Modular Forms: Example Sheet 2

1. Let

$$
R=\bigoplus_{n \geq 0} R_{n}
$$

be a positively graded integral domain. Denote the fraction field $\operatorname{Frac}(R)$ by K and denote the integral closure of R in K by \widetilde{R}.
For $n \in \mathbb{Z}$, denote by K_{n} the additive subgroup of K consisting of elements of the form $\frac{f}{g}$ with $f \in R_{m+n}$ and $g \in R_{m}$, with g non-zero and $m \in \mathbb{Z}_{\geq 0}$.
(a) Show that K_{0} is a field and that

$$
S:=\bigoplus_{n \in \mathbb{Z}} K_{n} \subset K
$$

is a graded K_{0}-algebra.
(b) Show that the set of $n \in \mathbb{Z}$ such that $K_{n} \neq 0$ is an additive subgroup of \mathbb{Z} (hence equal to $q \mathbb{Z}$ for some $q \geq 0$).
(c) Denote by t a non-zero element of K_{q}. Show that the map $X \mapsto t$ induces an isomorphism

$$
K_{0}\left[X, X^{-1}\right] \cong S
$$

In particular, S is integrally closed in its field of fractions.
(d) Show that \widetilde{R} is a graded subring of S, i.e. that

$$
\widetilde{R}=\bigoplus_{n \geq 0} \widetilde{R} \cap K_{n} .
$$

You may use the fact that if $R \subset S$ is a graded inclusion of graded rings then the integral closure of R in S is a graded subring of S.
(e) Finally, show that the graded ring of modular forms

$$
M(\Gamma)=\bigoplus_{k \geq 0} M_{k}(\Gamma)
$$

is integrally closed in its field of fractions.
2. Suppose a group G acts (by holomorphic automorphisms) on a Riemann surface $X \xrightarrow{1}$ Show that G acts properly if and only if the map

$$
\begin{aligned}
\pi: G \times X & \rightarrow X \times X \\
(g, x) & \mapsto(x, g x)
\end{aligned}
$$

is proper. We give G the discrete topology and the products $G \times X$ and $X \times X$ the product topology, and say that a continuous map between topological spaces is proper if the pre-image of every compact set is compact.
3. Let $(x: y)$ be a point of $\mathbb{P}^{1}(\mathbb{Q})$. We always assume that x and y are coprime integers.
(a) Show that $\Gamma(N)(x: y)=\Gamma(N)\left(x^{\prime}: y^{\prime}\right)$ if and only if $(x, y)= \pm\left(x^{\prime}, y^{\prime}\right) \bmod N$.
(b) Suppose $x, y \in \mathbb{Z}$ and denote their reductions $\bmod N$ by $\bar{x}, \bar{y} \in \mathbb{Z} / N \mathbb{Z}$. Show that the following are equivalent:

[^0]- \bar{x}, \bar{y} lift to coprime integers x^{\prime}, y^{\prime}
- $\operatorname{gcd}(x, y, N)=1$
- (\bar{x}, \bar{y}) has order N in the additive group $(\mathbb{Z} / N \mathbb{Z})^{2}$.
(c) Deduce that the number of cusps of level $\Gamma(N)$ is

$$
\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)
$$

for $N>2$ and 3 for $N=2$.
(d) Show that each of these cusps has width N.
4. Show that for $N>2$ the modular curve $Y(\Gamma(N))$ has no elliptic points (i.e. for every point τ of \mathcal{H} the stabiliser of τ in $\Gamma(N)$ is trivial or $\{ \pm I\})$. Deduce that the Riemann surfaces $X(\Gamma(N))$ have genus

$$
1+\frac{d_{N}(N-6)}{12 N}
$$

and that

$$
\operatorname{dim} M_{2 k}(\Gamma(N))=\frac{(2 k-1) d_{N}}{12}+\frac{d_{N}}{2 N}
$$

where

$$
d_{N}=\frac{1}{2} N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)
$$

for $N>2$ and $d_{2}=6$.
5. Let $N \in \mathbb{Z}_{\geq 1}$ and suppose $(\alpha, \beta) \in(\mathbb{Z} / N \mathbb{Z})^{2}$ has order N.

For integers $k \geq 3$ define

$$
G_{k}^{(\alpha, \beta)}(\tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\} \\(m, n)=(\alpha, \beta) \bmod N}} \frac{1}{(m \tau+n)^{k}}
$$

(a) Show that for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$

$$
\left.G_{k}^{(\alpha, \beta)}\right|_{\gamma, k}=G_{k}^{(\alpha, \beta) \gamma}
$$

where $(\alpha, \beta) \gamma$ is given by the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on row vectors.
Deduce that $G_{k}^{(\alpha, \beta)}(\tau)$ is a modular form of weight k and level $\Gamma(N)$, and moreover if $\alpha=0$, it is of level $\Gamma_{1}(N)$.
(b) Show that for $k \geq 3$ and $N>2$ the set $G_{k}^{(\alpha, \beta)}(\tau)$ gives a basis of the quotient vector space $M_{k}(\Gamma(N)) / S_{k}(\Gamma(N))$. You may assume that this space has dimension equal to the number of cusps of $X(\Gamma(N))$ for all $k \geq 3$. We proved this for even k in lectures.
6. Show that the genus of $X_{0}(p)$ is equal to $\left\lfloor\frac{p+1}{12}\right\rfloor-1$ if $p=1 \bmod 12$ and $\left\lfloor\frac{p+1}{12}\right\rfloor$ otherwise.
7. Let $f \in M_{k}(\Gamma(1))-\{0\}$. By considering the meromorphic differential $\omega(f)$ on $X(\Gamma(1))$, give a proof (different from the one given in lectures) that

$$
\operatorname{ord}_{\infty}(f)+\sum_{\Gamma(1) \tau \in \Gamma(1) \backslash \mathcal{H}} \frac{1}{n_{\tau}} \operatorname{ord}_{\tau}(f)=\frac{k}{12}
$$

8. Suppose $f: X \rightarrow Y$ is a holomorphic map of compact connected Riemann surfaces. For $y \in Y$, consider the divisor $[y] \in \operatorname{Div}(Y)$. Denote by $f^{*}[y]$ the divisor $\sum_{x \in f^{-1}(y)} e_{x}[x]$, where e_{x} is the ramification degree of the map f at x. We also denote by f^{*} the unique extension of f^{*} to a map of Abelian groups $\operatorname{Div}(Y) \rightarrow \operatorname{Div}(X)$. Let ω_{0} be a non-zero meromorphic differential of degree one on Y and show that

$$
\operatorname{div}\left(f^{*}\left(\omega_{0}\right)\right)=f^{*} \operatorname{div}\left(\omega_{0}\right)+\sum_{x \in X}\left(e_{x}-1\right)[x]
$$

Deduce the Riemann-Hurwitz formula for the genus of X.
9. Consider the function

$$
\phi(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2} .
$$

Note that $\phi(\tau)^{12}=\Delta(\tau) \Delta(11 \tau)$.
Show that for $f \in S_{2}\left(\Gamma_{0}(11)\right), f^{12}=c \phi^{12}$ for c a constant, and deduce that ϕ is in $S_{2}\left(\Gamma_{0}(11)\right)$ (moreover, it is a basis for this one-dimensional space).
10. In this question $\theta(\tau)$ denotes the Jacobi θ function $\sum_{n \in \mathbb{Z}} q^{n^{2}}$.
(a) Show that $M_{2}\left(\Gamma_{0}(4)\right)$ has a basis consisting of $\theta(\tau)^{4}$ and a form F whose q-expansion is

$$
\sum_{n>0 \text { odd }} \sigma_{1}(n) q^{n}
$$

(b) Show that $f=\theta(\tau)^{2} \in M_{1}\left(\Gamma_{1}(4)\right)$, and moreover if $\gamma \in \Gamma_{0}(4)$ then $\left.f\right|_{\gamma, 1}=\chi(\gamma) f$, where χ is the unique non-trivial character of the group $\Gamma_{0}(4) / \Gamma_{1}(4) \cong(\mathbb{Z} / 4 \mathbb{Z})^{\times}$.
(c) Show that $M_{1}\left(\Gamma_{1}(4)\right)$ is one-dimensional, hence spanned by $\theta(\tau)^{2}$.
11. This long exercise gives a dimension formular for modular forms of odd weight (≥ 3).

Suppose $-I \notin \Gamma$. Show that for $\tau \in \mathcal{H}$ the stabiliser of τ in Γ has order 1 or 3 .
Let $x \in \mathbb{P}^{1}(\mathbb{Q})$ with $x=\alpha \infty, \alpha \in \mathrm{SL}_{2}(\mathbb{Z})$, and let $s=\Gamma x$ be the associated cusp. Let h be the width of s.
Show that the stabiliser of x in Γ is a cyclic group, generated by $\alpha\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \alpha^{-1}$ or $\alpha\left(\begin{array}{cc}-1 & -h \\ 0 & -1\end{array}\right) \alpha^{-1}$.
In the former case we say that the cusps s is regular, in the latter that it is irregular. When the cusp is regular, a meromorphic form f of odd weight and level Γ has a Fourier expansion in the varaible $q_{h}=e^{2 \pi i \tau / h}$, whilst if the cusp is regular, it only has a Fourier expansion in the variable $q_{2 h}=e^{\pi i \tau / h}$. When s is regular, we define $\operatorname{ord}_{s}(f)$ to be the order of vanishing (in the variable $\left.q_{h}\right)$ of $\left.f\right|_{\alpha, k}$ at ∞, whilst if s is irregular, we define $\operatorname{ord}_{s}(f)$ to be half the order of vanishing in the variable $q_{2 h}$.
Suppose $-I \notin \Gamma$ and k is odd. For f a non-zero meromorphic form of weight k and level Γ, define a divisor $\operatorname{div}(f)$ on $X(\Gamma)$ by

$$
\operatorname{div}(f)=\sum_{x \in X(\Gamma)} a_{x}[x]
$$

with $a_{x}=\operatorname{ord}_{x}(f) / n_{x}$ for $x \in Y(\Gamma)$ and $a_{s}=\operatorname{ord}_{s}(f)$ for s a cusp.
Show that

$$
\lfloor\operatorname{div}(f)\rfloor:=\sum_{x \in X(\Gamma)}\left\lfloor a_{x}\right\rfloor[x]=\frac{1}{2} \operatorname{div}\left(\omega\left(f^{2}\right)\right)+\sum_{n_{x}=3}\left\lfloor\frac{k}{3}\right\rfloor[x]+\sum_{s \text { regular }} \frac{k}{2}[s]+\sum_{s \text { irregular }} \frac{k-1}{2}[s] .
$$

Suppose there exists a non-zero meromorphic form of weight k and level $\Gamma{ }^{2}$ Deduce that for $k \geq 3$

$$
\operatorname{dim}\left(M_{k}(\Gamma)\right)=(k-1)(g-1)+\left\lfloor\frac{k}{3}\right\rfloor r_{3}+\frac{k}{2} r_{\infty}^{\mathrm{reg}}+\frac{k-1}{2} r_{\infty}^{\mathrm{irr}}
$$

where g is the genus of $X(\Gamma), r_{3}$ is the number of elliptic points of order $3, r_{\infty}^{\text {reg }}$ is the number of regular cusps and $r_{\infty}^{\mathrm{irr}}$ is the number of irregular cusps.

Comments, queries and corrections can be sent by email to jjmn2@cam.ac.uk

[^1]
[^0]: ${ }^{1}$ Alternatively, just assume that G acts continuously on a locally compact and Hausdorff topological space.

[^1]: ${ }^{2} \mathrm{~A}$ proof that such a form exists is described at the end of section 3.6 in Diamond and Shurman.

