Modular Forms: Example Sheet 1

Notation:

As in the lectures, \mathcal{H} denotes the complex upper half plane $\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$. We adopt the standard notational conventions that $q=e^{2 \pi i \tau}$ and that an element $\gamma \in \Gamma(1)$ is given by a $\operatorname{matrix}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

1. Show that for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$

$$
\operatorname{Im}\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{\operatorname{Im}(\tau)}{|c \tau+d|^{2}}
$$

Show that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

defines a group action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}.
2. This exercise gives an alternative derivation of the q-expansion for the Eisenstein series

$$
G_{k}(\tau)=\sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\(c, d) \neq(0,0)}} \frac{1}{(c \tau+d)^{k}} .
$$

(a) Show that $\pi \cot (\pi \tau)=\pi i-2 \pi i \sum_{m=0}^{\infty} q^{m}$ (where $q=e^{2 \pi i \tau}$)
(b) Using the identity ${ }^{1}$

$$
\pi \cot (\pi \tau)=\frac{1}{\tau}+\sum_{d=1}^{\infty}\left(\frac{1}{\tau-d}+\frac{1}{\tau+d}\right)
$$

show that for $k>2$ an even integer

$$
G_{k}(\tau)=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{k-1}(n)=\sum_{d \mid n, d>0} d^{k-1}$.
Hint: differentiate the two expressions for $\pi \cot (\pi \tau)$ given in parts a) and b).
3. Define the Bernoulli numbers B_{k} for $k \geq 0$ by

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
$$

(a) Show that

$$
\frac{t}{e^{t}-1}+\frac{t}{2}
$$

is an even function and conclude that $B_{1}=-1 / 2$ and $B_{k}=0$ for $k>1$ odd.
(b) Show that $B_{0}=1$ and $\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0$ for all $n>1$. Deduce that $B_{2}=1 / 6$, $B_{4}=-1 / 30$ and $B_{6}=1 / 42$.

[^0](c) Using the first identity from Q2 b), show that
$$
\pi \tau \cot (\pi \tau)=1-2 \sum_{k=1}^{\infty} \zeta(2 k) \tau^{2 k}
$$
(d) Show that
$$
\pi \tau \cot (\pi \tau)=\pi i \tau+\sum_{k=0}^{\infty} B_{k} \frac{(2 \pi i \tau)^{k}}{k!}
$$
and conclude that for even integers $k>0$
$$
2 \zeta(k)=-B_{k} \frac{(2 \pi i)^{k}}{k!} .
$$
4. Let D be a negative integer, congruent to 0 or $1 \bmod 4$. Consider binary quadratic forms $Q(x, y)=A x^{2}+B x y+C y^{2}$ with $A, B, C \in \mathbb{Z}$ and $B^{2}-4 A C=D$. Suppose that $A>0$ (i.e. the form is positive definite), and that $\operatorname{gcd}(A, B, C)=1$. Denote by \mathscr{S} the set of all such forms. The group $\Gamma(1)$ acts on \mathscr{S} by $Q \circ \gamma(x, y)=Q(a x+b y, c x+d y)$ (note that this is a right action). Denote by $h(D)$ the cardinality of the set of orbits $\mathscr{S} / \Gamma(1)$.
(a) For $Q(x, y) \in S$ denote by τ_{Q} the unique element of \mathcal{H} satisfying $Q\left(\tau_{Q}, 1\right)=0$. Show that τ_{Q} determines Q uniquely and that $\tau_{Q \circ \gamma}=\gamma^{-1} \tau_{Q}$.
(b) Denote by $\widetilde{\mathscr{F}}$ the subset of \mathcal{H} given by
$$
\{|\tau|>1,|\operatorname{Re}(\tau)|<1 / 2\} \cup\{|\tau| \geq 1, \operatorname{Re}(\tau)=-1 / 2\} \cup\{|\tau|=1,-1 / 2 \leq \operatorname{Re}(\tau) \leq 0\}
$$

We showed in lectures that $\widetilde{\mathscr{F}}$ contains a unique representative of every $\Gamma(1)$-orbit in \mathcal{H}. Deduce that every orbit in $\mathscr{S} / \Gamma(1)$ contains a unique reduced form $Q^{\text {red }}(x, y)=$ $A x^{2}+B x y+C y^{2}$ satisfying $-A<B \leq A<C$ or $0 \leq B \leq A=C$.
5. Let $\tau \in \widetilde{\mathscr{F}}$ (as defined in the previous question). Show that unless $\tau=i$ or $\tau=\omega=$ $-1 / 2+\frac{\sqrt{3}}{2} i$, the stabiliser of τ in $\Gamma(1)$ is the order two group $\{ \pm I\}$. What are the stabilisers of i and ω ?
Describe the stabiliser of a general element $\tau \in \mathcal{H}$.
6. Suppose we have a set of f_{1}, \ldots, f_{n} of weakly modular functions of level $\Gamma(1)$ with distinct weights k_{1}, \ldots, k_{n}. Show that $\left\{f_{1}, \ldots, f_{n}\right\}$ is a linearly independent subset of the vector space of meromorphic functions on \mathcal{H}.
7. We proved in lectures that the set $\left\{E_{4}^{a} E_{6}^{b}: a, b \geq 0,4 a+6 b=k\right\}$ is a basis for $M_{k}(\Gamma(1))$. Check that the cardinality of this basis is $\left\lfloor\frac{k}{12}\right\rfloor$ if $k=2 \bmod 12$ and $\left\lfloor\frac{k}{12}\right\rfloor+1$ otherwise.
8. Let k be an even integer. Show that $\operatorname{dim}_{\mathbb{C}} S_{k}(\Gamma(1))=\max \left\{0, \operatorname{dim}_{\mathbb{C}} M_{k}(\Gamma(1))-1\right\}$, and moreover that multiplication by $\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}$ gives an isomorphism from $M_{k}(\Gamma(1))$ to $S_{k+12}(\Gamma(1))$.
9. For even $k>2$ denote by $E_{k}(\tau)$ the normalised Eisenstein series $\frac{G_{k}(\tau)}{2 \zeta(k)}$. Show (using the dimension formula) that $E_{4}^{2}=E_{8}$ and deduce that

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{i=1}^{n-1} \sigma_{3}(i) \sigma_{3}(n-i)
$$

for $n \geq 1$.
10. Define $G_{2}(\tau)$ by the series

$$
G_{2}(\tau)=2 \zeta(2)+2(2 \pi i)^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n} .
$$

It's not hard to check that this series is absolutely and uniformly convergent on compact subsets of \mathcal{H}. We denote by $G_{2}^{*}(\tau)$ the continuous (but non-holomorphic) function $G_{2}(\tau)-$ $\frac{\pi}{\operatorname{Im}(\tau)}$. We will make use of the fact that $G_{2}^{*}(\gamma \tau)=(c \tau+d)^{2} G_{2}^{*}(\tau)$ in this exercise (the proof of this will appear in the lecture notes).
(a) Denote by $D(\tau)$ the function defined by the infinite product

$$
q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

It converges to a non-vanishing holomorphic function on \mathcal{H}. For $f(\tau)$ a non-zero holomorphic function on \mathcal{H}, we write $L(f(\tau))$ for $f^{\prime}(\tau) / f(\tau)$, the logarithmic derivative of f - it is equal to $\frac{d}{d \tau} \log f(\tau)$ and defined wherever f is non-vanishing. If f, g are two non-zero holomorphic functions on \mathcal{H} then $L(f(\tau))=L(g(\tau))$ if and only if $f=c g$ for some constant c.
Prove that

$$
\frac{L(D(\tau))}{2 \pi i}=\frac{G_{2}(\tau)}{2 \zeta(2)} .
$$

(b) Show that for $\gamma \in \Gamma(1)$

$$
L(D(\gamma \tau))=L\left((c \tau+d)^{12} D(\tau)\right)
$$

and deduce that for each $\gamma \in \Gamma(1)$ there is a non-zero constant $c(\gamma)$ with $D(\gamma \tau)=$ $c(\gamma)(c \tau+d){ }^{12} D(\tau)$.
(c) Show that the map $\gamma \mapsto c(\gamma)$ of the previous part is a group homomorphism from $\Gamma(1)$ to \mathbb{C}^{\times}. By considering $c(\gamma)$ for generators γ of $\Gamma(1)$, show that $c(\gamma)=1$ for all γ, and conclude that $D \in S_{12}(\Gamma(1))$.
(d) Deduce from the dimension formula that $\Delta(\tau)=D(\tau)$.
11. Define a sub \mathbb{Z}-module $M_{k}(\Gamma(1), \mathbb{Z})$ of $M_{k}(\Gamma(1))$ to consist of those modular forms whose q-expansions have integer coefficients. We write $S_{k}(\Gamma(1), \mathbb{Z})$ for the submodule of cusp forms. We have $\Delta \in S_{12}(\Gamma(1), \mathbb{Z}), E_{4} \in M_{4}(\Gamma(1), \mathbb{Z})$ and $E_{6} \in M_{4}(\Gamma(1), \mathbb{Z})$.
(a) Show that multiplication by Δ gives an isomorphism between $M_{k}(\Gamma(1), \mathbb{Z})$ and $S_{k+12}(\Gamma(1), \mathbb{Z})$.
(b) Show that $M_{k}(\Gamma(1), \mathbb{Z})$ is a free \mathbb{Z}-module of rank equal to the dimension of $M_{k}(\Gamma(1))$ and moreover a basis is given by:

- $\left\{E_{4}^{a} \Delta^{b}: a, b \geq 0,4 a+12 b=k\right\}$ if $k=0 \bmod 4$
- $\left\{E_{6} E_{4}^{a} \Delta^{b}: a, b \geq 0,6+4 a+12 b=k\right\}$ if $k=2 \bmod 4$

12. Let Γ be the group generated by the matrices

$$
\pm\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right)
$$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$.
(a) Suppose that $c \neq 0$. Show that there is an $n \in \mathbb{Z}$ with

$$
\gamma\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
$$

satisfying $\left|d_{1}\right|<\left|c_{1}\right| / 2$.
(b) Suppose that $d \neq 0$. Show that there is an $n \in \mathbb{Z}$ with

$$
\gamma\left(\begin{array}{cc}
1 & 0 \\
4 n & 1
\end{array}\right)=\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)
$$

satisfying $\left|c_{2}\right|<2\left|d_{2}\right|$.
(c) Show that $\Gamma=\Gamma_{0}(4)$. [Hint: Repeatedly apply parts a) and b) to elements of $\Gamma_{0}(4)$.]
13. This exercise shows that the reduction map $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is surjective.
(a) Let $a, b, c, d \in \mathbb{Z}$ with a non-zero and $a d-b c=1 \bmod N$ and consider the matrix

$$
\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

(the bars denote reduction $\bmod N$). Show that there is an integer b^{\prime}, congruent to b $\bmod N$, and coprime to a. [Hint: write $b^{\prime}=b+t N$ and use the Chinese remainder theorem to find t satisfying some equations modulo the prime divisors of a]
(b) Show that there are integers k, l such that

$$
\left(\begin{array}{ll}
a & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

with $c^{\prime}=c+k N$ and $d^{\prime}=d+l N$ and conclude that $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is surjective.
14. (a) Let p be prime and n a positive integer. Show that the finite group $\mathrm{SL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$ has cardinality

$$
p^{3 e}\left(1-1 / p^{2}\right)
$$

(b) Let N be a positive integer. Show that $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ has cardinality

$$
N^{3} \prod_{p \mid N}\left(1-1 / p^{2}\right)
$$

(c) Show that the map $\Gamma_{1}(N) \rightarrow \mathbb{Z} / N \mathbb{Z}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto b
$$

is surjective with kernel $\Gamma(N)$.
(d) Show that the map $\Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto d
$$

is surjective with kernel $\Gamma_{1}(N)$.
(e) Deduce that the index $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]$ is equal to

$$
N \prod_{p \mid N}(1+1 / p)
$$

Comments and corrections can be sent by email to jjmn2@cam.ac.uk. A number of the exercises are borrowed from Diamond and Shurman's textbook.

[^0]: ${ }^{1}$ If you like that sort of thing, prove this identity using Poisson summation

