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1. Introduction

1.1. Basic notation. The modular group, sometimes denoted Γ(1), is

SL2(Z) = {
(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1}.

The upper half plane is H = {τ ∈ C : Im(τ) > 0}. We can define an action of Γ(1) on H
as follows (

a b
c d

)
· τ = aτ + b

cτ + d
.

Exercise 1. Check that this action preserves H and is a group action. Hint: first show that

Im(γ · τ) = Im(τ)
|cτ + d|2

.

Definition 1.1. Let k be an integer and Γ a finite index subgroup of Γ(1). A meromorphic
function f : H → C is weakly modular of weight k and level Γ if

f(γ · τ) = (cτ + d)kf(τ)

for all γ =
(
a b
c d

)
∈ Γ and τ ∈ H.

Remark 1.2. Made more precise later: A function f being weakly modular of weight 0
and level Γ means it gives a meromorphic function on Γ\H. A function f being weakly
modular of weight 2 means f(τ)dτ gives a meromorphic differential on Γ\H.

Modular forms will be defined precisely in the next couple of lectures, but for now I will
say that a weakly modular function of weight k and level Γ is a modular form (of weight
k and level Γ) if it is holomorphic on H and satisfies some other condition.

When Γ = Γ(1), this ‘other condition’ is that there exist constants C, Y ∈ R>0 with
|f(τ)| ≤ C

for all τ with Im(τ) > Y .

1.2. Some motivating examples.
• Representation numbers for quadratic forms

For an integer k ≥ 1 and n ≥ 0 write rk(n) for the number of distinct ways of
writing n as a sum of k squares, allowing zero and counting signs and orderings. For
example, we have r2(1) = 4 since 1 = 02 + 12 = 02 + (−1)2 = 12 + 02 = (−1)2 + 02.

Define a function θ on H by taking

θ(τ) =
∞∑
−∞

e2πin2τ .
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We write q for the variable e2πiτ . Then for a positive integer k ≥ 1
θ(τ)k =

∑
n≥0

rk(n)qn.

It turns out that for even integers k, θ(τ)k is a modular form, and we will see
later that one can obtain information about the function rk(n) using this. It allows
you to write rk(n) as ‘nice formula’+‘error term’. For example,

r4(n) = 8
∑

0<d|n
4-d

d

(in this case there’s no error term!).
• Complex uniformisation of elliptic curves

If we have a lattice (rank two discrete subgroup) Λ ⊂ C the Weierstrass ℘-
function ℘(z, λ) is a holomorphic function C/Λ→ P1(C) and the map

z 7→ (℘(z,Λ), ℘′(z,Λ))
gives an isomorphism between C/Λ and complex points EΛ(C) of an elliptic curve
EΛ over C with equation

y2 = 4x3 − 60G4(Λ)− 140G6(Λ)
where

Gk(Λ) =
∑
ω∈Λ

1
ωk

— these are examples of modular forms (if we consider the function τ 7→ Gk(Zτ ⊕
Z)). We write Λτ for the lattice Zτ ⊕ Z. Similarly, any homogeneous polynomial
in G4, G6 is a modular form, for example the discriminant function

τ 7→ (60G4(Λτ ))3 − 27(140G6(Λτ ))2.

• Dirichlet series and L-functions
Recall the Riemann zeta function

ζ(s) =
∑
n≥1

1
ns

(this is the definition for Re(s) > 2). It has a meromorphic continuation to all of C
and satisfies a functional equation relative ζ(s) and ζ(1− s). In the course we will
prove Hecke’s converse theorem: if we are given a set of complex numbers {an}n≥1
such that the Dirichlet series

Z(s) =
∑
n≥1

an
ns

is absolutely convergent for Re(s) >> 0, with suitable analytic continuation and
functional equation, then the function

f(τ) =
∑
n≥1

ane
2πinτ
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is a modular form.
Given E/Q an elliptic curve, the Hasse-Weil L-function of E, L(E, s) is given by∏

p

Lp(E, s) =
∑ an

ns

where for p a prime of good reduction (with E reducing to Ẽp) Lp(E, s) = (1 −
app
−s + p1−2s)−1, and ap = p+ 1− |Ẽp(Fp)| (and one can also write down the local

factors at the primes of bad reduction). A very deep theorem (due to Wiles, Breuil,
Conrad, Diamond and Taylor) is that f(τ) = ∑

n≥1 ane
2πinτ is also a modular form.

This is not proved using the converse theorem! Indeed, the only proof that L(E, s)
has analytic continuation and functional equation is to first show that L(E, s) comes
from a modular form in this way.

2. Modular forms of level one

In this section we will be interested in weakly modular functions of weight k and level
Γ(1).

2.1. Fourier expansions. Note that the definition of a weakly modular function of level
Γ(1) implies that f(τ + 1) = f(τ) for all τ ∈ H. Suppose f is holomorphic on the region
{Im(τ) > Y } for some Y ∈ R. Denote by D∗ the punctured unit disc {q ∈ C : 0 < |q| < 1}.

The map τ 7→ e2πiτ defines a holomorphic, surjective, map from H to D∗ and we can
define a function F on D∗ by F (q) = f(τ) where τ ∈ H is something satisfying q = e2πiτ .
The function F is well-defined since the value of f(τ) is independent of the choice of τ .
Moreover, F is holomorphic on the region {0 < |q| < e−2πY }, since f is holomorphic on the
corresponding region in H and we can define F (q) = f( 1

2πi log(q)) for appropriate branches
of log on open subsets of D∗.

Therefore we obtain a Laurent series expansion F (q) = ∑
n∈Z an(f)qn, with an(f) ∈ C.

This is called the Fourier expansion, or q-expansion, of f .

2.2. Modular forms.

Definition 2.1. Suppose f is a weakly modular function of weight k and level Γ(1).
• We say that f is meromorphic (resp. holomorphic) at ∞ if f is holomorphic for

Imτ >> 0 and an(f) = 0 for all n << 0 (resp. for all n < 0). Equivalently, F
extends to a meromorphic (resp. holomorphic) function on an open neighbourhood
of 0 in the unit disc D.
• If f is meromorphic at ∞ we say that f is a meromorphic form of weight k (non-

standard, but will need them later).
• If f is holomorphic on H and at ∞ we say that it is a modular form of weight k,

and if moreover a0(f) = 0 we say that it is a cusp form.

Lemma 2.2. Suppose f is weakly modular of level Γ(1). Then f is holomorphic at ∞ if
and only if there exists C, Y ∈ R such that |f(τ)| ≤ C for all τ with Imτ > Y .
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Proof. Suppose f is holomorphic at ∞. Then the function F extends to a holomorphic
function on an open neighbourhood of 0 in D. Therefore F is bounded on some sufficiently
small disc in D with centre 0. This implies the desired boundedness statement for f .

Conversely, suppose there exists C, Y ∈ R such that |f(τ)| ≤ C for all τ with Imτ > Y .
This implies that f is holomorphic for Imτ > Y (since it is bounded and meromorphic)
and so we get a holomorphic function F on the region {0 < |q| < e−2πY } satisfying
F (e2πiτ ) = f(τ). The boundedness condition on f implies that qF (q) tends to zero as q
tends to 0, so F has a removable singularity at 0 and we are done. �

Definition 2.3. We denote the set of modular forms of weight k by Mk(Γ(1)), and denote
the set of cusp forms of weight k by Sk(Γ(1)) (sometimes Mk and Sk for short).
Exercise 2. (1) Mk and Sk are C-vector spaces (obvious addition and scalar multipli-

cation)
(2) f ∈Mk, g ∈Ml, then fg ∈Mk+l
(3) f ∈Mk =⇒ f(−τ) = (−1)kf(τ), so k odd =⇒ Mk = {0}.

We will later show that Mk and Sk are finite dimensional and compute their dimensions
(main goal of the first half of the course). One of the reasons for imposing the ‘holomorphic
at ∞’ condition is to ensure these spaces are finite dimensional.

2.3. First examples of modular forms.
Definition 2.4. Let k > 2 be an even integer. Then the Eisenstein series of weight k is a
function on H, defined, for τ ∈ H, by

Gk(τ) =
∑′

(c,d)∈Z2

1
(cτ + d)k .

Here the ′ on the summation sign tells us to omit the (0, 0) term.
Lemma 2.5. This sum is absolutely convergent for τ ∈ H, and converges uniformly on
compact subsets of H, hence Gk is a holomorphic function on H.
Proof. Let’s fix a compact subset C of H and think of τ varying over this compact set.
Consider the parallelogram P1 in C with vertices 1 + τ , 1− τ , −1− τ and −1 + τ . Denote
by D(τ) the minimum absolute value of a point in the boundary of P1 (i.e. the length of
the shortest line joining the origin and the boundary of P1). As τ varies over the compact
set C, D(τ) attains a minimum, which we denote by r.

For m ∈ Z≥1 denote by Pm the parallelogram whose vertices are m times the vertices
of P1. It is clear that as τ varies over C the minimum absolute value of a point in the
boundary of Pm is mr.

Now let’s consider how many points of the lattice Z ⊕ Zτ lie in each of the Pm. The
parallelogram Pm contains a (2m+1)×(2m+1) grid of these lattice points, so the boundary
of Pm contains (2m+ 1)2 − (2m− 1)2 = 8m lattice points.

For M ∈ Z≥1 let’s consider the sum ∑
(c,d)∈SM

1
|cτ + d|k
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where SM is the set of pairs of integers (c, d) such that cτ + d is in the boundary of Pm for
some m ≥M .

For τ ∈ C we have ∑
(c,d)∈SM

1
|cτ + d|k

≤
∞∑

m=M

8m
(mr)k

= 8
rk

∞∑
m=M

1
mk−1

and if k > 2 the final expression tends to 0 as M tends to ∞. Therefore the Eisenstein
series is uniformly absolutely convergent for τ ∈ C.

A slightly different proof of this Lemma is suggested in Exercise 1.1.4 of the book by
Diamond and Shurman. �

Proposition 2.6. The holomorphic function Gk is weakly modular of weight k.

Proof. Let γ =
(
a b
c d

)
∈ Γ(1). Now

Gk(γτ) =
∑′

(m,n)∈Z2

(cτ + d)k
(m(aτ + b) + n(cτ + d))k = (cτ+d)k

∑′

(m,n)∈Z2

1
((am+ cn)τ + (bm+ dn))k .

Right multiplication by γ gives a bijection from Z2 − {0, 0} to itself. Therefore the last
term in the displayed equation is equal to (cτ + d)kGk(τ) as required. �

Proposition 2.7. The q-expansion of Gk is

Gk(τ) = 2ζ(k) + 2 (2πi)k
(k − 1)!

∞∑
n=1

σk−1(n)qn

where ζ(k) = ∑
n≥1

1
nk

is the Riemann zeta function and

σk−1(n) =
∑
m|n
m>0

mk−1.

In particular, Gk is a modular form of weight k (we just had holomorphy at ∞ left to
show).

The proof of this is postponed to the end of this section.
Definition 2.8. A normalisation: Ek(τ) = Gk(τ)/2ζ(k).
Fact 2.9. Proved later: dim(M8(Γ(1))) = 1.

Application of this fact: E2
4 and E8 are both in M8 and their q-exapnsions have the same

constant term (namely 1), so they are equal.
Corollary 2.10. We deduce from E2

4 = E8 that
• ζ(4) = π4/90, ζ(8) = π8/2 · 33 · 52 · 7
• σ7(n) = σ3(n) + 120∑n−1

j=1 σ3(j)σ3(n− j).
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Proof. For first part, compare a1 and a2 terms of q-expansions. Then compare general
term to get the second part. �

Some more interesting examples. A cusp form:

Definition 2.11. The Ramanujan delta function

∆(τ) = E3
4 − E2

6
1728 = q − 24q2 + ... =

∑
n≥1

τ(n)qn.

We will later see that ∆ = q
∏∞
n=1(1 − qn)24. At any rate, from its definition we have

∆ ∈ S12(Γ(1)).
Now I’ll give the proof of Proposition 2.7. We will use Poisson summation:

Fact 2.12. Let h : R→ C be a continuous function such that
• h is L1, i.e.

∞∫
−∞
|h(x)|dx <∞.

• the sum S(x) = ∑
d∈Z h(x+ d) converges absolutely and uniformly as x varies in a

compact subset of R, and S(x) is an infinitely differentiable function in x.
Then, if we denote by ĥ the Fourier transform

ĥ(t) =
∞∫
−∞

h(x)e−2πixtdx

we have ∑
d∈Z

h(x+ d) =
∑
m∈Z

ĥ(m)e2πimx.

Idea of the proof: the sum S(x) satisfies S(x) = S(x+ 1) and the right hand side of the
final equality is the Fourier expansion for S.

Now let’s apply this to the case we’re interested in. We have

Gk(τ) = 2
∞∑
d=1

1
dk

+ 2
∞∑
c=1

∑
d∈Z

1
(cτ + d)k .

For c and τ fixed, let’s define

hc(x) = 1
(cτ + x)k .

Now we can compute ∑d∈Z
1

(cτ+d)k by applying Poisson summation to hc. Exercise: check
that hc satisfies the conditions for Poisson summation.

We have

ĥc(m) =
∞∫
−∞

e−2πimx

(cτ + x)k dx = 1
ck−1

∞∫
−∞

e−2πimcu

(τ + u)k du

For the last equality we substitute x = cu.
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To compute this integral we use Cauchy’s residue theorem applied to the complex func-
tion fn(z) = e−2πinz

zk
. For n ∈ Z, denote by In the integral of fn(z) along the horizontal line

from τ −∞ to τ +∞. Then we have

ĥc(m) = e2πimcτ

ck−1 Icm.

Lemma 2.13. We have In = 0 for n ≤ 0. For n > 0, we have In = (−2πi)knk−1

(k−1)! .

Proof. The residue of fn at z = 0 is 1
(k−1)!(−2πin)k−1 (consider the Taylor expansion of

e−2πinz). So it follows that −2πiResz=0fn(z) = (−2πi)knk−1

(k−1)! .

For n ≤ 0 we integrate over rectangles with vertices at τ−C, τ+C, τ+C+iC, τ−C+iC,
for C ∈ R tending to ∞. These integrals are all equal to zero, and it’s easy to see that the
integrals over the upper horizontal and vertical sides tend to zero.

For n > 0 integrate (clockwise) over rectangles with vertices at τ − C, τ + C, τ + C −
iC, τ − C − iC. Now the integrals (for C large enough that the rectangle contains z = 0)
are all equal to (−2πi)knk−1

(k−1)! and the integrals over three of the sides tend to zero. �

So now we conclude that ĥc(m) = 0 for m ≤ 0 and

ĥc(m) = (−2πi)kmk−1

(k − 1)! e2πimcτ

for m > 0. Now applying Poisson summation, we can deduce Proposition 2.7 (recall that
k is assumed even, so (−2πi)k = (2πi)k).

2.4. Fundamental domain for Γ(1). We want to study some of the properties of the
action of Γ(1) on H.
Definition 2.14. Suppose a group G acts continuously on a topological space X. Then a
fundamental domain for G is an open subset F ⊂ X such that no two distinct points of
F are equivalent under the action of G and every point x ∈ X is equivalent (under G) to
a point in the closure F .
Proposition 2.15. The set

F = {τ ∈ H : |τ | > 1, |Re(τ)| < 1
2}

is a fundamental domain for the action of Γ(1) on H.
More precisely, if we set

F̃ = F ∪ {τ ∈ H : |τ | ≥ 1,Re(τ) = −1
2} ∪ {τ ∈ H : |τ | = 1,−1

2 ≤ Re(τ) ≤ 0}

then F̃ contains a unique representative for every Γ(1)-orbit.
The group Γ(1) is generated by the elements

T =
(

1 1
0 1

)
, S =

(
0 1
−1 0

)
.
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Proof. We let G be the subgroup of SL2(Z) generated by S and T . Fix τ ∈ H. For γ ∈ G
have Im(γτ) = Im(τ)

|cτ+d|2 . Since c and d are integers, |cτ + d|2 attains a minimum as c and d

vary over possible bottom rows of matrices in G. Therefore Im(γτ) attains a maximum as
γ varies over G. So there is a γ0 ∈ G with Im(γ0τ) ≥ Im(γτ) for all γ ∈ G.

In particular
Im(γ0τ)
|γ0τ |2

= Im(− 1
γ0τ

) = Im(Sγ0τ) ≤ Im(γ0τ)

which implies that |γ0τ | ≥ 1. Since applying T does not change the imaginary part we
have |T nγ0τ | ≥ 1 for all n, and for some n we have Re(T nγ0τ)| ∈ [−1/2, 1/2).

If T nγ0τ ∈ F\F̃ then ST nγ0τ ∈ F̃ so we have proven that every G-orbit has a
representative in F̃ . This immediately implies that every Γ(1)-orbit has a representative
in F̃ .

It remains to prove that every Γ(1)-orbit has a unique representative in F̃ .
Suppose that we have two distinct but Γ(1)-equivalent points τ1 6= τ2 = γτ1 in F̃ . Since

both τi’s have real part < 1/2 we have γ 6= ±T n, so c 6= 0. Moreover, Imτ ≥
√

3/2 for all
τ ∈ F , so √

3
2 ≤ Im(τ2) = Im(τ1)

|cτ1 + d|2
≤ Im(τ1)
c2Im(τ1)2 ≤

2
c2
√

3
,

which implies that c = ±1. So we have

Im(τ2) = Im(τ1)
| ± τ1 + d|2

but |±τ1+d| ≥ |τ1| ≥ 1 which implies that Im(τ2) ≤ Im(τ1). But everything was symmetric
between τ1 and τ2, so we have Im(τ2) ≤ Im(τ1) and |τ1| = |τ2| = 1. Since τ1, τ2 ∈ F̃ this
implies that τ1 = τ2. So there are no distinct but Γ(1)-equivalent points in F̃ and F̃
indeed contains a unique representative of every Γ(1)-orbit.

Now we can deduce that Γ(1) = G. Let γ ∈ Γ(1) and consider the action on 2i ∈ F .

There exists a g ∈ G such that gγ(2i) ∈ F . We write gγ =
(
a b
c d

)
and observe that

Im(gγ(2i)) = 2
4c2 + d2 ≥

√
3

2 .

This implies that c = 0 and d = ±1, hence gγ = ±T n for some integer n and therefore
γ ∈ G. �

Exercise 3. Suppose τ ∈ H is such that γτ = γ for γ ∈ Γ(1) with γ 6= ±I. Then τ is in
the Γ(1) orbit of i or ω = −1/2 +

√
3/2. If we define nτ = |StabΓ(1)/±I(τ)| then nτ = 2, 3

if τ is in the orbit of i, ω respectively.

Note that to do the above exercise, it is enough to compute the stabilisers for τ ∈ F̃ .

Definition 2.16. If τ is a point of H such that StabΓ(1)/±I(τ) is non-trivial, we say that
τ is an elliptic point, of order nτ = |StabΓ(1)/±I(τ)|.
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Note that the value of nτ only depends on the orbit Γ(1)τ .

2.5. Zeros and poles of meromorphic forms.
Definition 2.17. If f is a weight k meromorphic form and τ ∈ H we write ordτ (f) for
the order of vanishing of f at τ (i.e. it is the order of the zero if f vanishes at τ , 0 if f is
holomorphic and non-vanishing at τ and it is the negative of the order of the pole if f has
a pole at τ).

We write ord∞(f) for the smallest n such that an(f) 6= 0, where f(τ) = ∑
n∈Z an(f)qn.

Since f is weakly modular, the integer ordτ (f) depends only on the Γ(1)-orbit Γ(1)τ .
Proposition 2.18. Let f be a non-zero meromorphic form of weight k. Then

ord∞(f) +
∑

Γ(1)τ∈Γ(1)\H

1
nτ

ordτ (f) = k

12 .

Note that the sum in the above has finitely many non-zero terms — fixing Y ∈ R>0, f
has finitely many zeros and poles in the compact region τ ∈ F ∩ {Im(τ) ≤ Y }, and by
meromorphy at ∞ it has finitely many zeros and poles in the region τ ∈ F ∩ Im(τ) ≥ Y .
Proof. We drew a complicated contour and integrated f ′(τ)/f(τ) around it. See Serre, ‘A
Course in Arithmetic’, Chapter VII, Theorem 3. �

Here are some immediate consequences of Proposition 2.18. Recall the weight 12 cusp
form

∆ = E3
4 − E2

6
1728 .

We can also define a meromorphic form of weight 0:

j(τ) = E4(τ)3

∆ .

Corollary 2.19. ∆ is non-vanishing on H. The weight 0 meromorphic form j(τ) is
holomorphic on H and induces a bijection

Γ(1)\H → C.
Proof. The q-expansion of ∆ is q − 24q2 + · · · . In particular, we have ord∞(∆) = 1. It
follows immediately from Proposition 2.18 that ∆ has no zeros in H. This implies that j
is indeed holomorphic on H. To show that it induces a bijection

Γ(1)\H → C,
fix z ∈ C and consider the weight 12 modular form fz(τ) = E4(τ)3− z∆(τ). By definition,
we have fz(τ) = 0 if and only if j(τ) = z. So to show that j induces a bijection it suffices
to show that the zeros of fz are given by a single Γ(1)-orbit.

By considering the q-expansion of fz, we see that ord∞(fz) = 0. So Proposition 2.18
implies that we have an equality ∑

Γ(1)τ∈Γ(1)\H

1
nτ

ordτ (f) = 1.
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Now we see that the possibilities for the zeros of fz are that there is a simple zero at a
single non-elliptic orbit, a double zero at Γ(1)i or a triple zero at Γ(1)ω. In any case, the
zeros form a single Γ(1)-orbit, as required. �

2.6. Dimension formula.

Lemma 2.20. Mk = {0} for k < 0. M0 ∼= C, and is given by constant functions.

Proof. Suppose k < 0. Then if f ∈Mk is non-zero, Proposition 2.18 implies that f cannot
be holomorphic on H and at ∞. So f is zero.

Suppose f ∈ M0. Then the constant term in the q-expansion of f , a0(f), is also in M0,
so g = f − a0(f) ∈ S0. Applying Proposition 2.18 to g tells us that g is zero, so f is
constant. �

Lemma 2.21. For even k ≥ 0 we have
dimMk(Γ(1)) ≤ bk/12c

if k ≡ 2 mod 12 and
dimMk(Γ(1)) ≤ bk/12c+ 1

otherwise.

Proof. For general even k, we set m = bk/12c + 1, and fix m distinct non-elliptic orbits
P1, ..., Pm in Γ(1)\H. Suppose f1, ..., fm+1 ∈ Mk(Γ(1)). Then we can find a linear combi-
nation of the fi, denoted f , such that f has a zero at each of the m points Pi. Applying
Proposition 2.18 implies that f = 0, so dimMk ≤ m.

Now we suppose we are in the special case k = 12l + 2, l ∈ Z≥0. We now set m = l,
choose l non-elliptic points as before, and suppose we have l + 1 elements f1, ..., fl+1 of
Mk(Γ(1)). We denote by f a linear combination of the fi with a zero at the l chosen
points, therefore if f is non-zero we now have an equation

ord∞(f) + l +
∑
P 6=Pi

ordP (f)
nP

= l + 1
6

which is impossible. So f = 0 and we conclude that dimMk ≤ l = bk/12c. �

Exercise 4. Consider the graded ring ⊕
k≥0Mk. Show that this direct sum injects into

the ring of holomorphic functions on H. In other words, there are no non-trivial linear
dependence relations between modular forms of different weights.

Theorem 2.22. Let R : C[X, Y ]→M be the map given by sending X to E4 and Y to E6.
Then R is an isomorphism of rings (and respects the graded, if we give X degree 4 and Y
degree 6).

Corollary 2.23. The set
{Ea

4E
b
6 : a, b ≥ 0, 4a+ 6b = k}

is a basis for Mk.
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dimMk = bk/12c
if k ≡ 2 mod 12 and

dimMk = bk/12c+ 1
otherwise.

Proof. This is an exercise. �

Proof of Theorem 2.22. The proof of the above Corollary, together with Lemma 2.21 tells
us that, appropriately graded, the degree k part of C[X, Y ] has dimension ≥ the dimension
of Mk. So it’s enough to show that R is an injection.

In other words we must show that E4 and E6 are algebraically independent, considered
as elements of the field of meromorphic functions on H. It is enough to show that E3

4 and
E2

6 are algebraically independent. Suppose there is a dependence relation∑
a,b

λa,bE
3a
4 E

2b
6 = 0.

By considering parts of fixed degree we can assume that the sum is only over a, b with
3a + 2b fixed. Dividing by a suitable power of E6, we see that E3

4/E
2
6 is the root of a

polynomial with coefficients in C, which implies that E3
4/E

2
6 is a constant function. This

implies that (E6/E4)2 is a constant multiple of E4, but E4 is holomorphic so this would
imply that E6/E4 ∈M2 = {0}, which gives a contradiction. �

3. Modular forms for congruence subgroups

3.1. Definitions.

Definition 3.1. Suppose N ∈ Z≥1, then we define the principal congruence subgroup of
level N

Γ(N) = {γ ∈ SL2(Z) : γ ≡ Id mod N}.

Definition 3.2. A subgroup Γ ⊂ SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ for some
N .

It follows immediately that congruence subgroups have finite index in SL2(Z) (the con-
verse is false — c.f. congruence subgroup problem).

Definition 3.3. Γ0(N): upper triangular mod N Γ1(N): upper triangular with 1, 1 on
diagonal mod N

Recall that we already defined weak modularity with respect to a finite index subgroup of
SL2(Z). For this course, we will only consider weak modularity with respect to congruence
subgroups, although much of the theory goes through for any finite index subgroup.

Definition 3.4. Let k be an integer and Γ a congruence subgroup of SL2(Z). A meromor-
phic function f : H → C is weakly modular of weight k and level Γ if

f(γ · τ) = (cτ + d)kf(τ)
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for all γ =
(
a b
c d

)
∈ Γ and τ ∈ H.

A fundamental domain for Γ acting on H can be obtained by taking a union of translates
of F (the level one fundamental domain) by coset representatives for SL2(Z)/Γ. If you
look at a picture of such a fundamental domain (e.g. use the applet at http://www.math.
lsu.edu/˜verrill/fundomain/ written by Helena Verrill), then you’ll see that there are
(a finite number of) boundary points, known as cusps, on the real line (actually rational
numbers). To get finite dimensional spaces of modular forms, we will need to impose
conditions on the behaviour of weakly modular functions as τ approaches each of these
limit points, as well as when τ has imaginary part going to ∞.

Definition 3.5. Suppose Γ is a congruence subgroup. We define the period of the cusp∞
by

h(Γ) = min{h ∈ Z>0 :
(

1 h
0 1

)
∈ Γ}.

Definition 3.6. Suppose f : H → C weakly modular of weight k and level Γ, and that f
is holomorphic for Im(τ) >> 0. Set qh = e2πiτ/h, and define a function F on the punctured
unit disc by

F (qh) = f(τ).
As before, F is holomorphic and has a Laurent series expansion

F (qh) =
∑
n∈Z

anq
n
h .

We say that f is meromorphic (resp. holomorphic) at ∞ if F extends to a meromorphic
(resp. holomorphic) function around 0 (i.e. if the appropriate condition holds on vanishing
of the negative coeffients in the Laurent series for F ).

Definition 3.7. The slash operator of weight k is defined as follows: for γ ∈ GL+
2 (R),

f : H → C and k ∈ Z, define f |γ,k : H → C by f |γ,k(τ) = (cτ + d)−kf(γ · τ).

Remark 3.8. If f : H → C is meromorphic and Γ is a congruence subgroup, then f is
weakly modular of weight k and level Γ if and only if

f |γ,k = f

for all γ ∈ Γ.
To show that f is weakly modular of weight k and level Γ, it suffices to show that

f |γi,k = f for a set of generators γ1, ..., γn of Γ.
If α ∈ SL2(Z) and f is weakly modular of weight k and level Γ, then f |α,k is weakly

modular of weight k and level α−1Γα. Moreover, the function f |α,k only depends on the
coset Γα ∈ Γ\SL2(Z).

Definition 3.9. Let Γ be a congruence subgroup, k ∈ Z and f weakly modular of weight
k and level Γ. We say that f is meromorphic at the cusps (resp. holomorphic at the cusps)
if f |α,k is meromorphic at ∞ (resp. holomorphic at ∞) for all α ∈ SL2(Z).

http://www.math.lsu.edu/~verrill/fundomain/
http://www.math.lsu.edu/~verrill/fundomain/
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Definition 3.10. If f is weakly modular of weight k and level Γ and meromorphic at the
cusps, we say that f is a meromorphic form of weight k and level Γ.

If f is weakly modular of weight k and level Γ, holomorphic onH and holomorphic at the
cusps, we say that f is a modular form of weight k and level Γ. If moreover a0(f |α,k) = 0
for all α we say that f is a cusp form.

We denote the space of modular forms of weight k and level Γ by Mk(Γ), and denote
the subspace of cusp forms by Sk(Γ).

Here is a usual condition in practice for checking that a weakly modular function is a
modular form:

Proposition 3.11. If Γ(N) ⊂ Γ, f holomorphic on H and weakly modular of weight k and
level Γ, with f(τ) = ∑∞

n=0 an(f)e2πiτn/N and |an(f)| ≤ Cnr for some constants C, r ∈ R>0,
then f is holomorphic at the cusps. Therefore f is a modular form of weight k and level
Γ.

Proof. See Diamond and Shurman Exercise 1.2.6 �

3.2. Examples: θ-functions. Recall the definition θ(τ) = ∑∞
n=−∞ q

n2 . It is straightfor-
ward to show that this series is absolutely and uniformly convergent on compact subsets
of H. We have

θ(τ, k) = θ(τ)k =
∞∑
n=0

r(n, k)qn

where r(n, k) is the number of ways of writing n as the sum of k squares.

Proposition 3.12. We have θ(τ + 1) = θ(τ) and θ(−1/4τ) =
√

2τ/iθ(τ). Here by √ we
mean the branch on Re(z) > 0 extending the positive square root on the positive real axis.

Proof. The first equality is clear. For the second we use Poisson summation. Set h(x) =
e−πtx

2 with t ∈ R>0. We have

ĥ(y) =
∞∫
−∞

e−πtx
2−2πixydx = e−πy

2/t

∞∫
−∞

e−π(
√
tx+iy/

√
t)2
dx.

We substitute u =
√
tx+ iy/

√
t, use

∞∫
−∞

e−πu
2
du = 1, and conclude that ĥ(y) = e−πy

2/t/
√
t.

So Poisson summation tells us that∑
d∈Z

e−πtd
2 =

∑
m∈Z

e−πm
2/t/
√
t

whence θ(it/2) = 1√
t
θ(i/2t) for t ∈ R > 0. Now uniqueness of analytic continuation implies

that the conclusion of the Proposition. �

Corollary 3.13. θ(τ/4τ + 1)2 = (4τ + 1)θ(τ)2

Proof. Easy computation. �
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We conclude that for even k θ(τ/4τ+1, k) = (4τ+1)k/2θ(τ, k). In particular, for positive
integers k, θ(τ, 4k) is weakly modular of weight 2k and level Γ, where Γ is the subgroup of
SL2(Z) generated by

±
(

1 1
0 1

)
,±

(
1 0
4 1

)
.

In the first example sheet, it is shown that Γ = Γ0(4), so θ(τ, 4k) ∈M2k(Γ0(4)).

3.3. Examples: old forms. It’s worth noting that if Γ ⊂ Γ′ then if a function f is a
modular form of weight k and level Γ′ it is also a modular form of weight k and level Γ.

Lemma 3.14. Suppose f ∈Mk(Γ0(N)) and M ∈ Z≥1. Then
fM : τ 7→ f(Mτ)

is in Mk(Γ0(MN)).

Proof. First we check that fM is weakly modular. We can write fM(τ) = f |γM (τ), where

γM =
(
M 0
0 1

)
∈ GL+

2 (R).

So fM is weakly modular of weight k and level (γ−1
M Γ0(N)γM) ∩ SL2(Z) = Γ0(MN).

To check holomorphy at the cusps, let

α =
(
a b
c d

)
∈ SL2(Z)

and let α′ ∈ SL2(Z) be such that α′∞ = Mα∞ ∈ P1(Q) (i.e. α′∞ = γMα∞). Observe
that

fM |α,k(τ) = f |α′β,k(τ)
where β = α′−1γMα ∈ GL+

2 (Q) stabilises ∞ ∈ P1(Q). Hence β is an upper triangular
matrix, and it is easy to see that f |α′β,k has a holomorphic Fourier expansion (since f |α′,k
does). �

Similarly, we have

Lemma 3.15. Suppose f ∈Mk(Γ1(N)) and M ∈ Z≥1. Then
fM : τ 7→ f(Mτ)

is in Mk(Γ1(MN)).

Definition 3.16. Fix N ∈ Z≥1. For each divisor M | N , let iM be the map
iM : Mk(Γ1(N/M))⊕Mk(Γ1(N/M))→Mk(Γ1(N))

(f, g) 7→ f + gM .

We define the space of oldforms at level N , Mk(Γ1(N))old to be the span of the union of
the images of iM as M > 1 varies over divisors of N .
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3.4. Examples: weight 2 Eisenstein series. We would like to define an Eisenstein
series of weight 2 by

G2(τ) =
∑
d 6=0

1
d2 +

∑
c 6=0

∑
d∈Z

1
(cτ + d)2 .

The above sum is not absolutely convergent, so we cannot interchange the order of sum-
mation over c and d (recall that this was used to prove the Gk was weakly modular for
k > 2). However, the Poisson summation argument still allows us to compute the sums
over d and conclude that this sum converges, and

G2(τ) = 2ζ(2) + 2(2πi)2
∞∑
n=1

σ1(n)qn

where this latter series is absolutely and uniformly convergent on compact subsets.
We use something known as ‘Hecke’s trick’ to determine how G2 transforms under the

action of Γ(1). This will then allow us to define some weight 2 modular forms of higher
levels.

Definition 3.17. For ε ∈ R>0 we define

G(τ, ε) =
∑′

(c,d)∈Z2

1
(cτ + d)2|cτ + d|2ε

.

The point is that we have perturbed G2(τ) a little, to obtain a double sum which is now
absolutely convergent. Now in exactly the same way as for the higher weight Eisenstein
series we deduce

G(γτ, ε) = (cτ + d)2|cτ + d|2εG(τ, ε)
for γ ∈ Γ(1).

Theorem 3.18 (non-examinable). For any τ ∈ H, the limit lim−→ε→0G(τ, ε) exists and is
equal to G∗2(τ) = G2(τ)− π

Im(τ) .

As a consequence, we have G∗2(γτ) = (cτ+d)2G∗2(τ), but note that G∗2 is not holomorphic.
However, we can use G∗2 to get higher level modular forms.

Corollary 3.19. For N a positive integer we let G(N)
2 (τ) = G2(τ) − NG2(Nτ). Then

G
(N)
2 ∈M2(Γ0(N)), and its q-expansion is given by

2(1−N)ζ(2)− 8π2
∞∑
n=1

(
∑

0<d|n
N -d

d)qn.

Proof. We deduce that G(N)
2 is weakly modular of weight 2 from the equality G2,N =

G∗2 − NιN(G∗2) and our discussion of oldforms. To show that G(N)
2 is holomorphic at

the cusps we either show it directly or apply Proposition 3.11. The computation of the
q-expansion is easily deduced from the q-expansion of G2. �

Fact 3.20. The space M2(Γ0(4)) has dimension 2.
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It follows from this fact that G(2)
2 , G

(4)
2 is a basis for M2(Γ0(4)), and by comparing q-

expansions we see that
θ(τ, 4) = − 1

π2G2,4(τ)
and as a consequence we obtain:

Theorem 3.21. For integers n ≥ 1
r(n, 4) = 8

∑
0<d|n

4-d

d.

Finally, I should sketch the proof of Theorem 3.18. Unfortunately, it’s a little painful...
Similarly to the higher weight case, we apply Poisson summation to the sums∑

d∈Z

1
(cτ + d)2|cτ + d|2ε

.

We write hc,ε(x) = (cτ + x)−2|cτ + x|−2ε and then we have Fourier coefficients

ĥc,ε(m) =
∞∫
−∞

e−2πimx

(cτ + x)2|cτ + x|2ε
dx = 1

c1+2ε

∞∫
−∞

e−2πicmx

(τ + x)2|τ + x|2ε
dx

so we can write

G2(ε, τ) = 2
∞∑
d=1

1
d2+2ε + 2

∞∑
c=1

∑
m6=0

ĥc,ε(m) + 2
∞∑
c=1

ĥc,ε(0).

The following Lemma tells us that the second of these sums is nice enough that we can
compute its limit as ε→ 0 by exchanging the limit and the summation:

Lemma 3.22. Suppose m 6= 0 and ε < 1. Then there exists a constant K ∈ R>0 (inde-
pendent of ε, c, depending on τ) such that

|ĥc,ε(m)| ≤ K

c3+2εm2 .

Proof. It’s enough to show that there exists K with∣∣∣∣∣∣
∞∫
−∞

e−2πicmx

(τ + x)2|τ + x|2ε
dx

∣∣∣∣∣∣ ≤ K

c2m2 .

This follows from observing that |τ+x|2ε ≥ |Im(τ)|2ε ≥ min{1, |Im(τ)|2} and then showing
that ∣∣∣∣∣∣

∞∫
−∞

e−2πicmx

(τ + x)2dx

∣∣∣∣∣∣ ≤ K

c2m2 .

This last estimate is derived by integrating by parts twice — it comes down to the fact
that ∞∫

−∞

1
|τ + x|4

dx
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is finite. �

So for the m 6= 0 terms we take the limit inside the sum and we can also interchange
the limit with the integral defining ĥc(ε,m). To prove the theorem, it is now sufficient to
show that

lim−→
ε→0

2
∞∑
c=1

ĥc(ε, 0) = − π

Imτ .

We do this as follows: first, translating the variable x and using |x− i|2ε = (x+ i)ε(x− i)ε
(these powers are defined using the principal branch of the logarithm) we obtain

ĥc(ε, 0) = 1
(cImτ)1+2ε

∞∫
−∞

1
(x+ i)2+ε(x− i)εdx.

Integration by parts tells us that this integral is equal to

− ε

1 + ε

∞∫
−∞

1
1 + x2

1+ε
dx

so we have
∞∑
c=1

ĥc(ε, 0) = −ζ(1 + 2ε)ε
1 + ε

1
(Imτ)1+2ε

∞∫
−∞

1
(1 + x2)1+εdx.

Since ζ(s) has a simple pole with residue 1 at s = 1 the first fraction tends to 1/2 as
ε→ 0, whilst the integral tends to π. This gives us the desired result.

3.5. Finite dimensionality. Now we can give a cheap proof that Mk(Γ) is finite dimen-
sional for all congruence subgroups Γ. We won’t determine the dimensions for a while,
however!

Suppose Γ′ is a normal subgroup of Γ, and denote the quotient group Γ′\Γ by G (I’m
thinking of the elements as right cosets, hence the notation). We define a right action of
G on Mk(Γ′) by setting f g = f |γ,k for g = Γ′γ ∈ G. The action of g is well-defined (i.e.
independent of the choice of coset representative γ).

Now we can see that Mk(Γ) = Mk(Γ′)G, where by G we mean the invariants under the
action of G (i.e. a function in Mk(Γ′) is Γ-invariant under the slash operator if and only if
it is G-invariant).

Lemma 3.23. Suppose Γ′ is a normal subgroup of Γ and f ∈ Mk(Γ′). Then there exist
modular forms hi ∈Mik(Γ) for i = 1, . . . , [Γ : Γ′] with

fn + h1f
n−1 + · · ·+ hn = 0.

Proof. Consider the identity ∏
g∈G

(f − f g) = 0.

Expanding out the product we get a monic polynomial in f with the coefficient of fn−i
given by a symmetric polynomial of degree i in the f g. This coefficient is therefore in
Mik(Γ′)G = Mik(Γ). �
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Lemma 3.24. (1) for k < 0, Mk(Γ) = 0
(2) M0(Γ) = C (the constant functions)

Proof. Since Γ is a congruence subgroup, we have Γ(N) ⊂ Γ for some N . Note that Γ(N)
is a normal subgroup of Γ(1). To show the Lemma, it is enough to prove it for Γ = Γ(N).
Suppose f ∈Mk(Γ) and k < 0. Then Lemma 3.23 gives us some hi ∈Mik(Γ(1)) which are
all zero, since ik < 0. so we have fn = 0 for some n. Hence f = 0.

If k = 0, then hi ∈ M0(Γ(1)) = C for all i, so f is a root of a polynomial with constant
coefficients. Hence f is constant. �

To prove that the spaces Mk(Γ) are finite dimensional we will use some commutative
algebra. The key ingredient is the notion of integral extensions of rings.

Definition 3.25. Let A be a subring of B. An element b ∈ B is said to be integral over
A if b satisfies a monic polynomial bn + a1b

n−1 + · · · an = 0 with coefficients in A.
The ring B is said to be integral over A if every element of B is integral over A.
The integral closure Ã of A in B is defined to be the set of elements of B which are

integral over A.

Exercise 5. Show that b is integral over A if and only if there exists a ring C with A ⊂
C ⊂ B and b ∈ C, such that C is a finitely generated A-module.

Deduce that Ã is a subring of B (i.e. the set Ã is closed under the ring operations).
Show that if we have an extension of rings A ⊂ B with B integral over A and B a finitely

generated A-algebra, then B is a finitely generated A-module.

Remark 3.26. It follows from Lemma 3.23 and the above exercise that if we set A =
⊕k≥0Mk(Γ) and B = ⊕k≥0Mk(Γ′) then B is integral over A (we think of A as a subring of
B via the natural inclusions Mk(Γ) ⊂Mk(Γ′) for each k).

Here’s an important general result in commutative algebra (due to E. Noether)

Theorem 3.27. Let F be a field and let A be a finitely generated F -algebra. Suppose A is
an integral domain and denote the field of fractions Frac(A) by K. Suppose L is a finite
extension field of K and denote by Ã the integral closure of A in L. Then Ã is a finitely
generated A-module (and is in particular a finitely generated F -algebra).

Proof. See Corollary 13.13 in Eisenbud’s book ‘Commutative algebra...’. �

As a consequence, we obtain the following useful lemma:

Lemma 3.28. Let F be a field, B a commutative F -algebra, and assume B is an inte-
gral domain. Let A ⊂ B be a sub F -algebra and assume that B is integral over A and
Frac(B)/Frac(A) is a finite extension of fields. Then B is a finitely generated F -algebra if
and only if A is a finitely generated F -algebra.

Proof. First we suppose that A is a finitely generated F -algebra. Then Theorem 3.27
implies that Ã, the integral closure of A in Frac(B), is a finite generated A-module. We
have A ⊂ B ⊂ Ã.
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Now A is Noetherian, so a submodule of a finitely generated A-module is finitely gen-
erated, hence B is a finitely generated A-module. Therefore B is a finitely generated
F -algebra.

For the reverse implication, we now suppose that B is a finitely generated F -algebra.
Pick generators b1, ..., bn for B and pick monic polynomials with coefficients in A with bi
as a root. Let C be the finitely generated sub F -algebra of A generated by the coefficients
of these polynomials. By construction B is integral over C and it is a finitely generated
C-algebra (since it is a finitely generated F -algebra).

By the exercise above, we know B is a finitely generated C-module. So A is a submod-
ule of a finitely generated C-module, and is hence itself a finitely generated C-module.
Therefore A is a finitely generated F -algebra. �

Finally, we can give the desired result about finite dimensionality of spaces of modular
forms.

Theorem 3.29. Let Γ be a congruence subgroup. Then
(1) for k < 0, Mk(Γ) = 0
(2) M0(Γ) = C (the constant functions)
(3) M(Γ) := ⊕k≥0Mk(Γ) is a finitely generated C-algebra

Proof. Since Γ is a congruence subgroup, we have Γ(N) ⊂ Γ for some N . Note that Γ(N)
is a normal subgroup of Γ(1). Set C = M(Γ), B = M(Γ(N)) and A = M(Γ(1)).

Denote by G the finite group Γ(N)\Γ(1) which acts on B, with invariants BG = A (we
let G act on each graded piece Mk(Γ(N)) by the weight k slash operator we discussed
earlier).

We can extend the G action to the fraction field Frac(B) by letting G act on the numer-
ator and denominator of a fraction.

We first check that
Frac(A) = (Frac(B))G .

This is because, if we write x ∈ (Frac(B))G as p
q

with p, q ∈ B, then

x
∏
g∈G

qg ∈ BG = A

so x is in Frac(A).
Now Artin’s lemma (as in Galois theory) implies that Frac(B)/Frac(A) is a finite exten-

sion of fields (indeed, it is Galois with Galois group G). This also implies that Frac(B) is
a finite extension of Frac(C).

Now we can apply Lemma 3.28: we know that A is a finitely generated C-algebra, so
we deduce that B is a finitely generated C-algebra. Applying Lemma 3.28 once more, we
deduce that C is a finitely generated C-algebra, as required. �

Corollary 3.30. For k ≥ 0, Mk(Γ) is a finite dimensional C-vector space.

Proof. We have shown that ⊕k≥0Mk(Γ) is a finitely generated C-algebra. By decomposing
a generator into its components of fixed weight, we obtain a generating set whose elements
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are modular forms f1, . . . , fn of weights k1 . . . , kn. This implies that Mk(Γ) is spanned by
the monomials

{
∏
i

f lii : li ≥ 0,
∑
i

kili = k}

�

4. Modular curves as Riemann surfaces

4.1. Recap on Riemann surfaces.

Definition 4.1. Suppose X is a Hausdorff topological space (topological space for short).
A complex chart on X is a homeomorphism φ : U → V from U ⊂ X open to V ⊂ C open.

Two charts φi : Ui → Vi are compatible if
φ2 ◦ φ−1

1 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)
is biholomorphic.

An atlas on X is a family
A = {φi : Ui → Vi : i ∈ I}

of compatible charts, with X = ∪i∈IUi.
We define an equivalence relation on pairs of topological spaces and atlases by (X,A) ∼

(X,A′) if every chart in A is compatible with every chart in A′.
A Riemann surface is defined to be an equivalence class of pairs (X,A′). We will usually

work with connected Riemann surfaces.
For X a Riemann surface, a function f : Y → C on an open subset Y ⊂ X is defined to

be holomorphic if for all charts (in some atlas) φ : U → V ,
f ◦ φ−1 : φ(U ∩ Y )→ C

is holomorphic. The set of holomorphic functions on Y is denoted by OX(Y ).

In fact the assignment Y 7→ OX(Y ) determines the Riemann surface structure on the
topological space X. We’ll develop this viewpoint a little, as it’s convenient for talking
about quotients of Riemann surfaces.

Definition 4.2. Let X be a topological space. A presheaf (of Abelian groups) on X is a
pair (F , ρ) comprising

• for any U ⊂ X open, an Abelian group F (U)
• for any V ⊂ U ⊂ X open, a group homomorphism

ρUV : F (U)F (V )
called ‘restriction from U to V ’ such that ρUU = id and ρVW◦ρUV = ρUW forW ⊂ V ⊂ U .
For f ∈ F (U) we usually write f |V for ρUV (f) ∈ F (V ).

The group F (U) is called the sections of F on U . Examples of presheafs are given by
F (U) = continuous functions from U to C. Denote this presheaf by Octs

X . Also, for X a
Riemann surface, we have the presheaf of holomorphic functions F (U) = OX(U).
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Definition 4.3. A presheaf F on X is a sheaf if for every open U ⊂ X, and every covering
family {Ui}i∈I of U (i.e. Ui ⊂ U with U = ∪i∈IUi), we have

• if f, g ∈ F (U) and f |Ui = g|Ui for all i, then f = g
• given fi ∈ F (Ui), i ∈ I such that fi|Ui∩Uj = fj|Ui∩Uj for all i, j ∈ I, then there

exists a section f ∈ F (U) such that f |Ui = fi for every i ∈ I.
The first point says sections are determined by local data (i.e. restriction to covers

by small open sets), the second says that we can define a section on U by ‘gluing’ sec-
tions defined on an open cover. Note that these statements are obviously satisfied by any
reasonable presheaf of functions.

In particular, it’s easy to check that the presheaves Octs
X and OX defined above are in

fact sheaves.
Definition 4.4. A C-space is a Hausdorff topological space X, equipped with a sheaf F
such that F (U) is a sub C-algebra of Octs

X for all U , and the restriction maps ρUV are given
by restriction of functions.

A morphism of C-spaces (X,F )→ (Y,G ) is a continuous map f : X → Y such that for
all opens V ⊂ Y , g ∈ G (V ), we have g ◦ f ∈ F (f−1(V )).

For example, if φ : U → V is a chart of a Riemann surface X, then φ : (U,OX |U) ∼=
(V,OV ). Here OX |U denotes the sheaf on U given by OX |U(U ′) = OX(U ′) for U ′ ⊂ U .
Definition 4.5. A sheafy Riemann surface is a C-space (X,F ) such that there is an open
cover ∪i∈IUi = X and isomorphisms of C−spaces

φi : (Ui,F |Ui) ∼= (Vi,OVi)
with Vi ⊂ C open.
Proposition 4.6. The map sending a Riemann surface X to the sheafy Riemann surface
(X,OX) identifies Riemann surfaces with sheafy Riemann surfaces, and identifies holo-
morphic maps between Riemann surfaces with C-space morphisms between their associated
sheafy Riemann surfaces.
Proof. The inverse map takes (X,OX) to an atlas provided by the definition of a sheafy
Riemann surface. Now just check everything: for example to check compatibility of the
charts, we need to show that τ = φ2 ◦φ−1

1 : φ1(U1 ∩U2)→ φ2(U1 ∩U2) is holomorphic, but
we know that τ identifies the holomorphic functions on these two open subsets of C, and in
particular it’s composition with the identity map is holomorphic, so τ is holomorphic. �

4.2. Group actions on Riemann surfaces. LetX be a Riemann surface, andG a group,
with a homomorphism r : G→ Authol(X) (i.e. if γ ∈ G then r(γ) is a biholomorphic map
from X to itself.
Definition 4.7. We say that the group G acts properly on X if for all compact subsets
A,B ⊂ X the set

{γ ∈ G : r(γ)A ∩B 6= ∅}
is finite.
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In particular for each x ∈ X the stabiliser Gx is finite.
Exercise 6. The group G acts properly if and only if the map α : G×X → X ×X taking
(γ, x) to x, r(γ)x is proper : i.e. when we give G the discrete topology and products the
product topology, α−1(K) is compact for any compact subset K of X ×X.
Lemma 4.8. Suppose G acts properly on X. Then for each x ∈ X there exists a connected
open neighbourhood Ux of x with compact closure satisfying

r(γ)Ux ∩ Ux 6= ∅ ⇐⇒ r(γ)x = x.

Proof. First note that we can find a connected open neighbourhood U of x with compact
closure such that r(γ)U ∩ U 6= ∅ for only finitely many γ. We do this by taking A = B
to be (the pre-image under some chart of) a small closed ball around x in the definition
of acting properly (U is then the interior of this closed ball). Let g1, ..., gn enumerate the
elements of G such that r(γ)U ∩ U 6= ∅. We want to show that for each i with gix 6= x we
can find an open subset x ∈ Ui ⊂ U such that Ui ∩ giUi = ∅. We will then set Ux = ∩Ui
(or the connected component of x in this intersection, if this intersection is disconnected).
By the Hausdorff property of X (so U is also Hausdorff), if gix 6= x we can find disjoint
open neighbourhoods Vi, V ′i of x, gix in U . Since G acts continuously on X we can find an
open neighbourhood Wi of x in X such that giWi ⊂ V ′i . We set Ui = Vi ∩Wi. Then Ui is
disjoint from V ′i , yet giUi ⊂ V ′i , so Ui ∩ giUi = ∅. �

Lemma 4.9. Suppose G acts properly on X. We topologise the set of orbits G\X by saying
that a subset of G\X is open if and only if its preimage in X is open. With this definition,
the maps π : X → G\X is continuous and open, and the quotient topological space G\X
is Hausdorff.

In fact the above topology is the unique topology such that the quotient map π : X →
G\X is continuous and every continuous map of topological spaces f : X → Y satisfying
f(gx) = f(x) for all g ∈ G factors uniquely (and continuously) through π.
Proof. First we show that π is open (it is obviously continuous). If U ⊂ X is an open set,
then π−1(π(U)) = ∪g∈GgU is a union of open sets gU , hence it is open, so by definition
π(U) is open.

Now we show that G\X is Hausdorff. Let Gx,Gy be two distinct points of the quotient
G\X. Let Kx, Ky be two distinct compact neighbourhoods of x, y (say given by small
closed balls with respect to some chart), and denote the interiors by Ux, Uy. We know that
gKx ∩Ky 6= ∅ only for g in a finite subset G0 ⊂ G. By shrinking the neighbourhoods Kx,
Ky we can assume that y is not in gKx for any g ∈ G0.

Let Vy be the open neighbourhood of y given by the intersection Uy ∩ (X\ ∪g∈G0 gKx).
Now gUx ∩ Vy = ∅ for all g ∈ G, so π(Ux) and π(Vy) are disjoint open neighbourhoods of
Gx and Gy. �

Note that we are just using the fact that X is a Hausdorff and locally compact topological
space.

The next lemma tells everything we’ll need to know about the structure of these quotient
spaces.
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Lemma 4.10. Let G,X be as above, and let x ∈ X. Then there exists an open neigh-
bourhood Ux of x (connected with compact closure) such that gUx = Ux for all g ∈ Gx and
satisfies

π−1(π(Ux)) =
∐

gGx∈G/Gx

g(Ux).

Proof. First we take U a neighbourhood of x with compact closure such that gU ∩ U 6=
∅ ⇐⇒ g ∈ Gx. Then we define Ux to be the connected component of x in ∩g∈GxgU (each
g ∈ Gx maps a connected set containing x to a connected set containing x, so we have
gUx = Ux). �

Now for U an open subset inG\X, consider the set of holomorphic functions OX(π−1(U)).
This set has a natural right action of G, given by

f g : x 7→ f(gx).
If we consider the invariants under the G-action, OX(π−1(U))G, then we have a set of
G-invariant continuous functions on X. By the definition of the quotient topology on
G\X, this set naturally embeds in Octs

G\X(U). This means that we can make the following
definition:
Definition 4.11. We given G\X the structure of a C-space by setting OG\X(U) =
OX(π−1(U))G for U an open subset of G\X.

It’s easy to see that OG\X is a sheaf on the topological space G\X.
Theorem 4.12. The pair (G\X,OG\X) defines a Riemann surface. The map π is holo-
morphic, and for x ∈ X, there exist charts around x, π(x) such that π is locally given
by

z 7→ znx

where nx = |r(Gx)| (moreover, r(Gx) is cyclic of order nx).
The Riemann surface structure we have defined on G\X satisfies the universal property

that every holomorphic map of Riemann surfaces f : X → Y which satisfies f(gx) = f(x)
for all g ∈ G factors uniquely (and holomorphically) through π.
Proof. We can immediately assume that G is a subgroup of Aut(X). Let x ∈ X. We are
going to define a chart on a neighbourhood of π(x). Denote by U the open neighbourhood
(connected with compact closure) of x provided by Lemma 4.10. Possibly shrinking U , we
can assume that U is biholomorphic to an open subset of C. Denote by V the image π(U).
Since π is open, this an open neighbourhood of π(x). Also, since π−1(V ) = ∐

gGx∈G/Gx g(U),
we have OG\X(V ) = OX(U)Gx (the datum of a Gx invariant function on U is equivalent to
a G-invariant function on the disjoint union of the gU). This tells us that it is enough to
consider the case where G is a finite group fixing 0 ∈ X ⊂ C, with X a connected open
subset of C (recall we are interested in the local structure of G\X in a neighbourhood of
π(x), and here we have mapped x to 0).

Now we claim that there is a biholomorphic map f from a neighbourhood U of 0 in
X to the open unit disc D such that f(0) = 0, gU = U for all g ∈ G and for every g,



MODULAR FORMS 25

f−1 ◦ g ◦ f is given by a rotation z 7→ ζ(g)z (ζ(g) a root of unity). In particular, the group
G is isomorphic to Z/nxZ.

Let’s assume this claim for the moment. Then we are reduced to the case where X is
the open unit disc and G ∼= Z/nxZ acts via i · z 7→ ζ iz with ζ a primitive nxth root of
unity. Now the chart G\X → X sending Gz to znx gives an isomorphism of C-spaces.

Finally we prove the claim. The key point is that for a sufficiently small open disc Dε,
centred at 0, in X, the set gDε is convex for every g ∈ G. See the Lemma below for a
proof of this.

Then the intersection U = ∩g∈GgDε is convex, hence simply connected, and moreover
gU = U for all g ∈ G. Since U is simply connected (with compact closure), it is biholo-
morphic to D via a map sending 0 to 0, and now we use the fact that biholomorphic maps
from the unit disc to itself, fixing a point, are given by rotations (the Schwarz lemma). �

Remark 4.13. The fact that this works for non-free group actions is special to one-dimensional
complex manifolds. An alternative presentation of this material is given by Miranda III.3.
Lemma 4.14. Let X be an open subset of C, containing 0, and suppose that f is an
automorphism of X with f(0) = 0. Then there is an ε ∈ R>0 such that f maps every disc
Dr = {|z| ≤ r} with r < ε onto a convex region (of course, we take ε small enough so that
all the Dr are contained in X).
Proof. See Farkas-Kra, III.7.7. The region f(Dr) is convex if and only if the curves Cr =
{f(z) : |z| = r} are all convex. Suppose arg(z) + arg(f ′(z)) is an increasing function of
arg(z) on {|z| = r}. Then we claim that the curve Cr is convex — this is because the
tangent to the curve Cr at f(z) has direction

d

dθ
f(z) = izf ′(z),

where z = reiθ.
So we compute the derivative of θ+ arg(f ′(reiθ)) = θ+ Re(log(−if ′(reiθ))) with respect

to θ, and get 1 + Re(zf ′′(z)/f ′(z)). Since f ′(z) 6= 0 (as f is biholomorphic), this derivative
is positive for |z| small. �

Proposition 4.15. The action of Γ(1) on H is proper.
Proof. Recall that Im(γτ) = Im(τ)/|cτ + d|2. Suppose we have A,B compact subsets of
H. We are interested in the set G0 of γ ∈ Γ(1) such that γA ∩ B 6= ∅. Now, since B is
compact, the set {Im(τ) : τ ∈ B} is contained in some compact interval I = [c1, c2] ⊂ R>0
(with c1 > 0). So if γτ ∈ B then Im(γτ) ∈ I so we have inequalities

Im(τ)/c2 ≤ |cτ + d|2 ≤ Im(τ)/c1,

which imply that there are only finitely many possibilities for the integers c and d (since
the real and imaginary parts of τ are also bounded). Suppose that two elements γ, δ of
Γ(1) have the same c, d. Then a computation shows that

γδ−1 = ±
(

1 n
0 1

)
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for some n ∈ Z. Since A and B are compact, there are only finitely many possibilities for
n. So we have shown that G0 is finite. �

Definition 4.16. For Γ a congruence subgroup, we denote by Y (Γ) the Riemann surface
obtained from the quotient Γ\H.

Corollary 4.17. The map j : Y (Γ(1))→ C is a biholomorphic map.

Proof. We showed before that j is a bijection. It is holomorphic since it is induced by a Γ(1)-
invariant holomorphic function onH, and holomorphic bijections are biholomorphisms. �

4.3. Cusps and compactifications.

Definition 4.18. Suppose Γ is a congruence subgroup. Then the set of cusps of Y (Γ) is
defined to be the set of orbits CΓ := Γ\P1(Q) where the action of an element of SL2(Z) on
(x : y) ∈ P1(Q) is given by

γ(x : y) = (ax+ by : cx+ dy).
We denote the cusp Γ(1 : 0) by ∞. As usual, we think of P1(Q) bijecting with Q∪ {∞}

by sending (x : y) to x/y (or ∞ if y = 0).
For s ∈ CΓ, we define the width of the cusp s = Γx to be the index of the subgroup
{±I}Γx in the stabiliser Γ(1)x. We denote this positive integer by hs (Exercise: this is
independent of the choice of representative x for s).

For example, when Γ = Γ(1) we have a single cusp, since the action of SL2(Z) on P 1(Q)
is transitive.

For Γ = Γ0(p) there are two cusps, one of width 1 and the other of width p.
If we denote by H∗ the disjoint union H∐P1(Q) then we define (first as a set) X(Γ) =

Γ\cH∗ = Y (Γ)∐CΓ.
Now we make H∗ into a topological space. We will list a bunch of open sets, and take

the topology generated by them. First we let the usual open sets in H be open in H∗. The
sets UA = {τ ∈ H : Im(τ) > A}∪{∞}are also declared to be open: they are the preimages
of the open discs centred at 0 under the map τ 7→ e2πiτ ).

Finally, we declare to be open sets of the form gUA for g ∈ Γ(1) — these will be open
neighbourhoods of the point g(1 : 0) ∈ P1(Q), and they are regions bounded by circles
touching the real line at g(1 : 0) (if g does not stabilise (1 : 0)).

We define a topology on the quotient X(Γ) as usual, by saying an set is open if and only
if its preimage in H∗ is open.

Lemma 4.19. Let x be an element of P1(Q). Then there exists an open neighbourhood U
of x in H∗ such that

Γx := {g ∈ γ : gx = x} = {g ∈ Γ : gU ∩ U 6= ∅}.

Proof. First we do this for x =∞. Let A ∈ R>0. We have

gUA = {τ ∈ H : Im(g−1τ) > A} = {τ ∈ H : Im(τ)
| − cτ + d|2

> A}.
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Since | − cτ + d|2 ≥ c2Im(τ)2, if c 6= 0 we have

τ ∈ gUA =⇒ Im(τ) > AIm(τ)2 =⇒ Im(τ) < 1/A

so, for large enough A, U and gUA are disjoint for all g with c 6= 0. Now c = 0 if and only
if g∞ =∞, so we are done.

Now for general x we fix g0 with g0∞ = x, and take U = g0UA for A large enough (as in
the above paragraph). �

Proposition 4.20. Let Γ be a congruence subgroup, then the topological space X(Γ) is
connected, Hausdorff and compact.

Proof. First we check thatH∗ is connected, sinceH is connected, and each element of P1(Q)
has a base of open neighbourhoods having non-trivial intersection with H. It follows that
the continuous image X(Γ) of H∗ is connected.

To show that X(Γ) is Hausdorff, first recall that X(Γ(1)) is homeomorphic to the Rie-
mann sphere (elementary way to see this is to stare at the funamental domain). For
general Γ we know we can separate points of Y (Γ). Suppose we have a cusp s and a point
y ∈ Y (Γ). The image of s in X(Γ(1)) is ∞ and the image of y in X(Γ(1)) is in Y (Γ(1)).
Since the image of these points can be separated by open neighbourhoods, s and y can be
separated by the pre-images of these opens. The fact that two cusps can be separated by
open neighbourhoods follows from Lemma 4.19.

For compactness, first note that the extended fundamental domain F
∗ = F ∪ {∞} is

a compact subset of H∗. Now X(Γ) is a continuous image of the finite union of compact
sets ∪Γγ∈Γ\Γ(1)γF

∗, so it is compact. �

Lemma 4.21. Let Γ be a congruence subgroup. There exist open neighbourhoods Us of
each cusp s in X(Γ) such that the Us are pairwise disjoint, and are all homeomorphic to
the unit disc D, via maps sending s to 0 which are biholomorphisms from Us\{s} ⊂ Y (Γ)
to the punctured unit disc D∗.

Proof. Let π be the quotient map H∗ → X(Γ). It follows from Lemma 4.19 that for A
large enough, if we choose gs ∈ Γ(1) with gs∞ = x and Γx = s for each cusp s, then
U(gs, A) = π(gsUA) gives a pairwise disjoint set of open neighbourhoods of the cusps.

Set U∗ = gsUA and denote by U the intersection U∗∩H. The natural inclusion U∗ → H∗
induces a map Γx\U∗ → X(Γ). For A large enough, Lemma 4.19 tells us that this map
is injective. Its image is the open neighbourhood U(gs, A) of the cusp s. Recall that a
holomorphic function on V = U(gs, A)\s is by definition a Γ-invariant holomorphic function
on π−1(V ) which is the same thing as a Γx-invariant holomorphic function on U .

Let hs be the width of the cusp s. Then

{±I}Γx = {±I}gs
(

1 hsZ
0 1

)
g−1
s

and the map sending τ 7→ e2πi(g−1
s τ)/hs for τ ∈ Γx\U and x to 0 sends Γx\U∗ homeomor-

phically to an open disc.
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Rescaling gives a homeomorphism from U∗/Γx to the unit disc, and so we get a home-
omorphism from U(gs, A) to the unit disc. Restricting this map to U(gs, A)\s gives a
biholomorphism to the punctured unit disc, since it is a homeomorphism induced by a
Γx-invariant holomorphic function on U . �

Definition 4.22. We define a Riemann surface structure on X(Γ) extending the Riemann
surface structure on Y (Γ) by adding the charts on the neighbourhoods of the cusps given
by Lemma 4.21.

Since a continuous function on the unit disc which is holomorphic on the punctured unit
disc is holomorphic everywhere, we can define the Riemann surface structure sheaf theoret-
ically by saying that a continuous function on an open subset U of X(Γ) is holomorphic if
and only if its restriction to U ∩Y (Γ) is holomorphic. Equivalently, we say such a function
is holomorphic if and only if it defines a holomorphic function of D when we apply the
homeomorphisms of Lemma 4.21.

Note that it follows from the proof of Lemma 4.21 that the map X(Γ) → X(Γ(1)) has
the form z 7→ zhs with respect to some charts around s and ∞.

5. Differentials and divisors on Riemann surfaces

5.1. Meromorphic differentials.

Definition 5.1. For U ⊂ C open, n ∈ Z>0 we define the space of meromorphic differentials
of degree n on U by

Ω⊗n(U) := {f(z)dzn : f meromorphic on U}.

For φ : U1 → U2 holomorphic, define
φ∗ : Ω⊗n(U2)→ Ω⊗n(U1)

by φ∗(f(z2)(dz2)n) = f(φ(z1))(φ′(z1))n(dz1)n.

So Ω⊗n(U) is a C-vector space, isomorphic to the space of meromorphic functions on
U (but note that the pullback by φ∗ of a differential is not the same as the pullback of a
function).

Definition 5.2. Suppose X is a Riemann surface. Suppose we have two open subsets
U1, U2 of X, with charts φi : Ui ∼= Di ⊂ C. Denote by τij the transition functions
φj ◦ φ−1

i : φi(Ui ∩ Uj) ∼= φj(Ui ∩ Uj). Then a meromorphic differential (of degree n) on X
is a rule sending charts φ : U → D on X to meromorphic differentials of ω(φ) of degree n
on D, such that for any two charts φ1, φ2 the differentials ω(φ1) and ω(φ2) are compatible:
i.e. τ ∗ij(ω(φj)|φj(Ui∩Uj)) = ω(φi)|φi(Ui∩Uj) for i, j ∈ {1, 2}.

The set of differentials on X has an obvious structure of a C-vector space.

Remark 5.3. By sending an open subset U of X to the C-vector space of degree n mero-
morphic differentials on U , we can define a sheaf Ω⊗nX on X. To check the sheaf property
you need the following lemma:
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Lemma 5.4. Let X be a Riemann surface, and A an atlas on X. Suppose we have a
collection of compatible meromorphic differentials for just the charts in A. Then there exists
a unique meromorphic differential on X extending the given meromorphic differentials on
the charts.
Proof. Given any chart φ : U → D on X we can define a meromorphic differential on D
by appropriate tranformations of the meromorphic differentials associated to charts in the
atlas: if φi : Ui → Di is a chart then we get a biholomorphism φ(U ∩Ui) ∼= φi(Ui ∩U) and
pulling back a differential on φi(Ui ∩ U) gives a differential on φ(U ∩ Ui). Doing this for
all i gives a collection of compatible differentials on an open cover of D, which glue to the
desired differential on D. �

It is now straightforward, given a holomorphic map of Riemann surfaces φ : X → Y to
define the pullback map φ∗ : Ω⊗nY (V )→ Ω⊗nX (φ−1(V )) for any open V ⊂ Y .

5.2. Meromorphic differentials and meromorphic forms. In this section we let Γ be
a congruence subgroup. Recall that we have a holomorphic map π : H → Y (Γ) ↪→ X(Γ).
Definition 5.5. Suppose ω is an element of Ω⊗k(X(Γ)). We denote by fω the meromorphic
function on H given by π∗ω = fω(τ)(dτ)k.
Theorem 5.6. Suppose ω ∈ Ω⊗k(X(Γ)). Then fω is a meromorphic form of weight 2k and
level Γ. Moreover, the map ω 7→ fω is an isomorphism of C-vector spaces from Ω⊗k(X(Γ))
to the space of meromorphic forms of weight 2k and level Γ.
Proof. First we check that fω is weakly modular of weight 2k and level Γ. Let γ ∈ Γ.
We have a biholomorphism γ from H to H which descends to the identity map on Y (Γ).
Consider the meromorphic differential on H given by γ∗π∗ω. On the one hand, this is equal
to (π ◦ γ)∗(ω) = π∗ω, since π ◦ γ = π. On the other hand, we have

γ∗(fω(τ)(dτ)k) = fω(γτ)
(
dγτ

dτ

)k
(dτ)k = fω(γτ)(cτ + d)−2k(dτ)k

so we deduce that fω(γτ)(cτ + d)−2k = f(τ) and fω is indeed weakly modular of weight 2k
and level Γ.

Next we check that fω is meromorphic at the cusps. Let α ∈ SL2(Z). The map α : H∗ →
H∗ descends to a biholomorphism α : X(α−1Γα) ∼= X(Γ). It follows from a calculation
as above that fα∗ω = fω|α,k. So it suffices to show that fω is meromorphic at ∞. For
large enough A, the image of UA ∪ {∞} in X(Γ) is biholomorphic to an open disc via
τ 7→ e2πiτ/h = qh so the fact that fω is meromorphic at ∞ follows immediately from the
fact that ω is a meromorphic differential: if the differential on this chart in a neighbourhood
of ∞ is g(qh)(dqh)k then fω satisfies

fω(τ) =
(2πiqh

h

)k
g(qh).

The map ω 7→ fω is clearly C-linear. We show it is an isomorphism by writing down
an inverse. For f a meromorphic form of weight 2k and level Γ we want to define a
meromorphic differential ω(f) on X(Γ) which pulls back to f(τ)(dτ)k on H.
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Let x ∈ H. Then, from the proof of Theorem 4.12 we know that there are charts from
neighbourhoods U of x and V of π(x) to the unit disc such that π is the map z 7→ znx in
this coordinate and Γx acts via z 7→ ζ iz, with ζ a primitive nxth root of unity.

Since f(τ)(dτ)k defines a Γx-invariant meromorphic differential on U , in the new co-
ordinate we have a meromorphic differential g(z)(dz)k on the open unit disc, such that
g(ζ iz)(d(ζ iz))k = g(z)(dz)k for all i. Therefore we have g(ζ iz) = ζ−ikg(z) for all i, so the
function zkg(z) is Γx-invariant and is equal to h(znx) for a meromorphic function h on the
open unit disc.

Now we define a meromorphic differential on the open unit disc by

ω = (nxz)−kh(z)(dz)k.

This pulls back under z 7→ znx to

(nxznx)−kh(znx)(nxznx−1)k(dz)k = z−kh(znx)(dz)k = g(z)(dz)k,

so we define ω(f) on the chart from V to the open unit disc to be given by ω — by
construction, it pulls back to f(τ)(dτ)k on the neighbourhood U of x.

Finally, we need to define our meromorphic differential in neighbourhoods of the cusps.
It is enough to consider the cusp Γ∞, since for a general cusp s = Γx with x = α∞ we can
define a meromorphic differential ω in a neighbourhood of s by taking the meromorphic
differential ω(f |α,2k) defined in a neighbourhood of (α−1Γα)∞ in X(α−1Γα) and pulling
back by the biholomorphism X(Γ) ∼= X(α−1Γα).

Recall that associated to f(τ) we have a meromorphic function on the unit disc, extend-
ing the holomorphic function F on the punctured unit disc defined by F (e2πiτ/h) = f(τ).
Here h is the width of the cusp ∞.

Recall that the chart of Lemma 4.21 is also given in terms of the biholomorphism τ 7→
e2πiτ/h = qh from UA/Γ∞ to an open disc. We define a meromorphic differential on this
disc

ω =
(2πiqh

h

)−k
F (qh)(dqh)k.

Then ω pulls back to the meromorphic differential f(τ)(dτ)k on UA under the map τ 7→
e2πiτ/h.

We just have to check that the meromorphic differentials we have defined are all com-
patible. However, they all pull back to restrictions of the same meromorphic differential,
f(τ)(dτ)k on H, so this follows from the next lemma. �

Lemma 5.7. Suppose π : X → Y is a non-constant morphism of Riemann surfaces, with
Y connected. Then the map π∗ is an injection from Ω⊗n(Y ) to Ω⊗n(X).

Proof. We can assume that X and Y are open subsets of C, with Y connected. So we have
ω = f(z)(dz)⊗n and f(π(z))(π′(z))n = 0 for all z ∈ X. Since π is non-constant, the zeroes
of π′ are discrete, and so f(π(z)) = 0 on an open subset of X. Hence f is zero on an open
subset of Y (since π is an open map by the open mapping theorem), and f is therefore
zero. �
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There is a natural definition of the order of vanishing of a meromorphic differential at a
point:

Definition 5.8. Let X be a Riemann surface, and ω a meromorphic differential on X.
Let x ∈ X be a point. Then we define vx(ω) to be the order of vanishing of f(z) at z = z0,
where ω is given by f(z)(dz)n on a chart defined on a neighbourhood of x sending x to z0.

It’s an exercise to check that vx is well-defined (i.e. it doesn’t matter what chart we
choose). Recall that for f ∈Mk(Γ(1))\{0} we previously defined ordx for x ∈ X(Γ(1)) —
this was just the order of vanishing of f at x ∈ Y (Γ(1)), or the natural order of vanishing
of f at ∞ defined in terms of its q-expansion.

Exercise 7. By considering the proof of Theorem 5.6, show that for f ∈M2k(Γ(1)) non-zero
we have

v∞(ωf ) = ord∞(f)− k

vx(ωf ) = ordx(f)− k(nx − 1)
nx

for x ∈ Y (Γ).
Deduce that the equality

ord∞(f) +
∑

x∈Y (Γ)

1
nx

ordx(f) = 2k
12

of Proposition 2.18 is equivalent to the equality∑
x∈X(Γ)

vx(ωf ) = −2k.

The last equality is a statement that the degree of the divisor associated to ωf is equal
to −2k = (2g − 2)k, where g = 0 is the genus of X(Γ(1)).

5.3. Divisors. We assume X is a compact connected Riemann surface throughout this
section.

Definition 5.9. Recall the definition of the group of divisors on a Riemann surface X: it
is the free Abelian group generated by the points of X, i.e. formal sums ∑x∈X ax[x] with
ax = 0 for almost all x. A divisor D has a degree deg(D) = ∑

ax, where D = ∑
x∈X ax[x].

We say a divisor is effective if ax ≥ 0 for all x, and write D ≥ 0 if D is effective.
For f a non-zero meromorphic function on X we define the divisor of f to be

div(f) =
∑
x∈X

vx(f)[x]

where vx is the order of vanishing at x. Note that since X is compact this sum is finite.
Similarly, we define div(ω) for a meromorphic differential ω.
For D a divisor on X, we also define a C-vector space

L(D) = {f a non-zero meromorphic function on X : div(f) +D ≥ 0} ∪ {0}.
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The vector space structure is given by scalar multiplication and addition of meromorphic
functions.

In fact L(D) is the group of sections of a sheaf on X.

Definition 5.10. For D = ∑
ax[x] a divisor on X and U an open subset of X, denote by

D|U the divisor on U given by ∑x∈U ax[x] and define
OX(D)(U) = {f a non-zero meromorphic function on U : div(f) +D|U ≥ 0} ∪ {0}.

Note that we’re abusing notation a bit, since U is not necessarily compact, so div(f)
might be an infinite formal sum.

We can also denote the sheaf of holomorphic differentials onX by Ω1
X (it is the subsheaf of

the meromorphic differentials of degree 1 given by demanding that in the local expressions
f(z)dz, f is holomorphic).

Exercise 8. Supposing ω0 is a non-zero meromorphic differential of degree 1 on X, then we
have

Ω1
X(U) ∼= OX(div(ω0))(U)

via the map ω 7→ ω/ω0.

Remark 5.11. Every compact Riemann surface has a non-constant meromorphic function.
In fact, for the Riemann surfaces X(Γ) this is easy to see: we have the function X(Γ) →
X(Γ(1)) ∼= P1. We obtain a non-zero meromorphic differential by pulling back a non-zero
meromorphic differential on P1.

The Riemann-Roch theorem:

Theorem 5.12. Let X be a compact connected Riemann surface, and let D be a divisor
on X. Denote by g the genus of X. Denote by K the divisor div(ω0) for a non-zero
meromorphic differential of degree 1 on X. Then

dimL(D)− dimL(K −D) = deg(D) + 1− g.

Remark 5.13. By Serre duality we can write the above equality as
dimH0(X,OX(D))− dimH1(X,OX(D)) = deg(D) + 1− g

so this is an Euler characteristic formula for the cohomology of the sheaf OX(D).

Corollary 5.14. We have dimH0(X,Ω1
X) = g and deg(K) = 2g − 2.

Proof. Set D = 0 and D = K. �

Lemma 5.15. Suppose ω ∈ Ω⊗n(X). Then div(ω) has degree (2g − 2)n.

Proof. Let ω0 be a non-zero meromorphic differential of degree one. If ω0 is locally given
by f(z)dz it is easy to check that the local expressions f(z)n(dz)n define a non-zero mero-
morphic differential of degree n, which we denote by ωn0 . Now ω/ωn0 defines a meromorphic
function, whose associated divisor has degree 0, so the degree of div(ω) is n times the
degree of div(ω0) which is (2g − 2)n. �
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5.4. The genus of modular curves. We can compute the genus of modular curves using
the Riemann-Hurwitz formula:

Theorem 5.16. Suppose f : X → Y is a holomorphic map between compact connected
Riemann surfaces. Then

2− 2g(X) = deg(f)(2− 2g(Y ))−
∑
x∈X

(ex − 1).

Here g() denotes the genus and ex denotes the ramification index of the map f at the
point x (i.e. locally around x, f looks like z 7→ zex).

Our modular curves X(Γ) come equipped with maps to X(Γ(1)) ∼= P1, so we apply
Riemann-Hurwitz to these maps.

Set r2 = |{x ∈ Y (Γ) : nx = 2}| and r3 = |{x ∈ Y (Γ) : nx = 3}|. As before, we set r∞ to
be the number of cusps of X(Γ).

Theorem 5.17. We have

g(X(Γ)) = 1 + [PSL2(Z) : Γ]
12 − r2

4 −
r3

3 −
r∞
2 .

Proof. Let f : X(Γ)→ X(Γ(1)) be the natural map. First note that deg(f) = [PSL2(Z) :
Γ]. We denote this integer by d for the rest of the proof. Set g = g(X(Γ).

Now we compute some ramification indexes. Let x ∈ Y (Γ) with image f(x) ∈ Y (Γ(1)).
Recall that the quotient map H → Y (Γ) looks like z 7→ znx around a pre-image of x,
whilst the map H → Y (Γ(1)) looks like z 7→ znf(x) . This implies that the map f looks like
z 7→ znf(x)/nx , so we have ex = nf(x)/nx.

For a cusp s a similar computation shows that we have es = hs, the width of s.
Now Riemann-Hurwitz says that

2− 2g = 2d−
∑

x∈X(Γ)
(ex − 1) = 2d−

∑
f(x)=i

(ex − 1)−
∑

f(x)=ω
(ex − 1)−

∑
f(x)=∞

(ex − 1).

For P = i or ω we have ∑f(x)=P (ex− 1) = (nP − 1)(|f−1(P )| − rnP ). On the other hand,
we have d = ∑

f(x)=P ex = nP (|f−1(P )| − rnP ) + rnP . So we deduce that
∑

f(x)=P
(ex − 1) = nP − 1

nP
(d− rnP ).

Therefore we have

2− 2g = 2d− 1
2(d− r2)− 2

3(d− rn3)− d+ r∞

which rearranges to give the desired result. �

Note that is follows from this result that

2g − 2 + r2

2 + 2r3

3 + r∞ = d

6 > 0.
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5.5. Riemann-Roch and dimension formulae. Now we have everything we need to
compute the dimensions of the C-vector spaces M2k(Γ).

Recall that we have proved that meromorphic forms of weight 2k and level Γ correspond
to meromorphic differentials of degree k on X(Γ). We want to identify the image of the
subspace of modular forms.

Suppose f is a meromorphic form and ω(f) its associated differential. It follows just as
in Exercise 7 that for x ∈ Y (Γ) we have

vx(ω(f)) = ordx(f)− k(nx − 1)
nx

and for s = Γx a cusp of X(Γ) with αx =∞ (α ∈ Γ(1)) we have
vs(ω(f)) = ord∞(f |α,2k)− k.

Here the order of vanishing of f |α,2k at ∞ is in terms of the variable qhs , where hs is the
width of the cusp s. Note that f |α,2k has a Fourier expansion in the variable qhs because
its weight is even.

We deduce the following
Proposition 5.18. Suppose f is a meromorphic form of weight 2k and level Γ, with
associated differential ω(f). Then f is a modular form if and only if nxvx(ω(f)) + k(nx −
1) ≥ 0 for all x ∈ Y (Γ) and vs(ω(f)) + k ≥ 0 for all cusps s.

The modular form f is cuspidal if and only if we moreover have vs(ω(f)) + k − 1 ≥ 0
for all cusps s.

Note that the first condition is equivalent to

vx(ω(f)) + bk(nx − 1)
nx

c ≥ 0.

Definition 5.19. Let ω0 be a non-zero differential on X(Γ), set K = div(ω0) and define
divisors

D(k) = kK + k
∑

s∈X(Γ)\Y (Γ)
[s] +

∑
x∈Y (Γ)

bk(nx − 1)
nx

[x]

and
Dc(k) = kK + (k − 1)

∑
s∈X(Γ)\Y (Γ)

[s] +
∑

x∈Y (Γ)
bk(nx − 1)

nx
[x]

on X(Γ).
Theorem 5.20. We have isomorphisms M2k(Γ) ∼= L(D(k)) and S2k(Γ) ∼= L(Dc(k)) given
by f 7→ ω(f)/ωk0 .
Proof. This follows immediately from Proposition 5.18. �

Corollary 5.21. Denote by r∞ the number of cusps of X(Γ), and denote by g the genus
of X(Γ). Then we have, for k ≥ 1

dimM2k(Γ) = kr∞ +
∑

x∈Y (Γ)
bk(nx − 1)

nx
c+ (2k − 1)(g − 1)
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and for k ≥ 2

dimS2k(Γ) = (k − 1)r∞ +
∑

x∈Y (Γ)
bk(nx − 1)

nx
c+ (2k − 1)(g − 1).

We have dimM0(Γ) = 1, dimS0(Γ) = 0 and dimS2(Γ) = g.

Proof. This all follows from Riemann-Roch and the fact that a holomorphic function on a
compact connected Riemann surface is constant. We also use the observation that

2g − 2 + r2

2 + 2r3

3 + r∞ = d

6 > 0.

�

Recall that we used the fact that dim(M2(Γ0(4))) = 2 a few lectures ago. We can now
prove this:

Corollary 5.22. Let k ≥ 0. We have dimM2k(Γ0(4)) = k + 1.

Proof. We have [Γ(1) : Γ0(4)] = 6, so g = 1 + 1
2 −

r2
4 −

r3
3 −

r∞
2 . We also have two

forms G(2)
2 and G

(4)
2 which give linearly independent elements of the quotient vector space

M2(Γ0(4))/S2(Γ0(4)) (see this by looking at the constant terms of their q-expansions at
the cusps), so dimM2(Γ)− dimS2(Γ) = r∞ − 1 ≥ 2.

So g ≤ − r2
4 −

r3
3 , which implies that g = r2 = r3 = 0 and r∞ = 3. Now apply the

dimension formula.
In fact, it’s probably easier just to determine the cusps of X(Γ0(4)), which immediately

gives r∞ = 3. . . �

6. Hecke operators

In this section we will define Hecke operators on spaces of modular forms of level Γ1(N).
To give the cleanest description, we begin by giving an alternative description of modular
forms in terms of functions on lattices.

6.1. Modular forms and functions on lattices.

Definition 6.1. A lattice in C is a Z-module L ⊂ C generated by two elements of C which
are linearly independent over R.

For N > 1 a Γ1(N)-level structure on a lattice L ⊂ C is a point t ∈ C/L of exact order
N (i.e. a point of the elliptic curve C/L of exact order N).

Denote the set {(L, t)} comprising pairs of lattices with a Γ1(N)-level structure by LN .
Suppose k ∈ Z and F is a function from LN to C. We say that F has weight k if

F (λL, λt) = λ−kF (L, t) for all (L, t) ∈ LN and λ ∈ C×.

Remark 6.2. For example, the function Gk(L) = ∑
06=l∈L l

−k for k > 2 even is a function of
weight k on L1. Note that Gk(Zτ ⊕ Z) = Gk(τ) where Gk(τ) is previously defined usual
Eisenstein series.
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Denote by M the set of pairs ω = (ω1, ω2) of elements of C× such that ω1/ω2 ∈ H. To
such a pair we can associate a lattice L(ω1, ω2) = Zω1 ⊕ Zω2 with Γ1(N)-level structure
t(ω1, ω2) = ω2/N + L(ω1, ω2). This defines a surjective map from M to LN . The group
GL+

2 (R) acts on M by sending (ω1, ω2) to (aω1 + bω2, cω1 + dω2).

Lemma 6.3. The map M → LN identifies LN with the quotient of M by the action of
Γ1(N).

Proof. We first check that the map is surjective. Suppose (L, t) ∈ LN .
Let ω′1, ω′2 be any basis for L. We have

t = 1
N

(aω′1 + bω′2) + L

where gcd(a, b,N) = 1. We can then find a′, b′, congruent to a, b mod N , such that a′, b′
are coprime. Now set ω2 = a′ω′1 + b′ω′2. Since a′ and b′ are coprime, we have a basis ω1, ω2
for L, and t = ω2

N
+ L. If ω1/ω2 is not in H, replace ω1 with −ω1.

To show that this map identifies LN with the quotient of M by Γ1(N), suppose we have
two elements (ω1, ω2), (ω′1, ω′2) of M with the same image in LN . In particular, we have
γ ∈ SL2(Z) with

γ ·
(
ω1
ω2

)
=
(
ω′1
ω′2

)
the two elements of M span the same lattice L. Moreover, since ω′2/N = ω2/N mod L, the
matrix γ lies in Γ1(N). �

We also have an action of λ ∈ C× on M by mapping (ω1, ω2) to (λω1, λω2), so we can
define a notion of weight k for complex functions on M . The quotient of M by this action
can be identified with H via the map (ω1, ω2) 7→ ω1/ω2. This identifies LN/C× with the
quotient Γ1(N)\H.

The left action of GL+
2 (R) on M induces a right action on functions on M , by setting

F̃ · γ(ω) = F̃ (γω).
On making the above observations, there is a natural way to pass between functions

on M,LN and H. Given F : LN → C of weight k we first define F̃ : M → C by
F̃ (ω) = F (L(ω), t(ω)). Then we define f(τ) = F̃ (τ, 1) for τ ∈ H.

Proposition 6.4. Let k ∈ Z. The above association of F with F̃ and f gives a bijective
correspondence between the following sets of complex-valued functions:

(1) functions F : LN → C of weight k
(2) functions F̃ : M → C of weight k which are invariant under the action of Γ1(N)
(3) functions f : H → C which are invariant under the slash operator |γ,k for γ ∈ Γ1(N)

Proof. Exercise. �

Now we say that a function F on LN of weight k is weakly modular/a modular form/a
cusp form if the associated function f on H is.
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6.2. Hecke operators.

Definition 6.5. Suppose F is a function LN → C and n ∈ Z≥1. Then we define a function
TnF by

TnF (L, t) = 1
n

∑
L′
F (L′, t)

where the sum is over lattices L′ ⊃ L with index [L′ : L] = n such that t+ L′ is a point of
exact order N in C/L′.

For n coprime to N , we also define

Tn,nF (L, t) = 1
n2F ( 1

n
L, t).

Proposition 6.6. We have the following identities:
(1) if m and n are coprime, then Tm ◦ Tn = Tmn
(2) if p is prime and divides N and n ≥ 1 then Tpn = T np
(3) for p prime and coprime to N , n ≥ 1, Tpn ◦ Tp = Tpn+1 + pTpn−1 ◦ Tp,p
(4) Tn ◦ Tm,m = Tm,m ◦ Tn
(5) Tm,m ◦ Tn,n = Tmn,mn.

Proof. The last two properties are easy to check, and are left to the reader. Now we
consider the first claim. Let (L, t) ∈ LN . We observe that Tmn(L, t) is a sum over lattices
L′′ containing L with index mn, such that t still has exact order N when reduced modulo
L′′. Since m and n are coprime, there is a unique lattice L′ such that

L ⊂ L′ ⊂ L′′

and L has index n in L′. Indeed, L′/L is the unique subgroup of L′′/L of order n. Clearly
t has exact order N when reduced modulo L′′.

Conversely, given
L ⊂ L′ ⊂ L′′

where L has index n in L′ and L′ has index m in L′′, and t ∈ C/L such that t has exact
order N modulo L′′ we see that L ⊂ L′′ has index mn. So we see that the elements of
LN occuring in Tmn(L, t) and Tm ◦ Tn(L, t) = 1

m

∑
L′ Tn(L′, t) are the same and we have

Tn = Tm ◦ Tn.
Now we consider the second item. By induction, it suffices to show that Tpn−1Tp = Tpn

for n ≥ 2. Let t′ = (N/p)t. Then Tpn(L, t) = p−n
∑[(L′, t)] where the summation is over

L′ ⊃ L such that L′/L ⊂ 1
pn
L/L has order pn and does not contain t′. Now we claim that

L′/L is cyclic. This is because if it is not cyclic it contains 1
p
L/L which contains t′ (since

pt′ = 0). We may now argue as in the previous part, since a cyclic subgroup of order pn
contains a unique subgroup of order p.

For the third claim, first note that Tpn ◦ Tp(L, t), Tpn+1(L, t) and Tpn−1Tp,p(L, t) are all
given by linear combinations of lattices containing L with index pn+1. Let L′′ be such a
lattice. Denote its coefficient in the three terms by a, b, c. Then we want to show that
a = b+ pc. We can immediately observe that b = 1. There are now two cases:
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(1) L′′ 6⊃ 1
p
L: this implies that c = 0. Now a is the number of lattices L′ contained in

L′′ with index pn. Such an L′ is contained in L′′ ∩ 1
p
L. Since L′′ 6⊃ 1

p
L we actually

have L′ = L′′ ∩ 1
p
L and so a = 1 and we are done.

(2) L′′ ⊃ 1
p
L: in this case c = 1, and L′ as above can be any sublattice of 1

p
L of index

p. So a = 1 + p and we are again done.
�

Corollary 6.7. The Tn are polynomials in the elements Tp and Tp,p, for p|n.

Proof. This follows from induction on n. �

Corollary 6.8. The C-subalgebra T of End({F : LN → C}) generated by the Tp and Tp,p
for p prime is commutative and contains all the Tn and Tn,n.

Proof. This follows from the above proposition and corollary. �

The above relations between the Tn and Tn,n can be nicely summarised as indentities of
formal power series with coefficients in T. For p|N we have (in the ring T[[X]]) an identity

∞∑
n=0

TpnX
n = 1

1− TpX
.

For p - N we have
∞∑
n=0

TpnX
n = 1

1− TpX + pTp,pX2 .

If we replace X in these identities with p−s we get
∞∑
n=1

Tnn
−s =

∏
p

∞∑
n=0

Tpnp
−ns =

∏
p|N

1
1− Tpp−s

∏
p-N

1
1− Tpp−s + Tp,pp1−2s .

Definition 6.9. For d ∈ Z coprime to N and F : LN → C denote by 〈d〉F the function
defined by 〈d〉F (L, t) = F (L, dt). Since t has order N this depends only on the class of d
in (Z/NZ)×.

Lemma 6.10. The actions of Tn, Tn,n and 〈d〉 take weight k functions on LN to weight k
functions on LN . If F is a weight k function on LN then Tn,nF = nk−2〈n〉F .

Proof. Left to the reader. �

As a consequence, we have actions of Tn, Tn,n and 〈d〉 on the vector space of functions
on H invariant under Γ1(N) acting by the weight k slash operator. There is a more matrix
theoretic description of the Hecke operators, as follows.

Definition 6.11. Let SNn be the set of matrices (with integer entries)
(
a b
0 d

)
with ad = n,

a ≥ 1, a coprime to N and 0 ≤ b < d.
Suppose σ ∈ SNn and (L, t) ∈ LN .Write L = Zω1 ⊕ Zω2 with ω1/ω2 ∈ H and t = ω2/N .

Then we denote by Lσ the lattice with basis ( a
n
ω1 + b

n
ω2,

d
n
ω2).
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Remark. The choice of ω1, ω2 in the above definition is well-defined up to multiplication

of the column vector
(
ω1
ω2

)
by an element of Γ1(N) (this is Lemma 6.3). The lattices

Lσ depend on the choice of ω1, ω2 but the following lemma shows that the set of lattices
{Lσ : σ ∈ SNn } is independent of this choice.

Lemma 6.12. The map σ 7→ Lσ is a bijection from SNn to the set of lattices L′ ⊃ L with
[L′ : L] = n such that t has order N when reduced modulo L′.

Proof. Since det(σ) = n we see that L has index n in Lσ. Since a is coprime to N , ω2/N
still has order N in C/Lσ. Conversely, suppose L has index n in a lattice L′ and t has
order N modulo L′. Then we let a and d be the cardinality of Y1 = 1

n
L/(L′ + 1

n
Zω2) and

Y2 = 1
n
Zω2/L

′ ∩ 1
n
Zω2 respectively.

There is a short exact sequence of abelian groups

0→ Y2 →
1
n
L/L′ → Y1 → 0

so ad = n. Since t = ω2/N and L′ ∩ 1
n
Zω2 = d

n
Zω2 = 1

a
Zω2, the condition that t has order

N modulo L′ is equivalent to the condition that a is coprime to N . Since a
n
ω1 has image

zero in Y1, there exists b ∈ Z such that a
n
ω1 + b

n
ω2 ∈ L′. Since d

n
ω2 ∈ L′, we can find

a unique such b in the range 0 ≤ b < d. We have now associated a, b, d to L′ such that
a
n
ω1 + b

n
ω2 and d

n
ω2 are in L′. Since these elements span a lattice which contains L with

index n, they span L′. Now we have constructed a map L′ 7→
(
a b
0 d

)
which is an inverse

to the map σ 7→ Lσ. �

Proposition 6.13. The actions of Tn, Tn,n and 〈d〉 preserve the spaces Mk(Γ1(N)) and
Sk(Γ1(N)).

Proof. We saw above that Tn,nF = nk−2〈n〉F for weight k functions F , so it is enough to
consider the operators 〈d〉 and Tn.

First we consider 〈n〉, for n coprime to N . Let f ∈ Mk(Γ1(N)), with associated weight

k function F on LN . Let σn =
(
a b
c d

)
∈ Γ(1) be an element which is congruent mod N to(

n−1 0
0 n

)
. Such an element exists because Γ(1) surjects onto SL2(Z/NZ). Observe that

f |σn,k(τ) = (cτ+d)−kF (Zσnτ+Z, 1/N) = F (Z(aτ+b)+Z(cτ+d), n/N) = F (Zτ+Z, n/N).

Now we have

〈n〉f(τ) = 〈n〉F (Zτ + Z, 1/N) = F (Zτ + Z, n/N) = f |σn,k(τ),

and the statement of the proposition for 〈n〉 follows.
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The case of Tn uses the set of matrices SNn . For τ ∈ H we have the lattice Lτ = Zτ +Z.
By definition, f(τ) = F (Lτ , 1/N) and

Tnf(τ) = TnF (Lτ , 1/N) = 1
n

∑
σ∈SNn

F (Lτ,σ, 1/N).

For σ =
(
a b
0 d

)
∈ SNn we have (Lτ,σ, 1/N) = 1

a
(Lστ , a/N) so

F (Lτ,σ, 1/N) = akF (Lστ , a/N) = ak〈a〉F (Lστ , 1/N) = ak〈a〉f(στ).

We can write this as
Tnf(τ) = nk−1 ∑

σ∈SNn

(〈a〉f)|σ,k(τ).

From here we can deduce the proposition. �

Remark 6.14. The above proof shows that the action of (Z/NZ)× on Mk(Γ1(N)) can
be identified with the action of Γ0(N)/Γ1(N) by the weight k slash operator, via the
isomorphism (Z/NZ)× ∼= Γ0(N)/Γ1(N) given by

d+NZ 7→
(
d−1 0
0 d

)
Γ1(N).

The finite Abelian group (Z/NZ)× now acts on the finite dimensional C-vector space
Mk(Γ1(N)) by the 〈·〉 action. So this vector space decomposes into a direct sum indexed
by characters χ : (Z/NZ)× → C×:

Mk(Γ1(N)) =
⊕
χ

Mk(Γ1(N), χ)

where Mk(Γ1(N), χ) denotes the subspace of Mk(Γ1(N)) on which 〈d〉 acts as multiplication
by χ(d) for every d ∈ (Z/NZ)×. We write Mk(N,χ) to abbreviate Mk(Γ1(N), χ).

We now consider the effect of the Hecke operator Tn on the q-expansion at ∞ of a
modular form f ∈Mk(N,χ).

Proposition 6.15. Let f ∈Mk(N,χ) with f(τ) = ∑∞
i=0 anq

n and let Tpf(τ) = ∑∞
i=0 bnq

n.
Then

bn = anp + χ(p)pk−1an/p

where we take χ(p) = 0 if p|N and an/p = 0 if p - n.

Proof. The set of matrices Sp has a simple description. If p|N then Sp consists of matrices(
a b
0 d

)
with a = 1, d = p and b = 0, 1, ..., p− 1. Therefore we have

Tpf(τ) = 1
p

p−1∑
b=0

f

(
τ + b

p

)
.
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Since the sum
1
p

p−1∑
b=0

e2πin( τ+b
p

) = 1
p
qn/p

p−1∑
b=0

e2πinb/p

is equal to zero if p does not divide n and equals qn/p if p does divide n, we see that bn = anp
as required.

Now suppose that p - N . Then we have one additional element of Sp, given by a = p,
d = 1 and b = 0. So we have

Tpf(τ) = 1
p

p−1∑
b=0

f

(
τ + b

p

)
+ pk〈p〉f(pτ)

 .
Since 〈p〉f = χ(p)f we obtain the desired result. �

We will write the above formula for the effect of Tp on q-expansions in terms of some
operators on the ring of formal power series C[[q]]. For m ≥ 1 an integer we write Um for
the operator which takes ∑n≥0 anq

n to ∑n≥0 anq
n/m (where qn/m is zero if m - n). We write

Vm for the operator which takes ∑n≥0 anq
n to ∑n≥0 anq

mn. We have Um ◦ Vm equals the
identity and Vm ◦Um equals the operator given by retaining only the qn terms where m|n.
The above Proposition just says that

Tp = Up + χ(p)pk−1Vp
as operators on q-expansions. This allows us to write a formal factorisation

1− TpX + χ(p)pk−1X2 = (1− UpX)(1− χ(p)pk−1VpX).
If you like, this equality takes place in the (non-commutative) ring of C-linear endomor-
phisms of C[[q]].

Recall that we also have a formal identity
∞∑
n=1

Tnn
−s =

∏
p|N

1
1− Tpp−s

∏
p-N

1
1− Tpp−s + Tp,pp1−2s .

Here the right hand side is equal to∏
p

[(1− Upp−s)(1− χ(p)pk−1Vpp
−s)]−1 =

∏
p

(1− χ(p)pk−1Vpp
−s)−1(1− Upp−s)−1.

Note the change in order of the product when we compute the inverse, since Up and Vp do
not commute. Since for distinct p and p′, Up and Vp′ do commute, we can collect all the
Vp and Up terms. Doing the standard geometric series expansion, we obtain an equality

∞∑
n=1

Tnn
−s =

( ∞∑
n=1

χ(n)nk−1Vnn
−s
)( ∞∑

n=1
Unn

−s
)
.

From this we deduce

Proposition 6.16.
Tn =

∑
0<d|n

χ(d)dk−1Vd ◦ Un/d.
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Corollary 6.17. Let f ∈ Mk(N,χ) with f(τ) = ∑∞
i=0 anq

n and let Tmf(τ) = ∑∞
i=0 bnq

n.
Then

bn =
∑

d| gcd(m,n)
χ(d)dk−1amn/d2 .

Proof. We have

Tmf =
∑
d|m

χ(d)dk−1Vd ◦ Um/df =
∑
d|m

χ(d)dk−1Vd
∑
m/d|n

anq
dn/m =

∑
d|m

χ(d)dk−1 ∑
m/d|n

anq
d2n/m.

Now we set r = d2n/m so we have

Tmf =
∑
d|m

χ(d)dk−1∑
d|r
amr/d2qr.

From here we can immediately obtain the statement of the corollary. �

Definition 6.18. We say that f ∈ Mk(N,χ) is an eigenform if Tnf = λnf for some
λn ∈ C, for all n ∈ Z≥1. We also say thaat f is normalised if a1 = 1.

Lemma 6.19. Suppose f is a non-constant eigenform with Hecke eigenvalues λn. Then
a1(f) 6= 0 and λn = an(f)/a1(f). Moreover, if a0(f) 6= 0 then λn = ∑

d|n χ(d)dk−1 for all
n ≥ 1.

Proof. Since λna1(f) = a1(Tnf) = an(f) (by Corollary 6.17), if a1(f) = 0 and f is an
eigenform then an(f) = 0 for all n ≥ 1, so f is constant.

Suppose that a0(f) 6= 0. We have λna0(f) = a0(Tnf) = ∑
d|n χ(d)dk−1a0(f), so λn =∑

d|n χ(d)dk−1 as required. �

Here are some examples of eigenforms:
(1) The level one Eisenstein series Ek(τ) for k > 2 even. The Hecke eigenvalues λn are

equal to ∑d|n χ(d)dk−1.
(2) For characters χ with χ(−1) = (−1)k and k > 2 there are Eisenstein series Eχ

k ∈
Mk(N,χ) with Hecke eigenvalues ∑d|n χ(d)dk−1.

(3) Whenever a space of modular forms (or cusp forms) is one-dimensional, an element
of this space is automatically a eigenform. For example ∆ ∈ S12(Γ(1)) and θ(τ)2 ∈
M1(Γ1(4)).

Let’s consider the final example of f = θ2 ∈ M1(4, χ) a little more closely. Here χ
is the unique non-trivial character of (Z/4Z)×. We have a0(f) = 1 and a1(f) = 4, so
Tn(f) = (∑d|n χ(d))f . In particular, for odd primes p the Hecke eigenvalue λp is equal to
1 +

(
−1
p

)
where

(
−1
p

)
denotes the Legendre symbol (it is 1 if −1 is a square mod p and −1

otherwise).
This means we can interpret the Hecke eigenvalues as the traces of certain elements of

Gal(Q(i)/Q) acting on a two-dimensional C-vector space by the direct sum of characters
1⊕ χ̃. Here χ̃ is the unique non-trivial character of Gal(Q(i)/Q).



MODULAR FORMS 43

These elements are Frobenius elements at places dividing p. More explicitly, if p splits
in Q(i), i.e. if

(
−1
p

)
= 1, then we take the identity element. If p is inert in Q(i), i.e.(

−1
p

)
= −1, then we take the non-trivial element (given by complex conjugation).

This is an example of a general theorem of Deligne and Serre which attaches two-
dimensional Galois representations to all eigenforms f ∈Mk(N,χ).

Proposition 6.20. Let f ∈Mk(N,χ). Then f is a normalised (i.e. a1(f) = 1) eigenform
if and only if:

• a1(f) = 1
• for p prime, n ≥ 1, apn(f)ap(f) = apn+1(f) + χ(p)pk−1apn−1(f)
• amn(f) = am(f)an(f) when m and n are coprime.

Proof. We already know that if f is a normalised eigenform then these properties are
satisfied. For the other direction, we now suppose that f satisfies these properties. It is
enough to show that f is an eigenform for every Tp, or indeed to show that an(Tpf) =
ap(f)an(f) for every n ∈ Z≥1.

Let’s suppose n ≥ 1. We know that we have an(Tpf) = apn(f) if p - n and an(Tpf) =
apn + χ(p)pk−1an/p(f) if p|n.

In the first case, we get ap(f)an(f) as desired. In the second case, we write n = prm
with p - m and then we have

an(Tpf) = apr+1m + χ(p)pk−1apr−1m(f) = am(f)(apr+1(f) + χ(p)pk−1apr−1(f))
= am(f)apr(f)ap(f) = ap(f)an(f).

So we have proved that Tpf −ap(f)f is a constant. It is also an element of Mk(N,χ), so
if k > 0 we have Tpf = ap(f)f as desired. If k = 0 then everything is constant and there
are no normalised eigenforms! (Since a1 = 1 is impossible). �

6.3. Petersson inner product. We define a measure dµ on H by dµ(τ) = dxdy
y2 , where

τ = x + iy. This measure is actually GL+
2 (R)-invariant, so defines a measure on Γ\H for

any congruence subgroup Γ ⊂ Γ(1). Integrating over Y (Γ) is the same as integrating over
a fundamental domain for Γ in H.

For simplicity we will only consider fundamental domains of the form ∐
αi αiF (1), where

F (1) is the standard fundamental domain for Γ(1) and αi ∈ PSL2(Z) are coset represen-
tatives for PSL2(Z)/Γ.

Lemma 6.21. Let F be a fundamental domain for Γ and define µ(Γ) =
∫
F

dxdy
y2 . Then

(1) The integral µ(Γ) converges and is independent of the choice of F .
(2) [PSL2(Z) : Γ] = µ(Γ)/µ(Γ(1)).

Proof. Write [PSL2(Z) : Γ] = d. Let PSL2(Z) = ∐d
i=1 Γαi and take F (1) to be the standard

fundamental domain for Γ(1). Then we let F = ∪ialphaiF (1). This is a fundamental
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domain for Γ. We can easily bound µ(Γ(1)) by
∫

F (1)

dxdy

y2 <

1/2∫
−1/2

∞∫
√

3/2

y−2dydx = 2√
3
.

Under the change of variables z 7→ αiz the measure dxdy
y2 is invariant so we get µ(Γ) =

dµ(Γ(1)). The invariance of the measure under the action of Γ(1) likewise enables us to
easily show independence of the integral on the choice of a fundamental domain. �

Definition 6.22. Let f, g ∈Mk(Γ), with at least one of f, g a cusp form. We define

〈f, g〉 = µ(Γ(1))
µ(Γ)

∫
Y (Γ)

f(τ)g(τ)ykdµ.

Lemma 6.23. The integral in the above definition is absolutely convergent, and can be
computed as an integral over a fundamental domain F for Γ. If Γ′ ⊂ Γ is another congru-
ence subgroup then the definition of 〈f, g〉 is independent of whether f, g are considered in
Mk(Γ) or Mk(Γ′).

Proof. The convergence follows from the following lemma, since fg ∈ S2k(Γ). We leave the
rest of the lemma as an exercise. �

Lemma 6.24. Suppose f ∈ Sk(Γ). Then |f(τ)| ≤ C(Im(τ))−k/2 for some constant C
independent of τ .

Proof. First we set φ(x+ iy) = |f(x+ iy)|yk/2. It is easy to check that φ is Γ-invariant, so
we just need to show that it is bounded on Y (Γ). Suppose s is a cusp with α∞ = s. We
have f |α,k(τ) = ∑∞

n=1 bnq
n
h′ = qh′θ(qh′) for some h′, and a holomorphic function θ on the

open unit disc. So
φ(ατ) = |fα,k(τ)||yk/2 = |θ(qh′)|e−2πy/h′yk/2

tends to zero uniformly in x as y tends to ∞. So in fact φ defines a continuous function
on the compact topological space X(Γ) (with value zero at the cusps), so it is in particular
bounded on Y (Γ). �

Here is another useful corollary of this lemma:

Corollary 6.25. Suppose f ∈ Sk(Γ), with f(τ) = ∑∞
n=1 anq

n
h . Then there is a constant C

such that |an| ≤ Cnk/2 for all n ≥ 1.

Proof. Exercise. �

Lemma 6.26. For α ∈ GL+
2 (Q)
〈f, g〉 = (detα)k〈f |α,k, g|α,k〉.

Proof. Set Γ′ = Γ ∩ αΓα−1. We have f, g ∈Mk(Γ′) and f |α,k, g|α,k ∈Mk(α−1Γ′α).
Suppose F (Γ′) is a fundamental domain for Γ′. Then α−1F (Γ′) is a fundamental domain

for α−1Γ′α.
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It follows from the GL+
2 (Q)-invariance of the measure µ that µ(α−1Γ′α) = µ(Γ′).

We compute

(detα)k〈f |α,k, g|α,k〉 = µ(Γ(1))
µ(Γ′)

∫
α−1F (Γ′)

f |α,kg|α,k(detα Imτ)kdµ

= µ(Γ(1))
µ(Γ′)

∫
F (Γ′)

fg

|cτ + d|2k
(detα Imα−1τ)kdµ

= µ(Γ(1))
µ(Γ′)

∫
F (Γ′)

fg(Imτ)kdµ = 〈f, g〉,

since detα Imτ = |cτ + d|2Imατ . �

I messed up the proof of the following corollary in lectures, sorry!

Corollary 6.27. If f, g ∈ Mk(N,χ), with one of f, g a cusp form, and n ∈ Z≥1 coprime
to N , then 〈Tnf, g〉 = χ(n)〈f, Tng〉.

Proof. It suffices to prove the corollary when n = p is prime. Recall that we have a matrix

σp ∈ Γ0(N) with σp =
(
α β
N p

)
.

Consider the set of matrices

∆N
p := {γ =

(
a b
c d

)
∈M2(Z) : N | c,N | (a− 1), det(γ) = p, }.

We can check that

∆N
p = Γ1(N)

(
1 0
0 p

)
Γ1(N) = {u

(
1 0
0 p

)
v : u, v ∈ Γ1(N)}

=
∐

j=0,...,p−1
Γ1(N)

(
1 j
0 p

)∐
Γ1(N)σp

(
p 0
0 1

)
.

Now suppose γ ∈ ∆N
p . We have 〈f, g|γ−1,k〉 = pk〈f |γ,k, g〉 by the above Lemma. More-

over, the values of 〈f |γ,k, g〉 and 〈f, g|γ,k〉 are actually independent of the choice of γ ∈ ∆N
p :

if γ′ = uγv with u, v ∈ Γ1(N), then

〈f |uγv,k, g〉 = 〈f |γ,k, g|v−1,k〉 = 〈f |γ,k, g〉.

A similar argument applies to 〈f, g|γ,k〉.
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Since Tpf = pk−1

∑p−1
j=0 f |( 1 j

0 p

)
,k

+ f |
σp

(
p 0
0 1

)
,k

 we have

〈Tpf, g〉 = pk−1(p+ 1)〈f |( 1 0
0 p

)
,k
, g〉 = p−1(p+ 1)〈f, g|( 1 0

0 p−1

)
,k
〉

= pk−1(p+ 1)〈f, g|
σ−1
p σp

(
p 0
0 1

)
,k
〉 = χ(p)pk−1(p+ 1)〈f, g|

σp

(
p 0
0 1

)
,k
〉

= χ(p)pk−1(p+ 1)〈f, g|( 1 0
0 p

)
,k
〉 = χ(p)〈f, Tpg〉.

Here we use the observation that σp
(
p 0
0 1

)
∈ ∆N

p .
�

Corollary 6.28. The space Sk(N,χ) has a basis (orthonormal with respect to the Petersson
inner product) consisting of simultaneous eigenvectors for the Hecke operators Tn with n
coprime to N .

Proof. For each n choose a square root cn of χ(n). Then for all f, g ∈ Sk(N,χ) we have
〈cnTnf, g〉 = 〈f, cnTng〉.

So the operators cnTn are Hermitian and so have an orthonormal basis of eigenvectors.
Since all the Hecke operators Tn with n coprime to N commute, we have a basis of simul-
taneous eigenvectors. �

Remark 6.29. Note that the eigenvalues of cnTn are real. In particular, if χ is trivial then
the eigenvalues of the Tn are real.

If we want to find a basis of eigenforms (i.e. eigenvectors for all the Hecke operators)
then we have to restrict to certain subspaces of Sk(N,χ). Recalling definition 3.16, we can
define Sk(N,χ)old = Mk(Γ1(N))old ∩ Sk(Γ1(N)).

Definition 6.30. Define Sk(N,χ)new to be the orthogonal complement of Sk(N,χ)old under
the Petersson inner product.

An important property of the new subspace is that it has a basis of eigenforms:

Theorem 6.31. The space Sk(N,χ)new is stable under the action of the Hecke operators.
If f ∈ Sk(N,χ)new is an eigenvector for the Tn with n coprime to N , then f is an eigenform
(i.e. an eigenvector for all then Tn).

Corollary 6.32. Suppose two non-zero elements f, g of Sk(N,χ)new are eigenvectors for
the Tn with n coprime to N with the same eigenvalues. Then f and g are scalar multiples
of each other.

Proof. The Theorem implies that both f and g are eigenforms. By rescaling we can assume
that they are both normalised eigenforms. Now f − g is also an eigenform, but has first
q-expansion coefficient a1 = 0. Therefore f − g = 0. �
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Remark 6.33. The above Corollary is a version of a ‘multiplicity one’ theorem. Various
stronger forms of this theorem can be proven: for example, in Miyake’s book ‘Modular
Forms’ it is proven by fairly elementary arguments that if f, g have the same Tp eigenvalue
for all but finitely many primes p, then f and g are scalar multiples of each other.

7. L–functions

Definition 7.1. For f ∈Mk(Γ) and s ∈ C set L(f, s) = ∑
n≥1

an
ns

.

Lemma 7.2. Suppose f ∈ Sk(Γ) The series defining L(f, s) converges absolutely and
uniformly on compact subsets of {Re(s) > k/2 + 1}.

Proof. By Corollary 6.25, we have |an| ≤ Cnk/2. This suffices to prove the lemma. �

Remark 7.3. We can explicitly write down Eisenstein series which give the rest of the space
Mk(Γ). These have Fourier coefficents of order nk−1, so for f ∈ Mk(Γ) the L-function
converges nicely for Re(s) > k.

7.1. Functional equation. Now we are going to find a functional equation for L(f, s).

For simplicity we will assume that Γ = Γ1(N). Set wN =
(

0 −1/
√
N√

N 0

)
. Note that

w−1
N Γ1(N)wN = Γ1(N), so f |wN ,k ∈ Sk(Γ1(N)).
Explicitly, we have f |wN ,k(τ) = N−k/2τ−kf(−1/Nτ).

Theorem 7.4. Let f ∈ Sk(Γ1(N)) and set g = ikf |wN ,k. If f = ∑
n≥1 anq

n then the
Dirichlet series L(f, s) = ∑

n≥1 an/n
s can be extended to a holomorphic function on s ∈ C.

Setting
Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s)

we have a functional equation
Λ(f, s) = Λ(g, k − s).

Here Γ(s) is meromorphic continuation of the function defined by

Γ(s) =
∞∫
0

ts−1e−tdt.

Proof. We let φ be the function on R>0 given by φ(y) = f(iy). Consider the Mellin
transform

F (s) =
∞∫
0

φ(y)ys−1dy.

Now φ(y) tends to zero exponentially fast as y tends to ∞. We also have φ(1/y) =
f(−1/iy) = (iy)kf |( 0 −1

1 0

)
,k

(iy). Since f |( 0 −1
1 0

)
,k

is also a cusp form, φ(1/y) tends to

zero like yk times an exponential in −y as y tends to infinity. So this integral converges
absolutely (at both upper and lower limits) for all s.
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We have φ(y) = ∑
n≥1 ane

−2πny, and we can switch the sum and integral in F (s) to get

F (s) =
∞∑
n=1

an

∞∫
0

e−2πnyys−1dy.

Substituting t = 2πny into the integral gives us
∞∫
0

e−2πnyys−1dy = (2πn)−s
∞∫
0

e−tts−1dt = (2πn)−sΓ(s).

Therefore the switched expression also converges absolutely for Re(s) > k/2 + 1, to
N−s/2Λ(f, s), and we have F (s) = N−s/2Λ(f, s) (for Re(s) > k/2 + 1). Since F (s) ex-
tends to a holomorphic function for all s ∈ C, Λ(f, s) does. Moreover, Γ(s) has no zeroes,
so L(f, s) also extends to a holomorphic function on the whole complex plane.

To prove the functional equation, let’s substitute u = 1/Ny in the integral defining F (s).
We get

N−s/2Λ(f, s) = F (s) = N−s
∞∫
0

φ(1/Nu)u−1−sdu = N−s
∞∫
0

f(−1/Niu)u−1−sdu

= Nk/2−s
∞∫
0

g(iu)uk−1−sdu = Nk/2−sN−(k−s)/2Λ(g, k − s) = N−s/2Λ(g, k − s).

�

7.2. Euler products.

Theorem 7.5. Suppose f ∈ Sk(N,χ). Then f is a normalised eigenform if and only if
(for Re(s) sufficiently large)

L(s, f) =
∏
p

(1− app−s + χ(p)pk−1−2s)−1.

Proof. By Proposition 6.20, it is enough to show that
L(s, f) =

∏
p

(1− app−s + χ(p)pk−1−2s)−1

if and only if
• a1(f) = 1
• for p prime, n ≥ 1, apn(f)ap(f) = apn+1(f) + χ(p)pk−1apn−1(f)
• amn(f) = am(f)an(f) when m and n are coprime.

We leave it as an exercise to show this, using the following lemma. �

Lemma 7.6. Suppose we have two Dirichlet series ∑n≥1
an
ns

and ∑n≥1
bn
ns

which converge
absolutely to the same function on Re(s) > σ for some positive real σ. Then an = bn for
all n.

Proof. Exercise. �
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7.3. Converse theorems. Suppose f ∈ Sk(N,χ). We have shown F (s) = N−s/2Λ(f, s),
where F (s) is the Mellin transform

F (s) :=
∞∫
0

f(iy)ys−1dy.

The following Proposition establishes an inversion formula for the Mellin transform.

Proposition 7.7. Suppose g : R>0 → C is twice continuously differentiable, and that c
is a real number such that yc−1g(y), ycg′(y) and yc+1g′′(y) are all in L1(R>0). Then the
integral

G(s) :=
∞∫
0

ys−1g(y)dy

converges for Re(s) = c and satisfies G(c + it) = O((1 + |t|)−2) (i.e. it is bounded and as
t approaches ∞ it decays like |t|−2).

Moreover, we have

g(y) = 1
2πi

c+i∞∫
c−i∞

y−sG(s)ds

where the integral is up the vertical line Re(s) = c.

Proof. If we set s = c− 2πix and substitute y = eu then we have

G(s) = F (x) =
∫
R

ecug(eu)e−2πixudu.

Now everything follows from standard properties of the Fourier transform applied to the
function f(u) = ecug(eu). In particular, f is twice continuously differentible and f, f ′ and
f ′′ are absolutely integrable. The Fourier transform of f ′′ is (2πix)2F (x), so x2F (x) is
bounded, which gives the growth condition on G(s). �

The following theorem, which is a converse to Theorem 7.4 (when the level N = 1), is
now a simple consequence of Mellin inversion.

Theorem 7.8. Let an be a sequence in C with an ≤ Cnsigma for some σ ∈ R>0. Set

Z(s) :=
∑
n≥0

an
ns

and Λ(s) := (2π)−sΓ(s)Z(s). Suppose that Λ(s) extends to a holomorphic function on C
which is bounded on vertical strips (i.e. regions of the form Re(s) ∈ [a, b]) and satisfies

Λ(s) = ikΛ(k − s).

Then f(τ) = ∑
n≥1 anq

n is in Sk(Γ(1)).
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Proof. We define a holomorphic function on H by f(τ) := ∑
n≥1 anq

n. We need only to
prove that f(−1/τ) = (τ)kf(τ). By uniqueness of analytic continuation, it suffices to prove
that f(i/y) = (iy)kf(iy) for y ∈ R>0.

Set φ(y) = f(iy). We have |φ(y)| ≤ C
∑
n≥1 n

σe−2πny, and (possibly increasing σ) we
can assume that σ is a natural number. Since∑

n≥0
e−2πny = 1

1− e−2πy = 1
2πy + g(y)

with g(y) holomorphic at y = 0, differentiating σ times gives∑
n≥1

nσe−2πny = O(y−(1+σ))

as y approaches 0. A similar argument shows that φ(y) is O(e−2πy) as y approaches ∞,
so the hypotheses of Proposition 7.7 are satisfied by φ (for any c > σ + 1). The Mellin
transform of φ is given by Λ(s). Therefore

φ(y) = 1
2πi

c+i∞∫
c−i∞

y−sΛ(s)ds

for c > 1 + σ. Fix such a c (which we also assume is > k/2) and consider the strip
Re(s) ∈ [k − c, c]. For Re(s) = c we have

|Λ(k − s)| = |Λ(s)| = O((1 + |Im(s)|)−2),
and by hypothesis Λ(s) is bounded on the region Re(s) ∈ [k − c, c]. So the Phragmén–
Lindelöf principle (see Lemma 4.3.4 in Miyake) implies that we have Λ(s) = O((1 +
|Im(s)|)−2) uniformly for Re(s) ∈ [k − c, c]. This allows us to move the line of integration
to get

φ(y) = 1
2πi

k/2+i∞∫
k/2−i∞

y−sΛ(s)ds = 1
2πi

k/2+i∞∫
k/2−i∞

y−sikΛ(k − s)ds.

Substituting t = k − s we have

φ(y) = 1
2πi

k/2+i∞∫
k/2−i∞

y−(k−t)ikΛ(t)dt = iky−kφ(1/y).

This establishes that f(−1/τ) = (−1)k(τ)kf(τ). We didn’t assume a priori that k was
even, so we need to check this. We have

f(τ) = f(−1/(−1/τ)) = (−1)k(−1/τ)kf(−1/τ) = (−1)kf(τ)
so if f is non-zero then k is even. This completes the proof. �
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