by ε ⊗ 1 for ε ∈ E×. Choose uD ∈ kÊur such that up
D−1
D = u. This is unique up to

scaling by an element of µpD−1(k) = E×L . Let x0 be the integer

x0 = −
D−1∑
i=0

si+1p
i = (pD − 1)k0 −

D−1∑
i=0

ri+1p
i

and recursively define xj−1 = (pD − 1)sj + pxj for j ∈ Z/DZ. The definition of x0 ensures that the

definition makes sense even for j = 1−D. Denote by β the element (u
x[i]

D u−k[i])i∈Z/dZ of (E⊗Fp kÊur )
×.

Then the one-dimensional E-vector space (M⊗S1
kÊur )

ϕ=1 is spanned by αβm.

Proof. It follows from the definitions (by an elementary computation) that αβm lies in (M⊗S1 kÊur )
ϕ=1.

The only thing we need to justify is the existence of α. The map α 7→ α
(1⊗σ)α comes from a morphism of

connected smooth reductive group schemes

ResEFpGm → ResEFpGm

x 7→ x

Fx

where F denotes absolute Frobenius. It suffices to show that this map is an epimorphism, but this follows

from the fact that it is an isomorphism on the d-dimensional formal group. The kernel is the constant group

scheme E×, which gives the claim about uniqueness. �
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Corollary 5.7. Choose $D ∈ K such that $pD−1
D = $. Then the character ψ : IL → E× is given by

ψ(g) =
$x0

D

g$x0

D

.

Note that the right hand side of this expression is independent of the choice of $D, since GL acts trivially

on µpD−1(k) = k×L .

Proof. Let g ∈ IL∞ . Proposition 5.4 tells us that g(αβm) = (ψ−1(g)⊗ 1)(αβm). We have

g(αβm) = αg(βm)

since g is in the inertia subgroup. Since βm =
∑
i u

x[i]

D u−k[i]mi, we have

g(βm) =
∑
i

g$
x[i]

D

$
x[i]

D

u
x[i]

D u−k[i]mgi

so, since [g0] = [0], the m0 component of g(αβm) is

g$
x[0]

D

$
x[0]

D

u
x[0]

D u−k[0]α0m0.

On the other hand, the m0 component of (ψ−1(g)⊗ 1)(αβm) is

ψ−1(g)u
x[0]

D u−k[0]σ0(α)m0.

Equating these, we get the desired statement. �

The above results can also be deduced from [Sav08].

5.2. Kisin modules and crystalline cohomology.

Definition 5.8. Suppose M ∈ ModK . Then we denote by MdR the k-vector space σ∗M/u(σ∗M). If

M ∈ModK(E), then MdR is a free k ⊗Fp E-module. If M ∈ModK(E,L) then MdR is a free k ⊗Fp E-

module equipped with a semi-linear action of Gal(K/L) (the semi-linearity comes from the action of

Gal(k/kL) on k).

Definition 5.9. Let Gk be a finite flat group scheme over Spec(k). Denote by D(Gk) the classical con-

travariant Dieudonné module of Gk. We define the crystalline Dieudonné module D∗(Gk) of Gk to be the

Frobenius twist k ⊗σ,k D(Gk). Our terminology is justified by [BBM82, 4.2.14].

Remark. If Gk = Ak[p] for an Abelian varietyA/ Spec(k) then there is a canonical isomorphism D∗(Gk) =

H1
cris(Ak/k) sending F to ϕ, by [BBM82, 2.5].

Proposition 5.10. Suppose M ∈ModK . Recall that we have contravariantly associated to M a finite flat

group scheme Gr(M) over OK . Then there is a canonical isomorphism

MdR = D∗(Gr(M)k)

which sends 1⊗ ϕ to F .

Proof. This is [BCDT01, Theorem 5.1.3, Part 3] together with the relationship between the Breuil module

and the Kisin module attached to a finite flat group scheme killed by p ([Kis09, Proposition 1.1.11]). �



30 JAMES NEWTON AND TERUYOSHI YOSHIDA

5.3. Kisin modules with G-action.

Definition 5.11. For a finite group H , we denote by ModHK(E,L) the category whose objects are objects

of M ∈ ModK(E,L) equipped with a homomorphism H → Aut(M). The morphisms are given by

morphisms in ModK(E,L) which are compatible with the H-action.

We will find the following elementary lemma useful:

Lemma 5.12. Let M be a free E[[u]]-module of finite rank. Suppose M has a E[[u]]-linear action of the

torus T ⊂ G. Then

M =
⊕
λ

M [λ]

where λ runs over weights of T and M [λ] denotes the subspace of M on which T acts via the character

σ0 ◦ λ.

Remark. Note that the direct summands M [λ] are again free E[[u]] modules, since E[[u]] is a PID.

Proof. It is enough to show that the action of a generator ξ of the finite group k×0 onM can be diagonalised.

We have a E[[u]]-linear map [ξ] : M →M , which satisfies [ξ]q−1 = id. For each i = 0, ..., q− 2 we define

a linear map ei : M →M by

ei :=

j=q−2∏
j=0
j 6=i

([ξ]− ξj).

Then [ξ] restricted to eiM is multiplication by the scalar ξi. We have
q−2⊕
i=0

eiM = M

since if m ∈M we observe that the polynomial identity
q−2∑
i=0

q−2∏
j=0
j 6=i

(X − ξj) = (q − 1)xq−1

entails
1

q − 1

q−2∑
i=0

eim = m.

�

Now we suppose k is an extension of k0, that k embeds into E via a fixed embedding σ0, and that kL
contains k0. Suppose M ∈ ModTK(E,L). Then lemma 5.12 gives weight space decompositions Mi =⊕

λMi[λ], where the sum is over weights λ of T . Restricting to these weight spaces the descent datum

gives maps [γ] : Mi[λ] → Mγi[λ] (since k0 ⊂ kL the weights are preserved by the action of Gal(K/L)).

The map ϕ restricts to maps ϕi : Mi[λ]→Mi−1[λ].

Definition 5.13. Let λ : T → k×0 be a weight. Then for M ∈ModTK(E,L) we define M[λ] to be⊕
i

Mi[λ].
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The weight space M[λ] is the piece of M on which T acts via σ0 ◦ λ.

Lemma 5.14. With the structures induced from M, M[λ] ∈ ModTK(E,L) and we have a direct sum

decomposition in ModTK(E,L):

M =
⊕
λ

M[λ].

Proof. This follows from lemma 5.12. �

Proposition 5.15. Let M ∈ ModGK(E,L) and suppose we have a GL∞ × G-equivariant isomorphism

T (M[ 1
u ]) ∼= ρ ⊗E π, where ρ and π are representations of GL∞ and G on E-vector spaces and ρ is

one-dimensional. Moreover, assume π = L(µ) ⊗k0,σ0 E for some restricted weight µ = λa,b. Then the

non-zero weight spaces M[λ] are isomorphic to each other in ModK(E,L) and for i ∈ Z/dZ we have

(MdR)i ∼= L(µ)⊗k0,σ0
E as an E[G]-module.

Proof. First we show that (MdR)i ∼= L(µ) ⊗k0,σ0 E as an E[G]-module. Let k be a finite extension of

k((u)) inside kÊur such that

T (M[
1

u
]) = (M[

1

u
]⊗k((u)) k)ϕ=1.

Observing that we are free to prove the Proposition after extending the coefficient field E, we may assume

that the residue field of k, which we denote kk, embeds in E. Note that k is a kk-algebra, since it is an

equicharacteristic local field. We have a canonical isomorphism

T (M[
1

u
])⊗Fp k ∼= M[

1

u
]⊗k((u)) k

of free E ⊗Fp k-modules with G-action. Since

E ⊗Fp k =
∏

τ :kk↪→E

k⊗kk,τ E

(note this is a direct product of local fields) we obtain isomorphisms

k⊗kk,τ T (M[
1

u
]) ∼= (M[

1

u
]⊗k((u)) k)τ

where on the right hand side we take the direct summand corresponding to the factor kτ,E := k ⊗kk,τ E
of E ⊗Fp k. Denote the ring of integers of k by o. The ring of integers in kτ,E is then given by oτ,E :=

o ⊗kk,τ E. The residue field of kτ,E can be naturally identified with E. We define two oτ,E-lattices

L1,L2 ⊂ (M[ 1
u ]⊗k((u)) k)τ by taking L1 = (M⊗S1 o)τ , L2 = o⊗kk,τ T (M[ 1

u ]). Our desired statement

follows if we can prove that the reductions of each of these lattices are isomorphic as E[G]-modules. But

this is immediate from the Brauer–Nesbitt Theorem, since π is irreducible.

Now we can deduce that the non-zero weight spaces M[λ] are isomorphic to each other in ModK(E,L).

We construct isomorphisms in ModK(E,L) between M[µ] and each M[λ] for the other weights λ (recall

µ is the highest weight of L(µ)). Observe that M[λ] ∈ModK(E,L) has rank one. Fix a generator mµ of

this free rank one SE-module. For some xµ ∈ (E ⊗Fp kÊur )
× we have

xµmµ ∈ T (M[µ][
1

u
]) = T (M[

1

u
])[µ].

Write eλ for an element of the group algebra E[G] which sends a basis for the highest weight space of L(µ)

to a basis for the λ-weight space (we can assume that the coefficients of eλ actually lie in k0 ⊂ E).
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Therefore, possibly after rescaling xλ by an element of E×, we have eλ(xµmµ) = xλmλ. We deduce

that eλ(mµ) = (xλ/xµ)mλ ∈M, so xλ/xµ ∈ SE (and it is a unit in E ⊗Fp k((u))).

Moreover, eλ ∈ k0[G] takes the basis vector (1 ⊗m)i of (MdR[µ])i to a basis vector of (MdR[λ])i, so

we see that xλ/xµ has u-adic valuation 0 for each λ. Therefore we have xλ/xµ ∈ (SE)×. So eλ gives an

isomorphism M[µ] ∼= M[λ] in ModK(E,L), since it is an isomorphism of SE-modules, commuting with

all the other structures. �

6. APPLICATIONS TO REGULAR SERRE WEIGHTS

We again return to the setting of Section 2. We fix uniformisers $0 ∈ K0 and $ ∈ K satisfying

$q2−1 = −$0. We work with the theory of Kisin modules with respect to the uniformiser $ of K — note

that this means we are implicitly working with the uniformiser−$0 of K0 when we discuss Kisin modules

with descent data to K0.

Definition 6.1. Suppose L is a subextension of K/K0 with residue field containing a quadratic extension

of k0. Define the fundamental character of niveau 2f to be

ω2f : Gal(K/L)→ µq2−1(k) ⊂ k×L
γ 7→ γ($)/$ mod $

Similarly, we define a fundamental character of niveau f

ωf : Gal(K/K0)→ µq−1(k) ⊂ k×0
γ 7→ γ($1+q)/$1+q mod $

and the mod p cyclotomic character

ω1 : Gal(K/Qp)→ µp−1(k) = F×p

γ 7→ γ(1− ζp)/(1− ζp) mod $.

Note that if f = 1 and $0 = p our definitions of ωf and ω1 coincide, and we have ωf = ω1+q
2f .

6.1. Finite flat group schemes and Jacobians of semistable curves. Let L/K0 be a finite extension,

with L ⊂ K ′0 and recall the semistable model X̃/OK for X(p)/K0. Denote the semi-Abelian scheme

Pic0(X̃/OK) byA0 (it is the connected component of the identity in the Néron model ofA := Pic0(X(p)K)

over OK) and let G be the quasi-finite separated flat group scheme over OK given by the p-torsion A0[p].

We denote by Gt ⊂ Gf ⊂ G the toric and finite parts of G. They are finite flat group schemes overOK , with

descent data relative to K0, since A0
K descends to K0 (the Néron model, together with the toric and finite

parts, are all canonical, so are preserved by the descent datum on the generic fibre).

The Grothendieck orthogonality Theorem [Gro72, Exp. IX, Proposition 5.6] tells us that the Weil pairing

(composed with the principal polarisation in one of the factors)

A[p]×A[p]→ µp
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makes the generic fibres Gt,K and Gf,K exact annihilators. We have a canonical isomorphism of GK0 -

modules (using the descent datum to give the action of GK0
on the left hand side)

GK(K)∗ = H1
et(X(p)K0

,Z/pZ).

Let E be a finite extension of Fp and suppose we have a E[GL]-submodule V of H1
et(X(p)K0

, E).

Since we have GK(K) = H1
et(X(p)K0

,Z/pZ)(1) we have V (1) ⊂ (GK ⊗E)(K). Write HV for the finite

flat E-submodule scheme, with descent datum to L, of GK ⊗ E with HV (K) = V (1) which we obtain

from this embedding. If HV ⊂ Gf,K ⊗ E we say that HV is finite.

IfHV is finite, we denote the Zariski closure ofHV in Gf⊗E byHV . It is a finite flatE-module scheme

over OK , with descent datum to L.

Denote by Aabk the maximal Abelian quotient of A0
k. We have a short exact sequence in the Abelian

category of fppf sheaves of Abelian groups over Spec(k).

0→ T → A0
k → Aabk → 0.

Applying the snake lemma to the diagram made up of two copies of this short exact sequence with multi-

plication by p maps between them we get a short exact sequence

0→ Gt,k → Gk → Aabk [p]→ 0.

Lemma 6.2. Suppose HV is finite. We have

HV,k ×Gk⊗E Gt,k ⊗ E = 0

if and only if

HV,K ×Gf,K⊗E Gt,K ⊗ E = 0.

If these equivalent conditions hold, then there is a natural embedding of crystalline Dieudonné modules

with coefficients in E

D∗(H∨V,k) ↪→ D∗(Aabk [p])⊗Fp E.

Proof. The equivalence of the two conditions follows from the fact that passing to the closed fibre gives an

equivalence of categories between multiplicative finite flat E-module schemes over OK and multiplicative

finite flat E-module schemes over k. Moreover, the finite flat E-module schemeHV ×Gf⊗E Gt⊗E is zero

if and only if its generic fibre is zero.

Now the condition

HV,k ×Gk⊗E Gt,k ⊗ E = 0

implies thatHV,k ⊂ Aabk [p]⊗ E, so dually we have a surjection Aabk [p]⊗ E → H∨V,k (we use auto-duality

of the Jacobian Aabk ). This gives the desired result. �

We finish this section by recalling the description of T andAabk in terms of the curve X̃k. Denote by ג the

dual graph of X̃k and recall that the normalisation of X̃k is Y k
∐
Zk. We haveAabk = Pic0(Y k)×Pic0(Zk)

and T = H1(ג,Z)⊗Z Gm.

Lemma 6.3. There is a natural identification D∗(Gt,k) = k ⊗σ,k H1(ג, k).
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Proof. Since Gt,k = H1(ג,Fp)⊗Fp µp we have D(Gt,k) = H1(ג,Fp)⊗Fp k = H1(ג, k) (with F acting as

1⊗ σ). The lemma follows from the definition of D∗. �

Definition 6.4. We say that a k[G]-module is Steinberg if every irreducible constituent is isomorphic to

L(λa,a+q−1)⊗k0 k for some a ∈ Z.

Remark. Being Steinberg is invariant under twisting by σ.

The following lemma is well-known in the l-adic case. In our setting it follows from the same explicit

computation of the cohomology of the dual graph ,ג which we describe below.

Lemma 6.5. The k[G]-module D∗(Gt,k) is Steinberg.

Proof. This follows from describing the action of G on H1(ג, k), since we can apply lemma 6.3. Recall

that the connected components of Zk are indexed by pairs (ξ, P ) with ξ ∈ k×0 and P ∈ P1(k0). The

connected components of Y k are indexed by pairs (ξ, x) with ξ ∈ k×0 and x ∈ Xss(k). For each ξ the

irreducible components of X̃k corresponding to (ξ, P ) and (ξ, x) intersect (for all P and x), and these are

the only intersections. We have ג =
∐
ξ ,ξג where ξג denotes the dual graph of the connected component of

X̃k corresponding to ξ. Fix an orientation of these dual graph by making the components labelled by (ξ, P )

the target and those labelled by (ξ, x) the source. Write Mξ for the vector space of k-valued functions on

the set of vertices of .ξג Write Nξ for the vector space of k-valued functions on the set of edges of ,ξג and

write dξ for the map Mξ → Nξ satisfying dξf(e) = f(s(e)) − f(t(e)), where s(e) and t(e) denote the

source and target of an edge e. Then H1(גξ, k) =
⊕

ξ∈k×0
Coker (dξ). It is sufficient to show that every

irreducible constituent of the k[SL2(k0)]-module Coker (dξ) is isomorphic to L(λ0,q−1)|SL2(k0) ⊗k0 k.

We have an SL2(k0)-equivariant isomorphism

Nξ = ⊕x∈Xss(k)k
P1(k0)

where the action of SL2(k0) is given by its action on kP
1(k0). The map is given by sending a function f to

(P 7→ f(ex,P ))x where ex,P denotes the edge joining (ξ, x) and (ξ, P ). We also have Mξ = kP
1(k0) ⊕

kXss(k). The image of kXss(k) in Nξ is given by ⊕x∈Xss(k)k · 1 ⊂ ⊕x∈Xss(k)k
P1(k0), where 1 ∈ kP1(k0)

denotes the constant function on P1(k0) with value 1. On the other hand, the image of f ∈ kP1(k0) in Nξ is

given by (f)x. So we see that we have an SL2(k0)-equivariant isomorphism

Coker (dξ) ∼= Coker

L(λ0,q−1)⊗k0 k
diag−→

⊕
x∈Xss(k)

L(λ0,q−1)⊗k0 k

 .

�

Corollary 6.6. The k0[G] representation Gt,K(K)⊗Fp k0 is Steinberg. If V ⊂ H1
et(X(p)K0

, E) contains

no irreducible G-constituent isomorphic to L(λa,a+q−1)⊗k0 k for any a ∈ Z then HV is finite and there is

a G, ϕ and Gal(K/K ′0)-equivariant embedding

Mod(H∨V )dR ↪→ [H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗k E.
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Proof. The first part of the Corollary follows from the proof of lemma 6.5 and fact that the étale finite flat

group scheme G∨t over OK satisfies G∨t (K) = G∨t (k) = H1(ג,Fp)∗.

It follows from the Grothendieck orthogonality theorem that the k0[G] representation

(GK(K)/Gf,K(K))⊗Fp k0

is Steinberg. Therefore the map

HV (K)→ (GK(K)/Gf,K(K))⊗Fp E

is the zero map, and HV ⊂ Gf,K ⊗ E.

Finally, we apply lemma 6.2 to conclude. �

6.2. Serre weights: supersingular case. In this section L will be the unramified quadratic extension of

K0 inside K. The coefficient field E is, as usual, assumed to be an extension of k. We fix an embedding

σ0 : k ↪→ E. We have e(K/L) = q2−1. Note that Gal(K/K ′0) = Γ is the inertia subgroup of Gal(K/K ′0),

and is therefore canonically isomorphic to the inertia subgroup of Gal(K/L). We therefore regard Γ as a

subgroup of Gal(K/L). We denote e(K0/Qp) by e0 and e(K/Qp) by e. We have e = (q2 − 1)e0.

Definition 6.7. Let µ = λa,b be a restricted weight. Write b − a = y =
∑f−1
i=0 yip

i with 0 ≤ yi < p. If

f > 1, we say that µ is weakly regular if y 6= q − 1 and yi 6= 0 for every 0 ≤ i ≤ f − 1. If f = 1, we say

that µ is weakly regular if 0 ≤ y ≤ p− 3.

With notation as in the above definition, write y[i] for the integer
∑f−1
j=0 yj−ip

j where we interpret yj as

yf+j when j < 0. We have an isomorphism of G-representations

L(λa,b)
(i) ∼= L(λapi,api+y[i]).

If µ = λa,b we write µ[i] for the restricted weight λapi,api+y[i]. Note that µ[i] is weakly regular if and only

if µ is weakly regular.

Lemma 6.8. Suppose µ = λa,b is weakly regular, with y = b− a.

Then any vector in the image of a map L(µ)⊗k0 k → H1
dR(Y k/k) lies in Fil1(H1

dR(Y k/k)) and has Γ

acting via the character ζ 7→ ζ−(y+2+(q+1)(a−1)).

Similarly, any vector in the image of a map L(µ) ⊗k0 k → H1
dR(Zk/k) has Γ acting via the character

ζ 7→ ζ−(q+1)a.

Proof. By Proposition 4.8, it suffices to prove the first part of the lemma with H1
dR(Y k/k) replaced by

H1
dR(C/k). Since y 6= 0 mod p, L(µ) does not appear as a constituent of ∆(λ)1 for any restricted weight λ,

by lemma 4.13. Also, by lemma 3.10L(µ) is not isomorphic to socG(∆(λ)) for λ = λa,b with b−a = q−2.

Now corollary 4.16 implies that the vector in question lies in Fil1(H1
dR(C/k))(i), with

L(µ) = L(λi1+1,i0+i1−1).

So we have y = i0 − 2 and a = 1 + i1 mod (q − 1), which gives the desired answer for the action of Γ.

The second part of the lemma follows from Propositions 4.4 and 3.9. �
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We will also need the following stronger regularity condition:

Definition 6.9. We say that a restricted weight µ = λa,b is strongly e0-regular if y = b− a =
∑f−1
i=0 yip

i

satisfies e0 ≤ yi ≤ p− 1− e0 for every i.

Note that if e0 > p−1
2 then there are no strongly e0-regular weights. If µ is strongly e0-regular, it is

weakly regular. When e0 = 1 the strongly e0-regular condition is a little less restrictive than the ‘regular’

condition appearing in [Gee11] (this corresponds to 1 ≤ yi ≤ p − 3 for all i). On the other hand, the

strongly regular condition is more restrictive than the conditions appearing in [Sch08a] (which correspond

to yi ≤ p− 1− e0 for all i).

Proposition 6.10. Suppose M ∈ ModK(E,L) and that we have a GL∞ × G-equivariant isomorphism

T (M[ 1
u ]) ∼= ρ ⊗E π, where ρ and π are representations of GL∞ and G on E-vector spaces, ρ is one-

dimensional and π = L(µ) ⊗k0,σ0
E for some weakly regular restricted weight µ = λa,b. We write

y = b− a =
∑f−1
i=0 yip

i with 0 ≤ yi < p.

Moreover, suppose we have a E ⊗Fp k-module embedding

MdR ↪→ E ⊗Fp [H1
dR(Y k/k)⊕H1

dR(Zk/k)]

which isG-equivariant and Gal(K/K ′0) = Γ-equivariant — the action of Γ on MdR comes from restricting

the descent datum action of Gal(K/L).

Then the integers 0 ≤ ki < e(K/L) = q2 − 1 for each i ∈ Z/2fZ attached to the rank one module

M[µ] by Theorem 5.5 satisfy

• if k[i] = 0 mod q + 1 then k[i] = −(q + 1)apf−i mod q2 − 1

• if k[i] 6= 0 mod q + 1 then k[i] = p−1(y[1 − i] + 2 + (q + 1)(q − 2 − apf+1−i − y[1 − i])) mod

q2 − 1.

Definition 6.11. If k[i] = 0 mod q + 1 we say that i − 1 is an Igusa index. If k[i] 6= 0 mod q + 1 we say

that i− 1 is a Drinfeld index.

Proof. For i ∈ Z/dZ denote by vi the image of 1 ⊗ mi in M[µ]dR. Since mi ∈ Mi we have vi ∈
M[µ]dR,i−1. It follows from Proposition 5.15 that vi has image a highest weight vector in an E[G]-

submodule of

[H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗k,σi−1
E

which is isomorphic to

L(µ)⊗k0,σ0 E = L(µ)(f+1−i) ⊗k0,σi−1 E.

If k[i] = 0 mod q + 1 then vi has image in

[H1
dR(Zk/k)]⊗k,σi−1

E

and i− 1 is an Igusa index. If k[i] 6= 0 mod q + 1 then vi has image in

[H1
dR(Y k/k)]⊗k,σi−1

E
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and i − 1 is a Drinfeld index. Suppose i − 1 is an Igusa index. By lemma 6.8 the Γ action on vi is given

by the character η−(q+1)apf+1−i
. So we conclude that k[i] = −(q + 1)apf−i mod q2 − 1 (we divide by p

because the Γ-action on 1⊗mi is the σ-twist of the Γ action on mi).

Similarly, suppose i − 1 is a Drinfeld index. Then by lemma 6.8 the Γ action on vi is given by the

character η−(y[1−i]+2+(q+1)(apf+1−i−1)). So we conclude that

k[i] = p−1(q − 1− y[1− i])− (q + 1)(apf−i) mod q2 − 1.

�

We now consider M as in the statement of Proposition 6.10, and denote the set of Drinfeld indices by J .

For simplicity, we assume a = 0. We have a congruence ri+1 = pki+1 − ki mod q2 − 1 for every i, and

we have defined si+1 = ri+1 − (pki+1 − ki), where we assume 0 ≤ ki < q2 − 1 for every i. We want to

compute pki+1− ki in the four different cases depending on the type of the indices (i− 1, i). If i ∈ J then,

mod q2 − 1, we have

ki+1 = p−1(q − 1− y[−i]) = p−1

f−1∑
j=0

(p− 1− yj+i)pj =

f−2∑
j=0

(p− 1− yj+i+1)pj + (p− 1− yi)p2f−1,

whilst if i /∈ J we have ki+1 = 0.

We therefore compute that

• If neither of i− 1, i are in J , then ri+1 = si+1 = (q2 − 1)δi for some δi satisfying 0 ≤ δi ≤ e0.

• If (i− 1, i) are both in J then

pki+1 − ki = (p− 1− yi)(q2 − 1)− (p− 1− yi−1)(p2f−1 − pf−1).

Therefore, if yi−1 < p− 1 we get

ri+1 = (q2 − 1)δi − (p− 1− yi−1)(p2f−1 − pf−1)

and

si+1 = −(p− 1− yi)(q2 − 1) + (q2 − 1)δi

for some δi satisfying 1 ≤ δi ≤ e0.

• If (i−1, i) are both in J and yi−1 = p−1 then pki+1−ki = (p−1−yi)(q2−1), ri+1 = (q2−1)δi

for some δi satisfying 0 ≤ δi ≤ e0, and si+1 = −(p−1−yi)(q2−1) + (q2−1)δi. In fact, δi 6= 0,

since ri+1 = 0 contradicts the fact that our vectors lie in Fil1 (by lemma 6.8). So we obtain exactly

the same result as in the previous item.

• If i ∈ J and i− 1 /∈ J then

pki+1 − ki =

f−2∑
j=0

(p− 1− yj+i+1)pj+1 + (p− 1− yi)q2

and we conclude that

ri+1 =

f−1∑
j=0

(p− 1− yj+i)pj + (q2 − 1)δi

for some δi satisfying 0 ≤ δi ≤ e0 − 1, and si+1 = −(p− 1− yi)(q2 − 1) + (q2 − 1)δi.
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• if i /∈ J and i− 1 ∈ J then

pki+1 − ki = −
f−2∑
j=0

(p− 1− yj+i+1)pj − (p− 1− yi)p2f−1

and we conclude that

ri+1 = −
f−2∑
j=0

(p− 1− yj+i+1)pj − (p− 1− yi)p2f−1 + (q2 − 1)δi

for some δi satisfying 1 ≤ δi ≤ e0 (we use the fact that not every yi is equal to p − 1), and

si+1 = (q2 − 1)δi.

Definition 6.12. For a subset J ⊂ Z/2fZ, and a set of integers (δi)i∈Z/2fZ, we say that (δi) is allowable

for J if all the following conditions are verified

• 0 ≤ δi ≤ e0 for every i

• if i− 1 ∈ J , i /∈ J then δi ≥ 1

• if i ∈ J , i− 1 /∈ J then δi ≤ e0 − 1.

We say that (J, (δi)) is a pre-Serre datum if (δi) is allowable for J , J bijects with Z/fZ on reduction

mod f and δi + δi+f = e0 for all i. We say that a pre-Serre datum (J, (δi)) is a Serre datum if δi ≥ 1

whenever i− 1 ∈ J (equivalently, if δi ≤ e0 − 1 whenever i− 1 /∈ J).

Given a set J , (δi) allowable for J , and a restricted weight µ = µa,b with b − a =
∑f−1
i=0 yip

i, we say

that a character ψ of IK0 is attached to (J, (δi), µ) if

ψ = ω−af

∏
i∈J

(ωp
i

2f )p−1−yi−δi
∏
i/∈J

(ωp
i

2f )−δi .

The following lemma follows from the computations preceding the above definition (keeping track of a

also).

Lemma 6.13. Let M be as in the statement of Proposition 6.10, and denote the set of Drinfeld indices

by J . Then there is a set of integers δi attached such that (δi) is allowable for J and ρ|IL is attached to

(J, (δi), µ).

Proof. Everything follows from the preceding computations and Corollary 5.7 (we just discuss the case

a = 0 for simplicity). We only need to observe that

(q2 − 1)−1x0 = −(q2 − 1)−1

2f−1∑
i=0

si+1p
i =

∑
i∈J

(p− 1− yi − δi)pi +
∑
i/∈J

(−δipi).

�

The definitions of pre-Serre and Serre data are explained by the following lemma:

Lemma 6.14. Suppose that (J, (δi)) is a pre-Serre datum, µ = λa,b is a restricted weight and the character

ψ of IK0
is attached to (J, (δi), µ).
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Then J bijects with Z/fZ when we reduce its elements mod f , and there exist integers−1 ≤ εi ≤ e0−1

for i ∈ Z/2fZ, which depend only on i mod f , such that

ψ = ω−af

∏
i∈J

(ωp
i

2f )−(1+yi+εi)
∏
i/∈J

(ωp
i

2f )−(e0−1−εi).

The integers εi are ≥ 0 unless i and i− 1 are both in J or both in the complement of J .

Moreover, if (J, (δi)) is a Serre datum, the εi are all ≥ 0.

Proof. We set εi = δi − 1 if both i − 1, i are in J and εi = δi if i ∈ J , i − 1 /∈ J . The requirement that

εi = εi+f then determines the εi with i 6 inJ . The lemma then follows from the definitions. �

We will use the following easy lemma a few times in some calculations:

Lemma 6.15. Let D be a positive integer and suppose that for i = 0, ..., D − 1 we have integers αi with

|αi| ≤ p− 1 such that
∑D−1
i=0 αip

i = 0 mod pD − 1. Then one of the following statements holds:

(1) αi = 0 for all i

(2) αi = p− 1 for all i

(3) αi = −(p− 1) for all i.

Proof. Write Σ for the sum
∑D−1
i=0 αip

i. We have |Σ| ≤
∑D−1
i=0 |αi|pi with equality if and only if the αi all

have the same sign (we regard 0 as positive and negative). We also have
∑D−1
i=0 |αi|pi ≤

∑D−1
i=0 (p−1)pi =

pD − 1. Since |Σ| is a multiple of pD − 1 we therefore have Σ = 0 or we are in cases (2) or (3).

So we assume Σ = 0. Suppose some αi is non-zero. Let I be the largest i such that αi is non-zero.

Then αIpI = αIp
I − Σ = −

∑I−1
i=0 αip

i, and the modulus of the right hand side satisfies |
∑I−1
i=0 αip

i| ≤∑I−1
i=0 (p− 1)pi = pI − 1 < |αIpI |. This is a contradiction, so every αi is zero. �

The next Proposition gives a combinatorial argument, similar to [GS11b, Proposition 4.13], to produce

a pre-Serre datum from the allowable set (δi) provided by lemma 6.13.

Proposition 6.16. Suppose M is as in the statement of Proposition 6.10. Moreover suppose that the inertial

character ρρq|IL is given by ω−a−bf ω−e01 , that e0 < p − 1, and that ρ|IL is not a power of ωf . Then there

exists a pre-Serre datum (J̃ , (δ̃i)) such that ρ|IL is attached to (J̃ , (δ̃i), µ).

Proof. We first claim that it is enough to find an allowable (J̃ , (δ̃i)) such that ρ|IL is attached to (J̃ , (δ̃i), µ)

and J̃ bijects with Z/fZ. We must show that in this situation the condition that δ̃i + δ̃i+f = e0 is automat-

ically satisfied. The condition on ρρq implies that

ω−2a
f

f−1∏
i=0

(ωp
i

f )p−1−yi−δ̃i−δ̃i+f = ω−a−bf ω−e01

where the left hand side is equal to ω−a−bf

∏f−1
i=0 (ωp

i

f )−δ̃i−δ̃i+f . Therefore we have

f−1∏
i=0

(ωp
i

f )e0−(δ̃i+δ̃i+f ) = 1.
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Now e0 − (δ̃i + δ̃i+f ) ∈ [−e0, e0] and e0 < p− 1, so lemma 6.15 implies that δ̃i + δ̃i+f = e0 for all i.

This justifies the claim.

Now we turn to the rest of the Proposition. Lemma 6.13 provides us with an allowable J, (δi) with

attached character ρ|IL . Suppose that J does not already biject with Z/fZ. It suffices to produce an

allowable J̃ , (δ̃i), with the same attached inertial character, such that J̃ has more pairs (i, i+ f) satisfying

i ∈ J̃ if and only if i+f /∈ J̃ than J does (repeating this step finishes the proof). Let S be the set of indices

i such that 0 ≤ i ≤ f − 1, i ∈ J and i+ f ∈ J , and let T be the set of indices i such that 0 ≤ i ≤ f − 1,

i /∈ J and i+ f /∈ J .

The condition on ρρq is equivalent to

f−1∏
i=0

(ωp
i

f )δi+δi+f
∏
i∈S

(ωp
i

f )yi+1−p
∏
i∈T

(ωp
i

f )p−1−yi =

f−1∏
i=0

(ωp
i

f )e0

which we rewrite as
f−1∏
i=0

(ωp
i

f )δi+δi+f−e0+ci = 1,

where ci = yi + 1− p if i ∈ S and ci = p− 1− yi if i ∈ T (it is zero otherwise).

Each exponent in this product lies in the interval [−e0 − p + 1, e0 + p − 1] ⊂ [3 − 2p, 2p − 3] since

e0 < p− 1. If follows, as in the proof of [GS11b, Proposition 4.13], that there are integers ai ∈ {−1, 0, 1}
for i ∈ [0, f − 1] such that

δi + δi+f − e0 + ci = −ai + pai+1

for each i (we always interpret the subscript of an ai modulo f ).

First we suppose that N := S
∐
T 6= [0, f − 1]. Then we have an interval I = [j′, j] ⊂ N with

j′ − 1, j + 1 /∈ N , where again the index set is interpreted modulo f . We permit the case j′ − 1 = j + 1.

Then we define a set J̃ by removing every element of I ∩J from J and then adding every element of I ∩Jc

(Jc denotes the complement of J in [0, 2f − 1]). In other words, we switch the type of all the indexes in I .

We define new integers δ̃i as follows

• If i ∈ (j′, j] set δ̃i = δi + ci + ai − pai+1.

• Set δ̃j′ = δj′ + cj′ − paj′+1.

• Set δ̃j+1 = δj+1 + aj+1.

• For all other i ∈ {0, ..., 2f − 1} set δ̃i = δi.

It is easy to check that J̃ , (δ̃i) has the same attached inertial character as J, (δi). It remains to check that

it is allowable. For i ∈ (j′, j] we have δ̃i + δi+f = e0, so the conditions imposed on δi+f by Definition

6.12 imply that δ̃i satisfies the same conditions (with respect to J̃). It remains to check that the conditions

are verified at j′ and j + 1. Note that we have cj′−1 = cj+1 = 0. So δi + δi+f − e0 = −ai + pai+1 for

i = j′ − 1, j + 1. The left hand side of this equality lies in the interval [−e0, e0] ⊂ [2 − p, p − 2], which

forces the right hand side to be equal to zero or ±1 and so we have aj′ = aj+2 = 0. Now

δ̃j′ = δj′ + cj′ − paj′+1 = e0 − δj′+f
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and it is easy to check that δ̃j′ will satisfy the desired conditions. Finally, we also have δ̃j+1 = δj+1 +

aj+1 = e0 − δj+1+f , and again we satisfy the desired conditions.

Now we just need to deal with the case where N = [0, f − 1]. Since ρ|IL is not a power of ωf , we must

have δj 6= δj+f for some j. It can be easily verified that one of the following two constructions gives the

desired allowable J̃ , (δ̃i)

• We define J̃ by switching the type of the indexes j, ..., j+ f − 1, and set δ̃i = δi + ci + ai− pai+1

for i in (j, j + f − 1], δ̃j = δj + cj − paj and δ̃j+f = δj+f + aj .

• We define J̃ by switching the type of the indexes j+f, ..., j+2f−1, and set δ̃i = δi+ci+ai−pai+1

for i in (j + f, j + 2f − 1], δ̃j+f = δj+f + cj+f − paj and δ̃j+f = δj+f + aj .

The point is that if both of these constructions fail to be allowable, we can deduce that δj = δj+f . �

Corollary 6.17. Let L be the unramified quadratic extension of K0 inside K. Let µ = λa,b be a weakly

regular restricted weight. Write b− a = y =
∑f−1
i=0 yip

i.

Suppose r is an absolutely irreducible two dimensional representation of GF with coefficients in a fi-

nite extension E of Fp, with k ⊂ E, such that r appears as an E[GF ]-submodule of HomG(L(µ) ⊗k0
E,H1

et(X(p)F , E)).

Suppose that r|GK0
is absolutely irreducible. Then there exists a pre-Serre datum (J, (δi)) such that

r|GL = ρ⊕ ρq where ρ|IK0
is attached to (J, (δi), µ).

Proof. We have r|GL = ρ ⊕ ρq for some E-valued character ρ of niveau 2f . Our assumptions imply that

we have an injective E[GK0
×G]-module map

f : r ⊗k0 L(µ) ↪→ H1
et(X(p)K0

,Z/pZ)⊗ E.

Set V = Im (f |ρ⊗k0L(µ)). Then Corollary 6.6 gives us a finite flat E-module over OK , with G-action and

descent datum to L, denoted HV , such that if we set M = Mod(H∨V ), then M satisfies the hypotheses of

Proposition 6.16 (using [BDJ10, Corollary 2.11 (1)] and [Sch08a, Lemma 3.1] for the condition on ρρq).

In particular, sinceHV (OK)(−1) = V , we have T (M[ 1
u ]) = V ∼= ρ⊗E (L(µ)⊗k0 E).

We may assume e0 < p − 1, since, as observed by Schein [Sch08a], the statement is vacuous for

e0 ≥ p− 1. We now conclude using Proposition 6.16. �

Remark. To recover Theorem 1.1 (i), we apply the above corollary together with lemma 6.14.

Under the strong e0-regularity assumption we can avoid the use of Proposition 6.16 and strengthen

the above corollary. The proof is completely elementary given the definition of strongly e0-regular, our

description ofH1
dR(Y k/k)⊕H1

dR(Zk/k) and the classification of rank one Kisin modules with coefficients

and descent datum (Theorem 5.5).

Theorem 6.18. We put ourselves in the situation of Proposition 6.10, and make the following additional

assumptions:

• µ is strongly e0-regular

• the inertial character χ0(ρρq)|IL is given by ω−a−bf ω−e01
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• ρ|IL is not a power of ωf .

Let J ⊂ Z/2fZ be the set of Drinfeld indices. Then there exist integers (δi)i∈Z/2fZ such that (J, (δi)) is a

Serre datum and ρ|IL is attached to (J, (δi), µ).

Proof. Since there are no strongly e0-regular weights when e0 >
p−1

2 we assume that e0 ≤ p−1
2 . We follow

the proof of Proposition 6.16, but we will not have to change the allowable J, (δi) given to us by lemma

6.13. As a consequence, we can make use of the fact that if i− 1, i are both in J we have 1 ≤ δi ≤ e0. As

before, we obtain ai ∈ {−1, 0, 1} for i ∈ [0, f − 1] such that

(6.1) δi + δi+f − e0 + ci = −ai + pai+1

for each i. We again denote by S the elements of [0, f − 1] such that i and i+ f are in J , denote by T the

elements such that i and i+ f are not in J , and denote by N the union S
∐
T .

The strongly e0-regular hypothesis implies that ci ∈ [e0, p−1−e0] if i ∈ T , ci ∈ [e0 +1−p,−e0] if i ∈
S. We have ci = 0 otherwise. So the left hand side of the equality (6.1) is in the intervals [0, p−1], [1−p, 0],

[−e0, e0] for (respectively) i in T , i in S and i in neither. Applying lemma 6.15 to αi = −ai+pai+1 shows

that the ai are all equal. If they are all 1 or all−1, we have T = [0, f−1] and S = [0, f−1] respectively. If

S = [0, f−1] then J = Z/2fZ, so δi+δi+f ≥ 2 for every i and we cannot have δi+δi+f−e0+ci = 1−p,

which is a contradiction. If T = [0, f − 1] then for every i ∈ Z/2fZ, i is an Igusa index, yi = e0 and

δi = e0. This implies that ρ|IL is a power of ωf , contradicting our assumptions. So we conclude that ai = 0

for every i. This forces δi = δi+f = 0 for i ∈ T and δi = δi+f = e0 for i ∈ S. Since J, (δi) is allowable,

this implies that if T is non-empty then T = [0, f − 1], and similarly if S is non-empty then S = [0, f − 1].

We deduce that both S and T are empty, otherwise ρ|IL is a power of ωf .

We have now shown the i /∈ J if and only if i + f ∈ J (i.e. i is an Igusa index if and only if i + f is a

Drinfeld index), and hence that δi+δi+f = e0 (by the argument at the beginning of the proof of Proposition

6.16). This suffices to deduce the Theorem. �

Corollary 6.19. Let L be the unramified quadratic extension of K0 inside K. Let µ = λa,b be a strongly

e0-regular weight. Write b− a = y =
∑f−1
i=0 yip

i.

Suppose r is an absolutely irreducible two dimensional representation of GF with coefficients in a fi-

nite extension E of Fp, with k ⊂ E, such that r appears as an E[GF ]-submodule of HomG(L(µ) ⊗k0
E,H1

et(X(p)F , E)).

Suppose that r|GK0
is absolutely irreducible. Then there exists a subset J ⊂ Z/2fZ, which bijects with

Z/fZ when we reduce its elements mod f , together with integers 0 ≤ εi ≤ e0 − 1 for i ∈ Z/2fZ, which

depend only on i mod f , such that r|GL = ρ⊕ ρq where ρ satisfies

ρ|IK0
= ω−af

∏
i∈J

(ωp
i

2f )−(1+yi+εi)
∏
i/∈J

(ωp
i

2f )−(e0−1−εi).

Proof. The proof is as for Corollary 6.17, replacing Proposition 6.16 with Theorem 6.18. �

6.3. Serre weights: ordinary case. We can also deduce results about Serre weights in the ordinary case.

In fact, the proofs are almost identical to the supersingular case — this is a result of us working with
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‘induced’ and ‘cuspidal’ parts of cohomology simultaneously. The fact that the local Galois representation

may be non-split introduces a couple of extra steps in the arguments.

Suppose M ∈ModK(E,K0) and that we have a GL∞ ×G-equivariant isomorphism T (M[ 1
u ]) ∼= ρ⊗E

π, where ρ and π are representations of GK0,∞ and G on E-vector spaces, ρ is two-dimensional reducible

and π = L(µ)⊗k0E for some weakly regular restricted weight µ = λa,b. We write y = b−a =
∑f−1
i=0 yip

i

with 0 ≤ yi < p. If ρ′ ⊂ ρ with quotient ρ′′ then we get a corresponding sub k((u))-vector space

of M[ 1
u ] and define M′ to be the intersection of M with this subspace in M[ 1

u ]. This gives a subobject

in ModK(E,K0), and it is saturated as a S1-submodule of M. We have T (M′[ 1
u ]) ∼= ρ′ ⊗E π. The

quotient M′′ := M/M′ is again an object of ModK(E,K0), and T (M′′[ 1
u ]) ∼= ρ′′ ⊗E π. Note that these

constructions have well-known analogues for the corresponding finite flat group schemes (taking the Zariski

closure of a sub-group scheme of GK inside G).

Proposition 6.20. Suppose we have a k ⊗Fp E-module embedding

MdR ↪→ [H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗Fp E

which is G-equivariant and Γ-equivariant — the action of Γ on MdR comes from restricting the descent

datum action of Gal(K/K0).

Then the integers 0 ≤ ki < e(K/K0) = q2 − 1 for each i ∈ Z/fZ attached to the rank one module

M′[µ] by Theorem 5.5 satisfy

• if k[i] = 0 mod q + 1 then k[i] = −(q + 1)apf−i mod q2 − 1

• if k[i] 6= 0 mod q + 1 then k[i] = p−1(q − 1− y[1− i])− (q + 1)(apf−i) mod q2 − 1

and the same for M′′[µ].

Proof. For M′ this immediate from Proposition 6.10. Now we have a k ⊗Fp E-module embedding

M′′dR ↪→ [H1
dR(Y k/k)⊕H1

dR(Zk/k)]⊗Fp E/M
′
dR

which is G-equivariant and Γ-equivariant. It follows from lemma 3.3 that the argument of lemma 6.8 still

applies, since when we quotient out by (M′dR)i we do not see any new copies of L(µ)⊗k0,σ0
E in the socle

of (
[H1

dR(Y k/k)⊕H1
dR(Zk/k)]⊗Fp E/M

′
dR

)
i
.

We conclude that we have the same description of the possible k[i]’s for M′′. �

Definition 6.21. For a subset J ⊂ Z/fZ, and a set of integers (δi)i∈Z/fZ, we say that (δi) is allowable for

J if all the following conditions are verified

• 0 ≤ δi ≤ e0 for every i

• if i− 1 ∈ J , i /∈ J then δi ≥ 1

• if i ∈ J , i− 1 /∈ J then δi ≤ e0 − 1.

Given two sets J ′, J ′′ ⊂ Z/fZ, and sets of integers (δ′i)i∈Z/fZ, (δ
′′
i )i∈Z/fZ which are allowable by J ′

and J ′′ respectively, we say that (J ′, J ′′, (δ′i), (δ
′′
i ) is an ordinary pre-Serre datum if J ′′ is the complement
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of J ′ and δ′i + δ′′i = e0 for all i. Note that an ordinary pre-Serre datum is determined by either of the

allowable pairs J ′, (δ′i) or J ′′, (δ′′i ).

We say that an ordinary pre-Serre datum (J ′, J ′′, (δ′i), (δ
′′
i ) is an ordinary Serre datum if δ′i ≥ 1 for all i

such that i − 1 ∈ J ′ and δ′i ≤ e0 − 1 for all i such that i − 1 /∈ J ′ (this is equivalent to the corresponding

condition on the (δ′′i )).

Given a set J , (δi) allowable for J , and a restricted weight µ = λa,b with b − a =
∑f−1
i=0 yip

i, we say

that a character ψ of IK0 is attached to (J, (δi), µ) if

ψ = ω−af

∏
i∈J

(ωp
i

f )p−1−yi−δi
∏
i/∈J

(ωp
i

f )−δi .

As in the supersingular case, we obtain some allowable sets J, (δi) whenever we are in the setting of

Proposition 6.20.

Lemma 6.22. Let M be as in the statement of Proposition 6.20, denote the set of Drinfeld indices for M′ by

J ′ and the set of Drinfeld indices for M′′ by J ′′. Then there are sets of integers (δ′i), (δ′′i ) such that J ′, (δ′i)

and J ′′, (δ′′i ) are allowable, ρ′|IK0
is attached to (J ′, (δ′i), µ) and ρ′′|IK0

is attached to (J ′′, (δ′′i ), µ).

We obtain the following analogue of Proposition 6.16:

Proposition 6.23. Suppose M is as in the statement of Proposition 6.20. Moreover suppose that the inertial

character ρ′ρ′′|IK0
is given by ω−a−bf ω−e01 , and that e0 < p− 1,

Then there exists an ordinary pre-Serre datum J̃ ′, J̃ ′′, δ̃′i, δ̃
′′
i such that ρ′|IK0

is attached to (J̃ ′, (δ′i), µ)

and ρ′′|IK0
is attached to (J̃ ′′, (δ′′i ), µ).

Proof. The proof is a simple modification of the proof of Proposition 6.16. The proof that we can ignore

the requirement that δ̃′i + δ̃′′i = e0 is essentially identical to the first part of the proof of Proposition 6.16.

Lemma 6.22 provides us with two allowable sets J ′, δ′i and J ′′, δ′′i with attached inertial characters ρ′|IK0

and ρ′′|IK0
. Let S be the set of indices i ∈ Z/fZ such that i ∈ J ′ and i ∈ J ′′, and let T be the set of

indices i such that i /∈ J ′ and i /∈ J ′′. When N := S
∐
T 6= Z/fZ we proceed exactly as in the proof of

Proposition 6.16 and construct the desired set J̃ ′ and integers δ̃′i, δ̃
′′
i .

When N = Z/fZ, the proof is simpler in the ordinary case. We just define J̃ ′ = Z/fZ\J ′, and set

δ̃′i = δ′i + ci + ai − pai+1 for i in Z/fZ (here the integers ci and ai are defined exactly as in the proof of

Proposition 6.16 — in particular, we could just have written δ̃′i = e0 − δ′′i ). �

Corollary 6.24. Let µ = λa,b be a weakly regular restricted weight. Write b− a = y =
∑f−1
i=0 yip

i.

Suppose r is an absolutely irreducible representation of GF with coefficients in a finite extension E of

Fp, with k ⊂ E, such that r appears as an E[GF ]-submodule of

HomG(L(µ)⊗k0 E,H1
et(X(p)F , E)).

Suppose that r|GK0
is reducible. Then there exists a subset J ′ ⊂ Z/fZ together with integers δ′i for

i ∈ Z/fZ, such that we have an ordinary pre-Serre datum (J ′, J ′′, δ′i, δ
′′
i ) (here J ′′ is necessarily the
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complement of J ′ and δ′′i = e0 − δ′i) and r|GK0
=

(
ρ′ ∗
0 ρ′′

)
where ρ′|IK0

is attached to (J ′, (δ′i), µ) and

ρ′′|IK0
is attached to (J ′′, (δ′′i ), µ).

Proof. The assumptions of the corollary imply that we have an injective E[GK0 ×G]-module map

f : r ⊗k0 L(µ) ↪→ H1
et(X(p)K0

,Z/pZ)⊗ E.

Set V = Im (f). Then Corollary 6.6 gives us a finite flat E-module over OK , with G-action and descent

datum toK0, denotedHV , such that if we set M = Mod(H∨V ), then M satisfies the hypotheses of Theorem

6.25 (we are again using [BDJ10, Corollary 2.11 (1)] and its generalisation to the ramified case, which is

proved in the same way as [Sch08a, Lemma 3.1]). In particular, since HV (OK)(−1) = V , we have

T (M[ 1
u ]) = V ∼= r ⊗k0 L(µ).

We may assume e0 < p − 1, since, as observed by Schein [Sch08a], the statement is vacuous for

e0 ≥ p− 1. We now conclude using Proposition 6.23. �

Remark. To recover the statement of theorem 1.1 (ii) we just apply lemma 6.14.

Theorem 6.25. Suppose we are in the situation of Proposition 6.20 and make the following additional

assumptions:

• µ is strongly e0-regular

• if y = (e0)
∑f−1
i=0 p

i then we do not have ρ′|IK0
= ρ′′|IK0

= ω−bf

• if y = (p− 1− e0)
∑f−1
i=0 p

i then we do not have ρ′|IK0
= ρ′′|IK0

= ω−af

• the inertial character ρ′ρ′′|IK0
is given by ω−a−bf ω−eo1 .

Let J ′ ⊂ Z/fZ be the Drinfeld indices for M′ and let J ′′ ⊂ Z/fZ be the Drinfeld indices for M′′. Then

there exist sets of integers (δ′i)i∈Z/fZ, (δ
′′
i )i∈Z/fZ such that (J ′, J ′′, (δ′i), (δ

′′
i )) is an ordinary Serre datum,

ρ′|IK0
is attached to (J ′, (δ′i), µ) and ρ′′|IK0

is attached to (J ′′, (δ′′i ), µ).

Proof. We proceed exactly as in theorem 6.18. Again we assume e0 ≤ p−1
2 . Lemma 6.22 provides us

with allowable sets J ′, (δ′i), J ′′, (δ′′i ). As in the supersingular case, under the strong regularity hypothesis

(together with the additional hypotheses of this theorem), we will not have to modify these sets to obtain the

conclusion of Proposition 6.23. As in the proof of theorem 6.18, we obtain ai ∈ {−1, 0, 1} for i ∈ Z/fZ
such that

(6.2) δ′i + δ′′i − e0 + ci = −ai + pai+1

for each i. Set S = J ′ ∩ J ′′ and set T = (Z/fZ\J ′) ∩ (Z/fZ\J ′′). Denote by N the union S
∐
T .

The strongly e0-regular hypothesis implies that ci ∈ [e0, p− 1− e0] if i ∈ T , ci ∈ [e0 + 1− p,−e0] if

i ∈ S. We have ci = 0 otherwise. So the left hand side of the equality (6.2) is in the intervals [0, p − 1],

[1− p, 0], [−e0, e0] for (respectively) i in T , i in S and i in neither. Therefore lemma 6.15 implies that the

ai are all equal. If they are all 1 or all −1, we have T = Z/fZ and S = Z/fZ respectively.

If S = Z/fZ then J ′ = J ′′ = Z/fZ, so δ′i+δ
′′
i ≥ 2 for every i and we cannot have δi+δi+f−e0 +ci =

1− p, which is a contradiction. If T = Z/fZ then for every i ∈ Z/fZ, i is an Igusa index for M′ and M′′,
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yi = e0 and δ′i = δ′′i = e0. This implies that ρ′|IK0
= ρ′′|IK0

= ω−bf , so we again have a contradiction.

So we conclude that ai = 0 for every i. This forces δ′i = δ′′i = 0 and yi = p − 1 − e0 for i ∈ T and

δ′i = δ′′i = e0 and yi = p− 1− e0 for i ∈ S. Since J, (δi) is allowable, this implies that if T is non-empty

then T = Z/fZ (hence ρ′|IK0
= ρ′′|IK0

= ω−af ), and similarly if S is non-empty then S = Z/fZ (hence

ρ′|IK0
= ρ′′|IK0

= ω−af ). We therefore contradict our assumptions unless N is empty.

We have now shown that i ∈ J ′ if and only if i /∈ J ′′, and hence that δ′i + δ′′i = e0 (by the argument at

the beginning of the proof of Proposition 6.16). This suffices to deduce the Theorem. �

Corollary 6.26. Assume the following

• µ = λa,b is a strongly e0-regular restricted weight

• if y = b− a = (e0)
∑f−1
i=0 p

i then we do not have ρ′|IK0
= ρ′′|IK0

= ω−bf

• if y = b− a = (p− 1− e0)
∑f−1
i=0 p

i then we do not have ρ′|IK0
= ρ′′|IK0

= ω−af

Suppose r is an absolutely irreducible representation of GF with coefficients in a finite extension E of Fp,

with k ⊂ E, such that r appears as an E[GF ]-submodule of

HomG(L(µ)⊗k0 E,H1
et(X(p)F , E)).

Suppose that r|GK0
is reducible. Then there exists a subset J ⊂ Z/fZ together with integers 0 ≤ εi ≤

e0 − 1 for i ∈ Z/fZ , such that r|GK0
=

(
ρ′ ∗
0 ρ′′

)
where

ρ′|IK0
= ω−af

∏
i∈J

(ωp
i

f )−(1+yi+εi)
∏
i/∈J

(ωp
i

f )−(e0−1−εi)

and

ρ′′|IK0
= ω−af

∏
i/∈J

(ωp
i

f )−(1+yi+εi)
∏
i∈J

(ωp
i

f )−(e0−1−εi).

Proof. The proof is as for Corollary 6.24, replacing Proposition 6.23 with Theorem 6.25. We set εi = δ̃′i−1

if both i− 1, i are in J , εi = δ̃′′i − 1 if neither of i− 1, i are in J , εi = δ̃′i if i ∈ J , i− 1 /∈ J and εi = δ̃′′i if

i /∈ J , i− 1 ∈ J . �

7. SERRE WEIGHTS AND FINITE FLAT MODELS

We present the results on finite flat models for modular Galois representations which we can deduce

from the work of the previous section. For simplicity we assume that e0 = 1. We will need the following

definition:

Definition 7.1. Suppose M ∈ModK(E,L) and π is anE[G]-module. Then we define an object π⊗EM ∈
ModK(E,L) with G action, by letting the underlying SE-module be π⊗EM and defining ϕ to be id⊗ϕ.

The action of g ∈ G is given by g ⊗ id and the action of γ ∈ Gal(K/L) is given by id⊗ [γ].
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7.1. Finite flat models: supersingular case. We put ourselves in the setting of corollary 6.17, and assume

that e0 = 1. Therefore, we let µ = λa,b be a strongly 1-regular restricted weight — in other words,

b− a = y =
∑f−1
i=0 yip

i with 1 ≤ yi ≤ p− 2. Suppose r is an absolutely irreducible representation of GF
with coefficients in a finite extension E of Fp, with k ⊂ E, such that r appears as an E[GF ]-submodule of

HomG(L(µ)⊗k0 E,H1
et(X(p)F , E)).

Suppose that r|GK0
is absolutely irreducible. We have shown that there exists a subset J ⊂ Z/2fZ,

such that r|GL = ρ⊕ ρq where ρ satisfies

ρ|IK0
= ω−af

2f−1∏
i∈J

(ωp
i

2f )−(1+yi).

The assumptions of corollary 6.17 imply that we have an injective E[GK0
×G]-module map

f : r ⊗k0 L(µ) ↪→ H1
et(X(p)K0

,Z/pZ)⊗ E.

Set W = Im (f). Then Corollary 6.6 gives us a finite flat E-module over OK , with G-action and de-

scent datum to K0, denoted HW . We have a sub-module scheme (with descent datum to L) HV ⊂ HW
corresponding to ρ⊗k0L(µ) ⊂ r⊗k0L(µ). Similarly, we obtainHV ′ ⊂ HW corresponding to ρq⊗k0L(µ).

Set N = Mod(H∨W ), M = Mod(H∨V ) and M′ = Mod(H∨V ′). The proof of Theorem 6.18 determines

the invariants attached to the rank one Kisin modules M0 := M[µ],M′0 := M[µ] by Theorem 5.5. In

particular, i is an Igusa index for M0 if and only if it is a Drinfeld index for M′0.

Theorem 7.2. There is a G-equivariant isomorphism in ModK(E,L)

N ∼= (L(µ)⊗k0 E)⊗E M0 ⊕ (L(µ)⊗k0 E)⊗E M′0.

Proof. It follows from Proposition 5.15 that M ∼= (L(µ)⊗k0 E)⊗E M0 and M′ ∼= (L(µ)⊗k0 E)⊗E M′0

(each weight space is isomorphic as a Kisin module and the action of G is determined by its action on

M[ 1
u ] and M′[ 1

u ]). It remains to prove that we have an isomorphism N ∼= M ⊕M′. Since HV and HV ′
are both closed subschemes of HW , we have injective maps M ↪→ N and M′ ↪→M. So we obtain a map

M ⊕M′ → N which is an isomorphism when we invert u, since HV,K ⊕HV ′,K ∼= HW,K . So it suffices

to check that this map is injective when we reduce mod u, or equivalently that it induces an injective map

MdR ⊕M′dR → NdR. This follows from the fact that each map MdR ↪→ NdR, M′dR ↪→ NdR is injective

(since we have a closed immersion of finite flat group schemes over OK) and the fact that i is an Igusa

index for M if and only if it is a Drinfeld index for M′ (and vice versa), so the images of MdR and M′dR in

NdR have zero intersection. �

7.2. Finite flat models: ordinary case. We put ourselves in the setting of Corollary 6.24, and again as-

sume that e0 = 1. Therefore, we let µ = λa,b be a strongly 1-regular restricted weight. Write b− a = y =∑f−1
i=0 yip

i with 1 ≤ yi ≤ p− 2 and moreover suppose that y 6=
∑f−1
i=0 p

i and y 6= (p− 2)
∑f−1
i=0 p

i.

Suppose r is an absolutely irreducible representation of GF with coefficients in a finite extension E of

Fp, with k ⊂ E, such that r appears as an E[GF ]-submodule of

HomG(L(µ)⊗k0 E,H1
et(X(p)F , E)).
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Suppose that r|GK0
is reducible. We have shown that there exists a subset J ⊂ Z/fZ such that r|GK0

=(
ρ′ ∗
0 ρ′′

)
where

ρ′|IK0
= ω−af

∏
i∈J

(ωp
i

f )−(1+yi)

and

ρ′′|IK0
= ω−af

∏
i/∈J

(ωp
i

f )−(1+yi).

The assumption of the corollary implies that we have an injective E[GK0
×G]-module map

f : r ⊗k0 L(µ) ↪→ H1
et(X(p)K0

,Z/pZ)⊗ E.

Set V = Im (f). Then Corollary 6.6 gives us a finite flat E-module over OK , with G-action and descent

datum to K0, denoted HV . We have a sub-module scheme HV ′ ⊂ H′V corresponding to ρ′ ⊗k0 L(µ) ⊂
r ⊗k0 L(µ). We denote the quotient byHV ′′ — we haveHV ′′(K) = ρ′′ ⊗k0 L(µ).

Set M = Mod(H∨V ), M′ = Mod(H∨V ′) and M′′ = Mod(H∨V ′′). We have a short exact sequence

0→M′ →M→M′′ → 0

where the outer two terms satisfy the assumptions of Proposition 5.15. Set M′0 = M′[µ], M′′0 = M′′[µ]. In

the proof of Theorem 6.25 we completely determine the invariants associated to these rank one modules by

Theorem 5.5.

Proposition 7.3. There is a G-equivariant short exact sequence in ModK(E,K0)

0→ (L(µ)⊗k0 E)⊗E M′0 →M→ (L(µ)⊗k0 E)⊗E M′′0 → 0.

Proof. This follows from Proposition 5.15. �

REFERENCES

[AK70] Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146,

Springer-Verlag, Berlin, 1970.

[BBM82] Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathe-
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