A geometric Jacquet-Langlands for mod p Hilbert modular forms, following Diamond-Kassaei-Sasaki part 2

The aim of this talk is to discuss a generalization the following result due to Serre and Gross:

1 Introduction

Let p be a prime. There is a Hecke equivariant short exact sequence

$$
0 \rightarrow H^{0}\left(\bar{X}_{1}(N), \delta^{m} \omega^{p+1-m}(-C)\right) \rightarrow H^{0}\left(\bar{X}_{1}(N p), \overline{\mathcal{K}}\right)^{\chi_{m}} \rightarrow H^{0}\left(\bar{X}_{1}(N), \omega^{m+2}(-C)\right) \rightarrow 0
$$

where \bar{X} is the special fiber of the compactified modular $X_{1}(N)$ of tame level N, ω the usual Hodge bundle, C the divisor of cusps, δ a trivial sheaf which twist the action of T_{q} by q, and finally, $\overline{\mathcal{K}}$, the dualizing sheaf of $\bar{X}_{1}(N p)$. This can be seen as a geometric counterpart to the sequence of local systems on $\Gamma_{1}(N) \backslash \mathcal{H}$:

$$
0 \rightarrow \operatorname{det}^{m} \otimes \operatorname{Sym}^{p-1-m} \mathbb{F}_{p}^{2} \rightarrow \operatorname{Ind}_{P}^{G L_{2}\left(\mathbb{F}_{p}\right)}\left(1 \otimes \chi_{m}\right) \rightarrow \operatorname{Sym}^{m} \mathbb{F}_{p}^{2} \rightarrow 0
$$

where P denotes the upper triangular matrices and $\left(1 \otimes \chi_{m}\right)$ is the character

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \mapsto d^{m} .
$$

The work of DS17 suggests that there should be a generalization to Hilbert modular forms. For a totally real field F in which p is unramified, there should be a link between mod p Hilbert modular forms of parallel weight 2 , with Iwahori level $U_{1}(p)$ and character $\chi:\left(\mathcal{O}_{F} / p\right)^{\times} \rightarrow$ $\overline{\mathbb{F}}_{p}^{\times}$, to $\bmod p$ quaternionic modular forms of weights given by Jordan-Holder factors of $V_{\chi}=$ $\operatorname{Ind} d_{P}^{G L_{2}\left(\mathcal{O}_{F} / p\right)}(1 \otimes \chi)$. where P denotes the upper triangular matrices.

Recall that the irreducible representations of $G L_{2}\left(\mathcal{O}_{F} / p\right)$ are of the form

$$
V_{m, n}=\bigotimes_{\theta \in \bar{\Theta}_{p}} \operatorname{det}^{m_{\theta}} \otimes \operatorname{Sym}^{n_{\theta}} V_{\theta}
$$

where $(m, n) \in \mathbb{Z}^{\Theta} \times \mathbb{Z}^{\Theta}$ satisfy $0 \leq m_{\theta}, n_{\theta} \leq p-1$ with at least one $m_{\theta}<p-1$ and $V_{\theta}=\overline{\mathbb{F}}_{p}^{2}$ with $G L_{2}\left(\mathcal{O}_{F} / p\right)$ acting via θ.

Recall the following:
Theorem 1.1. There is a decreasing filtration

$$
V_{\chi}=F i l^{0} V_{\chi} \supset F i l^{1} V_{\chi} \supset \cdots \supset F i l^{d+1} V_{\chi}=0
$$

on $V_{\chi}=\operatorname{Ind} P_{P}^{G L_{2}\left(\mathcal{O}_{F} / p\right)}(1 \otimes \chi)$ such that $g r^{j} V_{\chi} \simeq \oplus_{|J|=j} V_{\chi, J}$ where the $V_{\chi, J}$ are irreducible or 0 .
We will explain the following main results from DKS20:

Theorem 1.2 (Theorem B). For sufficiently small $U \subset G L_{2}\left(\mathbb{A}_{F, f}\right)$ containing $G L_{2}\left(\mathcal{O}_{F, p}\right)$ there is a Hecke equivariant spectral sequence

$$
E_{1}^{j, i}=\bigoplus_{|J|=j} H^{i+j}\left(\bar{Y}_{\Sigma_{J}}, \mathcal{A}_{\chi, J}\right) \Rightarrow H^{i+j}\left(\bar{Y}_{1}(p), \mathcal{K}\right)^{\chi}
$$

Corollary 1.3 (Corollary C). In particular there is a length $d+1$, Hecke equivariant filtration on $H^{0}\left(\bar{Y}_{1}(p), \mathcal{K}\right)^{\chi}$ with a Hecke equivariant embedding

$$
g r^{j}\left(H^{0}\left(\bar{Y}_{1}(p), \mathcal{K}\right)^{\chi}\right) \hookrightarrow \bigoplus_{|J|=j} H^{0}\left(\bar{Y}_{\Sigma_{J}}, \mathcal{A}_{\chi, J}\right)
$$

I will refrain from defining these objects for now. The space $H^{0}\left(\bar{Y}_{1}(p), \mathcal{K}\right)^{\chi}$ is our definition of parallel weight $2 \bmod p$ Hilbert modular forms of Iwahori level $U_{1}(p)$ and the $H^{0}\left(\bar{Y}_{\Sigma_{J}}, \mathcal{A}_{\chi, J}\right)$ are the $\bmod p$ quaternionic modular forms of weight $V_{\chi, J}$ as introduced above.

2 Models of Shimura varieties

We start by introducing the necessary notation and recapping the contents of last week.
Let F be a totally real field of degree d and p be a prime which is unramified in F. Let Θ denote the set of embeddings $\tau: F \rightarrow \overline{\mathbb{Q}}$ which we identify with $\Theta_{p}=\operatorname{Hom}\left(F, \overline{\mathbb{Q}}_{p}\right)$ via a fixed embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$, and $\bar{\Theta}_{p}=\operatorname{Hom}\left(\mathcal{O}_{F} / p, \overline{\mathbb{F}}_{p}\right)$. We write $\mathbb{A}_{F, f}$ and $\mathbb{A}_{F, f}^{(p)}$ for the finite adèles over F and prime to p finite adèles over F respectively. For any ring R, we write $R_{p}=R \otimes \mathbb{Z}_{p}$. For any even subset $\Sigma \subset \Theta$ we let $B=B_{\Sigma}$ be the unique (up to isomorphism) quaternion algebra over F which is ramified exactly at the places in Σ. We let G_{Σ} be the algebraic group over \mathbb{Q} whose R-points are given by

$$
G_{\Sigma}(R)=\left(B \otimes_{\mathbb{Q}} R\right)^{\times}
$$

We also let $G=\operatorname{Res}_{F / \mathbb{Q}}\left(G L_{2}\right)$.

2.1 Hilbert modular varieties

For a sufficiently small open compact subgroup $U \subset G L_{2}\left(\mathbb{A}_{f}\right)$ which contains $G L_{2}\left(\mathcal{O}_{F, p}\right)$ we have a canonical integral model over \mathbb{Z}_{p} for the Shimura variety of level U for G which we denote $Y_{U}(G)$. It is obtained as an étale quotient of a (union of) PEL Shimura variety $\widetilde{Y}_{U}(G)$. This variety is given as the moduli space which classifies isomorphism classes of tuples $(A / S, \iota, \lambda, \eta)$ where:

- S is a $\mathbb{Z}_{(p)}$-scheme and A / S an abelian scheme of dimension d with a ring embedding $\iota: \mathcal{O}_{F} \hookrightarrow \operatorname{End}_{S}(A)$ such that $\operatorname{Lie}(A / S)$ is locally free of rank one over $\mathcal{O}_{F} \otimes \mathcal{O}_{S}$,
- λ is a prime to p quasi-polarization whose associated Rosati involution fixes ι,
- η is a level structure for U^{p} structure on A.

Both $\tilde{Y}_{U}(G)$ and $Y_{U}(G)$ are smooth varieties of relative dimension d over \mathbb{Z}_{p}.
Last week's result involved Shimura varieties for G of Iwahori level $U_{0}(p)$. We will also need Iwahori level $U_{1}(p)$ which we recall now:

Let

We define $Y_{U_{0}(p)}(G)$ as a quotient of the moduli space $\tilde{Y}_{U_{0}(p)}(G)$ of isomorphism classes of tuples $\left(\underline{A_{1}}, \underline{A_{2}}, f\right)$ over S where

- $\underline{A_{i}}$ define points of $\widetilde{Y}_{U}(G)$.
- $f: A_{1} \rightarrow A_{2}$ is a degree $p^{d} \mathcal{O}_{F}$-linear isogeny such that f respects the level structures, $f^{\vee} \circ \lambda_{2} \circ f=p \lambda_{1}$ and $H=\operatorname{ker} f$ decomposes as $H=\prod_{v \mid p} H_{v}$ where $H_{v} \subset A_{1}[v]$ has rank $p^{\left[F_{v}: \mathbb{Q}_{p}\right]}$.

It is a local complete intersection of dimension d and so Cohen-Macaulay.
We also define $Y_{U_{1}(p)}(G)$ as a quotient of the moduli space $\tilde{Y}_{U_{1}(p)}(G)$ of isomorphism classes of tuples (f, P) over S where

- f defines a point of $\widetilde{Y}_{U_{0}(p)}(G)$.
- $P \in H(S)$ is a \mathcal{O}_{F} / p Drinfeld generator for H in the sense of Katz-Mazur.

The forgetful map $h: Y_{U_{1}(p)}(G) \rightarrow Y_{U_{0}(p)}(G)$ is finite flat so in particular $Y_{U_{1}(p)}(G) / \mathcal{O}$ is Cohen-Macaulay as well.

2.2 Quaternionic Shimura varieties

Similarly, for a sufficiently small open compact subgroup $U \subset G_{\Sigma}\left(\mathbb{A}_{f}\right)$ which contains $\mathcal{O}_{B, p}^{\times} \simeq$ $G L_{2}\left(\mathcal{O}_{F, p}\right)$, we have a canonical integral model over \mathbb{Z}_{p} for the Shimura variety of level U for G_{Σ} which we denote $Y_{U}(G)$. Similarly, this obtained as a quotient of an auxiliary Unitary Shimura variety. It is smooth of relative dimension $d-\# \Sigma$.

3 Automorphic vector bundles

3.1 Building blocks

We keep the same notation and assumptions as the previous section.
Over $\bar{S}=\widetilde{Y}_{U}(G) \times \overline{\mathbb{F}}_{p}$ we have the universal abelian scheme $s: A \rightarrow \bar{S}$ with its Hodge filtration

$$
0 \rightarrow s_{*} \Omega_{A / S}^{1} \rightarrow \mathcal{H}_{d R}^{1}(A / S) \rightarrow R^{1} s_{*} \mathcal{O}_{A} \rightarrow 0
$$

which yields for each embedding $\tau: \mathcal{O}_{F} \rightarrow \overline{\mathbb{Z}}_{p}$, by taking isotypic components, a sequence of locally free sheaves

$$
0 \rightarrow \tilde{\omega}_{\tau} \rightarrow \tilde{\mathcal{V}}_{\tau} \rightarrow \tilde{v}_{\tau} \rightarrow 0
$$

of ranks one, two and one respectively. We also define $\tilde{\delta}_{\tau}=\wedge^{2} \tilde{\mathcal{V}}_{\tau}$. If we take U to be "p-neat", that is $\alpha-1 \in p \mathcal{O}_{F}$ for all $\alpha \in U \cap \mathcal{O}_{F}^{\times}$, we can descend these sheaves to $\bar{Y}=Y_{U}(G) \times \overline{\mathbb{F}}_{p}$ which we denote by removing the tilde.

Similarly, only under the assumption again that $U \subset G_{\Sigma}\left(\mathbb{A}_{f}\right)$ is has level prime to p, we can define analogous line bundles ω_{θ} for $\theta \notin \Sigma$, and rank two vector bundles \mathcal{V}_{θ} for all $\theta \in \Theta$. We also write $\delta_{\theta}=\wedge^{2} \mathcal{V}_{\theta}$.

On the geometric special fiber $\bar{Y}_{0}(p)=Y_{0}(p) \times \overline{\mathbb{F}}_{p}$, we have a decomposition into smooth closed subschemes of pure dimension $d, i_{J}: \bar{Y}_{J} \rightarrow \bar{Y}_{0}(p)$ indexed by subsets $J \subset \Theta$ given as the descent of

$$
V\left(\left\{\operatorname{Lie}(f)_{\theta}\right\}_{\theta \notin J} \cup\left\{\operatorname{Lie}\left(f^{\vee}\right)_{\theta}\right\}_{\theta \in J}\right) \subset \bar{S}
$$

Theorem A of DKS20 then states that there is a Hecke equivariant isomorphism

$$
\Xi_{J}: \bar{Y}_{J} \rightarrow \prod_{\theta \in \Sigma_{J}} \mathbb{P}_{\bar{Y}_{\Sigma_{J}}}\left(\mathcal{V}_{\theta}\right)
$$

for $\Sigma_{J}=\{\theta \in J \mid \phi(\theta) \notin J\} \cup\{\theta \notin J \mid \phi(\theta) \in J\}$. We explain their relation to the analogous Hilbert ones later.

3.2 Hilbert modular forms

For a pair $(k, \ell) \in \mathbb{Z}^{\Theta} \times \mathbb{Z}^{\Theta}$ which is paritious (ie $k_{\theta}+2 \ell_{\theta}$ is independent of θ), we define the sheaf $\mathcal{A}_{k, \ell}$ on \bar{Y} as the descent of the sheaf

$$
\widetilde{\mathcal{A}}_{k, \ell}:=\bigotimes_{\theta \in \Theta} \tilde{\delta}_{\theta}^{\ell_{\theta}} \tilde{\omega}_{\theta}^{k_{\theta}} .
$$

We define Hilbert modular forms of level U and weight (k, ℓ) over $\overline{\mathbb{F}}_{p}$ by

$$
M_{k, \ell}\left(U, \overline{\mathbb{F}}_{p}\right)=H^{0}\left(\bar{Y}, \mathcal{A}_{k, \ell} \cdot\right)
$$

There is a Kodaira-Spencer isomorphism

$$
\widetilde{\mathcal{A}}_{2,-1}=\bigotimes_{\theta} \tilde{\delta}_{\theta}^{-1} \tilde{\omega}^{2} \simeq \mathcal{K}_{S / \mathcal{O}}
$$

where $\mathcal{K}_{S / \mathcal{O}} \simeq \wedge^{d} \Omega_{S / \mathcal{O}}^{1}$ is the dualizing sheaf of S which descends to \bar{Y}. This can be seen via an explicit analysis of the deformation theory of S by using Grothendieck-Messing theory. There is furthermore a canonical trivialization of $\widetilde{\mathcal{A}}_{0,-1}=\wedge_{\mathcal{O}_{F} \otimes_{\mathbb{Z}} \mathcal{O}_{S}}^{2} \mathcal{H}_{d R}^{1}(A / S)$ which also descends to Y. This combines to give an isomorphism

$$
M_{2,0}(U, R) \simeq H^{0}\left(Y, \mathcal{K}_{Y / R}\right)
$$

This leads to the definition of Hilbert modular forms of parallel weight 2 of level $U_{0}(p)$ and level $U_{1}(p)$ as

$$
M_{2,0}\left(U_{0}(p), R\right)=H^{0}\left(Y_{0}(p), \mathcal{K}_{Y_{0}(p) / R}\right) \quad \text { and } \quad M_{2,0}\left(U_{1}(p), R\right)=H^{0}\left(Y_{1}(p), \mathcal{K}_{Y_{1}(p) / R}\right)
$$

respectively. The natural action of $\left(\mathcal{O}_{F} / p\right)^{\times} \simeq U_{0}(p) / U_{1}(p)$ on $Y_{1}(p)$ by acting on the generator P yields a decomposition

$$
M_{2,0}\left(U_{1}(p), \mathcal{O}\right)=\bigoplus_{\chi:\left(\mathcal{O}_{F} / p\right)^{\times} \rightarrow \mathcal{O}^{\times}} M_{2,0}\left(U_{1}(p), \mathcal{O}\right)^{\chi}
$$

into χ components.

Remark 3.1. All of these constructions above make sense over a suitable localization at a prime above p of the ring of integers \mathcal{O}_{L} of a large enough field $L \subset \overline{\mathbb{Q}}$. For such a field, the KodairaSpencer isomorphism holds on $Y_{U}(G) \times L$ for any U without any hypothesis on the level at p. This (among other details) justifies our definition.

4 The main result

The main input in the proof of Theorem B is a technique dubbed dicing by the authors in which they use the stratification of $\bar{Y}_{0}(p)$ to define a filtration on its dualizing sheaf such that the graded pieces are supported on appropriate maximal strata.

Preliminaries: Let $h: Y_{1}(p) \rightarrow Y_{0}(p)$ be the natural projection, it is finite flat. Hence we have the relation $h_{*} \mathcal{K}_{Y_{1}(p) / \overline{\mathbb{F}}_{p}} \simeq \mathcal{H o m}\left(h_{*}\left(\mathcal{O}_{Y_{1}(p)}, \mathcal{K}_{Y_{0}(p) / \overline{\mathbb{F}}_{p}}\right)\right.$ and $R^{j} h_{*} \mathcal{K}_{Y_{1}(p) / \overline{\mathbb{F}}_{p}}=0$ for $j>0$. Furthermore since $Y_{1}(p)$ can be described as a closed subscheme of the universal kernel $H \rightarrow Y_{0}(p)$ which is a Raynaud \mathcal{O}_{F} / p-scheme, we have a decomposition

$$
h_{*} \mathcal{O}_{Y_{1}(p)}=\bigoplus_{\chi} \mathcal{L}_{\chi}
$$

where the χ are characters of $\left(\mathcal{O}_{F} / p\right)^{\times}$, and \mathcal{L}_{χ} are line bundles on which $\left(\mathcal{O}_{F} / p\right)^{\times}$acts via χ. For example Hence, by the above discussion (and the Leray Spectral Sequence), it follows that $H^{i}\left(Y_{1}(p), \mathcal{K}_{Y_{1}(p) / \mathbb{F}_{p}}\right)^{\chi}=H^{i}\left(Y_{0}(p), \mathcal{L}_{\chi^{-1}}^{-1} \mathcal{K}_{Y_{0}(p) / \mathbb{F}_{p}}\right)$ and in particular

$$
M_{2,0}\left(U_{1}(p), \mathbb{F}\right)^{\chi}=H^{0}\left(\bar{Y}_{0}(p), \mathcal{L}_{\chi^{-1}}^{-1} \mathcal{K}_{Y_{0}(p) / \mathbb{F}_{p}}\right)
$$

We now define a filtration on $\mathcal{O}_{\bar{Y}_{0}(p)}$ by the ideal sheaves \mathcal{I}_{j} which are given locally by (the descent of)

$$
\mathcal{I}_{j}=\left\langle\prod_{\theta \in J} \operatorname{Lie}(f)_{\theta}\right\rangle_{|J|=j}
$$

Then $\mathcal{I}_{0}=\mathcal{O}_{\bar{Y}_{0}(p)}$ and $\mathcal{I}_{d+1}=0$. Writing \mathcal{I}_{J} for the analogous ideal sheaf on \bar{Y}_{J}, ie generated by $\prod_{\theta \in J} \operatorname{Lie}(f)_{\theta}$, one can check that the natural map

$$
g r^{j}\left(\mathcal{O}_{\bar{Y}_{0}(p)}\right) \hookrightarrow \bigoplus i_{J, *} \mathcal{I}_{J}
$$

is an isomorphism. Now, write \mathcal{J}_{J} for the invertible ideal sheaf on \bar{Y}_{J} generated by $\prod_{\theta \notin J} \operatorname{Lie}\left(f^{\vee}\right)_{\theta}$. Some general Yoga yields a canonical isomorphism

$$
i_{J, *} \mathcal{K}_{\bar{Y}_{J}} \xrightarrow{\sim} i_{J, *}\left(\mathcal{I}_{J} \mathcal{J}_{J}\right) \otimes \mathcal{K}_{\bar{Y}_{0}(p)}
$$

Now, we can use this to define a filtration on $\mathcal{K}_{\bar{Y}_{0}(p)}$ by

$$
\mathrm{Fil}^{j}=\mathcal{I}_{j} \mathcal{K}_{\bar{Y}_{0}(p)} \simeq \mathcal{I}_{j} \otimes \mathcal{K}_{\bar{Y}_{0}(p)}
$$

Then combining the discussion above yields an isomorphism

$$
g r^{j}\left(\mathcal{K}_{\bar{Y}_{0}(p)}\right) \xrightarrow{\sim} \bigoplus_{|J|=j} i_{J, *}\left(\mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}}\right)
$$

Repeating the same process after tensoring by $\mathcal{L}_{\chi^{-1}}^{-1}$ combined with the machinery of spectral sequences yields a Hecke equivariant spectral sequence

$$
E_{1}^{j, i}=H^{i+j}\left(\bar{Y}_{0}(p), g r^{j}\left(\mathcal{K}_{\bar{Y}_{0}(p)} \mathcal{L}_{\chi^{-1}}^{-1}\right) \simeq \bigoplus_{|J|=j} H^{i+j}\left(\bar{Y}, \mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}} i^{*} \mathcal{L}_{\chi^{-1}}^{-1}\right) \Rightarrow H^{i+j}\left(\bar{Y}_{0}(p), \mathcal{K}_{\bar{Y}_{0}(p)} \mathcal{L}_{\chi^{-1}}^{-1}\right) .\right.
$$

We finish the proof of our result by computing the sheaves $\Xi_{J, *}\left(\mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}} i_{J}^{*} \mathcal{L}_{\chi^{-1}}^{-1}\right)$ on $\prod \mathbb{P}\left(\mathcal{V}_{\theta}\right)$ and their projection to $\bar{Y}_{\Sigma_{J}}$.

We start by remarking that there is a canonical isomorphism

$$
\mathcal{J}_{J}^{-1} \xrightarrow{\sim} \bigotimes_{\theta \notin J} i_{J}^{*}\left(\mathcal{L}_{\theta}^{-1} \mathcal{L}_{\phi^{-1} \circ \theta}^{p}\right)
$$

Roughly speaking, this identification comes in two parts, the first is to relate the sections $\operatorname{Lie}\left(f^{\vee}\right)_{\theta}$ to $\operatorname{Lie}(g)_{\theta}$ where $g: A_{2} \rightarrow A_{1}$ is the unique map such that $g \circ f=p$. The second is to exploit the properties of the stratification coupled with an explicit analysis of the description of H in terms of Raynaud bundles. As an example of such a property, we have isomorphisms $\operatorname{Lie}(H)_{\theta} \simeq \operatorname{Lie}\left(A_{1}\right)_{\theta}$ and so $i_{J}^{*} \mathcal{L}_{\theta} \simeq i_{J}^{*} \omega_{1, \theta}$ for $\theta \notin J$.

If we write $\psi_{J}: X=\prod \mathbb{P}_{\bar{Y}_{\Sigma}}\left(\mathcal{V}_{\theta}\right) \rightarrow \bar{Y}_{\Sigma}$ for the natural projection, it is a fact that the dualizing sheaf \mathcal{K}_{X} is isomorphic to

$$
\psi_{J}^{*} \mathcal{K}_{\bar{Y}_{\Sigma}} \bigotimes\left(\bigotimes_{\theta \in \Sigma} \psi_{J}^{*}\left(\delta_{\theta}\right)(-2)_{\theta}\right)
$$

where the $(-2)_{\theta}$ denotes a twist by $\mathcal{O}(-2)_{\theta}=\mathcal{O}(1)_{\theta}^{-2}$ where $\mathcal{O}(1)_{\theta}$ is the pullback of $\mathcal{O}(1)$ to the θ component of the product bundle. Combining this with the Kodaira-Spencer isomorphism and the fact that $\Xi_{J, *} \mathcal{K}_{\bar{Y}_{0}(p)} \simeq \mathcal{K}_{X}$ yields

$$
\mathcal{K}_{X} \simeq\left(\bigotimes_{\theta \nsubseteq \Sigma} \delta_{\theta}^{-1} \omega_{\theta}^{2}\right)\left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}(-2)_{\theta}\right)
$$

Finally, we remark that the line bundles $\Xi_{J *} \mathcal{L}_{\chi}$ have explicit descriptions in terms of the sheaves $\omega_{\theta}, \delta_{\theta}$ and $\mathcal{O}(1)_{\theta}$, which come from an explicit analysis of the moduli theoretic construction of the map Ξ_{J}.

Now, Recalling that in the situation $\psi: \mathbb{P}_{S}(\mathcal{V}) \rightarrow S$, we have an isomorphism $\psi_{*} \mathcal{O}(n) \simeq$ $\operatorname{Sym}_{S}^{n}(\mathcal{V})$ We now have a description of $\Xi_{J, *}\left(\mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}} i_{J}^{*} \mathcal{L}_{\chi^{-1}}^{-1}\right)$ in terms of the sheaves $\omega_{\theta}, \delta_{\theta}$, and $\operatorname{Sym}_{\bar{Y}_{\Sigma}}^{n}\left(\mathcal{V}_{\theta}\right)$. In particular, we find that

$$
R^{i} \psi_{J, *}\left(\Xi_{J, *}\left(\mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}} i_{J}^{*} \mathcal{L}_{\chi^{-1}}^{-1}\right)\right)=0
$$

for $i \geq 1$ and

$$
\psi_{J, *}\left(\Xi_{J, *}\left(\mathcal{J}_{J}^{-1} \mathcal{K}_{\bar{Y}_{J}} i_{J}^{*} \mathcal{L}_{\chi^{-1}}^{-1}\right)\right) \simeq\left(\bigotimes_{\theta \notin \Sigma} \delta_{\theta}^{\ell,{ }_{J, \theta}-1} \omega_{\theta}^{n_{J, \theta}+2}\right)\left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}^{\ell_{J, \theta}} \operatorname{Sym}_{\bar{Y}_{\Sigma}}^{n_{J, \theta}}\left(\mathcal{V}_{\theta}\right)\right)
$$

Where the ℓ_{J} and n_{J} are given by $V_{\chi, J} \simeq V_{n_{J}, \ell_{J}}$. This can be rewritten as $\delta^{-1} \mathcal{A}_{\chi, J}$ for $\delta=\bigotimes \delta_{\theta}$ a trivial sheaf and

$$
\mathcal{A}_{\chi, J}=\mathcal{A}_{n_{J}+2, \ell_{J}}=\left(\bigotimes_{\theta \notin \Sigma} \delta_{\theta}^{\ell J, \theta} \omega_{\theta}^{n_{J, \theta}+2}\right)\left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}^{\ell_{J, \theta}+1} \operatorname{Sym}_{\bar{Y}_{\Sigma}}^{n_{J, \theta}}\left(\mathcal{V}_{\theta}\right)\right)
$$

One last application of the Leray Spectral sequence gives us Theorem B:

$$
E_{1}^{j, i}=\bigoplus_{|J|=j} H^{i+j}\left(\bar{Y}_{\Sigma_{J}}, \mathcal{A}_{\chi, J}\right) \Rightarrow H^{i+j}\left(\bar{Y}_{1}(p), \mathcal{K}\right)^{\chi}
$$

The corollary follows readily from the shape of the spectral sequence.

