A geometric Jacquet–Langlands for mod p Hilbert modular forms, following Diamond–Kassaei–Sasaki part 2

The aim of this talk is to discuss a generalization the following result due to Serre and Gross:

1 Introduction

Let p be a prime. There is a Hecke equivariant short exact sequence

$$0 \to H^0(\overline{X}_1(N), \delta^m \omega^{p+1-m}(-C)) \to H^0(\overline{X}_1(Np), \overline{\mathcal{K}})^{\chi_m} \to H^0(\overline{X}_1(N), \omega^{m+2}(-C)) \to 0$$

where \overline{X} is the special fiber of the compactified modular $X_1(N)$ of tame level N, ω the usual Hodge bundle, C the divisor of cusps, δ a trivial sheaf which twist the action of T_q by q, and finally, $\overline{\mathcal{K}}$, the dualizing sheaf of $\overline{X}_1(Np)$. This can be seen as a geometric counterpart to the sequence of local systems on $\Gamma_1(N) \setminus \mathcal{H}$:

$$0 \to \det^m \otimes \operatorname{Sym}^{p-1-m} \mathbb{F}_p^2 \to \operatorname{Ind}_P^{GL_2(\mathbb{F}_p)}(1 \otimes \chi_m) \to \operatorname{Sym}^m \mathbb{F}_p^2 \to 0.$$

where P denotes the upper triangular matrices and $(1 \otimes \chi_m)$ is the character

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto d^m.$$

The work of DS17 suggests that there should be a generalization to Hilbert modular forms. For a totally real field F in which p is unramified, there should be a link between mod p Hilbert modular forms of parallel weight 2, with Iwahori level $U_1(p)$ and character $\chi : (\mathcal{O}_F/p)^{\times} \to \overline{\mathbb{F}}_p^{\times}$, to mod p quaternionic modular forms of weights given by Jordan-Holder factors of $V_{\chi} = Ind_P^{GL_2(\mathcal{O}_F/p)}(1 \otimes \chi)$. where P denotes the upper triangular matrices.

Recall that the irreducible representations of $GL_2(\mathcal{O}_F/p)$ are of the form

$$V_{m,n} = \bigotimes_{\theta \in \overline{\Theta}_n} \det^{m_\theta} \otimes \operatorname{Sym}^{n_\theta} V_\theta$$

where $(m,n) \in \mathbb{Z}^{\Theta} \times \mathbb{Z}^{\Theta}$ satisfy $0 \leq m_{\theta}, n_{\theta} \leq p-1$ with at least one $m_{\theta} < p-1$ and $V_{\theta} = \overline{\mathbb{F}}_{p}^{2}$ with $GL_{2}(\mathcal{O}_{F}/p)$ acting via θ .

Recall the following:

Theorem 1.1. There is a decreasing filtration

$$V_{\chi} = Fil^0 V_{\chi} \supset Fil^1 V_{\chi} \supset \dots \supset Fil^{d+1} V_{\chi} = 0$$

on $V_{\chi} = Ind_P^{GL_2(\mathcal{O}_F/p)}(1 \otimes \chi)$ such that $gr^j V_{\chi} \simeq \bigoplus_{|J|=j} V_{\chi,J}$ where the $V_{\chi,J}$ are irreducible or 0.

We will explain the following main results from DKS20:

Theorem 1.2 (Theorem B). For sufficiently small $U \subset GL_2(\mathbb{A}_{F,f})$ containing $GL_2(\mathcal{O}_{F,p})$ there is a Hecke equivariant spectral sequence

$$E_1^{j,i} = \bigoplus_{|J|=j} H^{i+j}(\overline{Y}_{\Sigma_J}, \mathcal{A}_{\chi,J}) \Rightarrow H^{i+j}(\overline{Y}_1(p), \mathcal{K})^{\chi}.$$

Corollary 1.3 (Corollary C). In particular there is a length d + 1, Hecke equivariant filtration on $H^0(\overline{Y}_1(p), \mathcal{K})^{\chi}$ with a Hecke equivariant embedding

$$gr^{j}\left(H^{0}(\overline{Y}_{1}(p),\mathcal{K})^{\chi}\right) \hookrightarrow \bigoplus_{|J|=j} H^{0}(\overline{Y}_{\Sigma_{J}},\mathcal{A}_{\chi,J}).$$

I will refrain from defining these objects for now. The space $H^0(\overline{Y}_1(p), \mathcal{K})^{\chi}$ is our definition of parallel weight 2 mod p Hilbert modular forms of Iwahori level $U_1(p)$ and the $H^0(\overline{Y}_{\Sigma_J}, \mathcal{A}_{\chi,J})$ are the mod p quaternionic modular forms of weight $V_{\chi,J}$ as introduced above.

2 Models of Shimura varieties

We start by introducing the necessary notation and recapping the contents of last week.

Let F be a totally real field of degree d and p be a prime which is unramified in F. Let Θ denote the set of embeddings $\tau: F \to \overline{\mathbb{Q}}$ which we identify with $\Theta_p = \operatorname{Hom}(F, \overline{\mathbb{Q}}_p)$ via a fixed embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$, and $\overline{\Theta}_p = \operatorname{Hom}(\mathcal{O}_F/p, \overline{\mathbb{F}}_p)$. We write $\mathbb{A}_{F,f}$ and $\mathbb{A}_{F,f}^{(p)}$ for the finite adèles over F and prime to p finite adèles over F respectively. For any ring R, we write $R_p = R \otimes \mathbb{Z}_p$. For any even subset $\Sigma \subset \Theta$ we let $B = B_{\Sigma}$ be the unique (up to isomorphism) quaternion algebra over F which is ramified exactly at the places in Σ . We let G_{Σ} be the algebraic group over \mathbb{Q} whose R-points are given by

$$G_{\Sigma}(R) = (B \otimes_{\mathbb{Q}} R)^{\times}.$$

We also let $G = \operatorname{Res}_{F/\mathbb{Q}}(GL_2)$.

2.1 Hilbert modular varieties

For a sufficiently small open compact subgroup $U \subset GL_2(\mathbb{A}_f)$ which contains $GL_2(\mathcal{O}_{F,p})$ we have a canonical integral model over \mathbb{Z}_p for the Shimura variety of level U for G which we denote $Y_U(G)$. It is obtained as an étale quotient of a (union of) PEL Shimura variety $\tilde{Y}_U(G)$. This variety is given as the moduli space which classifies isomorphism classes of tuples $(A/S, \iota, \lambda, \eta)$ where:

- S is a $\mathbb{Z}_{(p)}$ -scheme and A/S an abelian scheme of dimension d with a ring embedding $\iota: \mathcal{O}_F \hookrightarrow \operatorname{End}_S(A)$ such that $\operatorname{Lie}(A/S)$ is locally free of rank one over $\mathcal{O}_F \otimes \mathcal{O}_S$,
- λ is a prime to p quasi-polarization whose associated Rosati involution fixes ι ,
- η is a level structure for U^p structure on A.

Both $Y_U(G)$ and $Y_U(G)$ are smooth varieties of relative dimension d over \mathbb{Z}_p .

Last week's result involved Shimura varieties for G of Iwahori level $U_0(p)$. We will also need Iwahori level $U_1(p)$ which we recall now:

Let

$$U_1(p) = \{g \in U \mid g_p \cong \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \mod p\} \subset U_0(p) = \{g \in U \mid g_p \cong \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod p\}.$$

We define $Y_{U_0(p)}(G)$ as a quotient of the moduli space $\tilde{Y}_{U_0(p)}(G)$ of isomorphism classes of tuples (A_1, A_2, f) over S where

- A_i define points of $\widetilde{Y}_U(G)$.
- $f: A_1 \to A_2$ is a degree $p^d \mathcal{O}_F$ -linear isogeny such that f respects the level structures, $f^{\vee} \circ \lambda_2 \circ f = p\lambda_1$ and $H = \ker f$ decomposes as $H = \prod_{v|p} H_v$ where $H_v \subset A_1[v]$ has rank $p^{[F_v:\mathbb{Q}_p]}$.

It is a local complete intersection of dimension d and so Cohen-Macaulay.

We also define $Y_{U_1(p)}(G)$ as a quotient of the moduli space $\tilde{Y}_{U_1(p)}(G)$ of isomorphism classes of tuples (f, P) over S where

- f defines a point of $\widetilde{Y}_{U_0(p)}(G)$.
- $P \in H(S)$ is a \mathcal{O}_F/p Drinfeld generator for H in the sense of Katz-Mazur.

The forgetful map $h: Y_{U_1(p)}(G) \to Y_{U_0(p)}(G)$ is finite flat so in particular $Y_{U_1(p)}(G)/\mathcal{O}$ is Cohen-Macaulay as well.

2.2 Quaternionic Shimura varieties

Similarly, for a sufficiently small open compact subgroup $U \subset G_{\Sigma}(\mathbb{A}_f)$ which contains $\mathcal{O}_{B,p}^{\times} \simeq GL_2(\mathcal{O}_{F,p})$, we have a canonical integral model over \mathbb{Z}_p for the Shimura variety of level U for G_{Σ} which we denote $Y_U(G)$. Similarly, this obtained as a quotient of an auxiliary Unitary Shimura variety. It is smooth of relative dimension $d - \#\Sigma$.

3 Automorphic vector bundles

3.1 Building blocks

We keep the same notation and assumptions as the previous section.

Over $\overline{S} = \widetilde{Y}_U(G) \times \overline{\mathbb{F}}_p$ we have the universal abelian scheme $s : A \to \overline{S}$ with its Hodge filtration

$$0 \to s_*\Omega^1_{A/S} \to \mathcal{H}^1_{dR}(A/S) \to R^1 s_*\mathcal{O}_A \to 0$$

which yields for each embedding $\tau : \mathcal{O}_F \to \overline{\mathbb{Z}}_p$, by taking isotypic components, a sequence of locally free sheaves

$$0 \to \tilde{\omega}_\tau \to \tilde{\mathcal{V}}_\tau \to \tilde{v}_\tau \to 0$$

of ranks one, two and one respectively. We also define $\tilde{\delta}_{\tau} = \wedge^2 \tilde{\mathcal{V}}_{\tau}$. If we take U to be "p-neat", that is $\alpha - 1 \in p\mathcal{O}_F$ for all $\alpha \in U \cap \mathcal{O}_F^{\times}$, we can descend these sheaves to $\overline{Y} = Y_U(G) \times \overline{\mathbb{F}}_p$ which we denote by removing the tilde.

Similarly, only under the assumption again that $U \subset G_{\Sigma}(\mathbb{A}_f)$ is has level prime to p, we can define analogous line bundles ω_{θ} for $\theta \notin \Sigma$, and rank two vector bundles \mathcal{V}_{θ} for all $\theta \in \Theta$. We also write $\delta_{\theta} = \wedge^2 \mathcal{V}_{\theta}$.

On the geometric special fiber $\overline{Y}_0(p) = Y_0(p) \times \overline{\mathbb{F}}_p$, we have a decomposition into smooth closed subschemes of pure dimension $d, i_J : \overline{Y}_J \to \overline{Y}_0(p)$ indexed by subsets $J \subset \Theta$ given as the descent of

$$V({\operatorname{Lie}(f)_{\theta}}_{\theta \notin J} \cup {\operatorname{Lie}(f^{\vee})_{\theta}}_{\theta \in J}) \subset \overline{S}$$

Theorem A of DKS20 then states that there is a Hecke equivariant isomorphism

$$\Xi_J: \overline{Y}_J \to \prod_{\theta \in \Sigma_J} \mathbb{P}_{\overline{Y}_{\Sigma_J}}(\mathcal{V}_\theta)$$

for $\Sigma_J = \{\theta \in J \mid \phi(\theta) \notin J\} \cup \{\theta \notin J \mid \phi(\theta) \in J\}$. We explain their relation to the analogous Hilbert ones later.

3.2 Hilbert modular forms

For a pair $(k, \ell) \in \mathbb{Z}^{\Theta} \times \mathbb{Z}^{\Theta}$ which is paritious (ie $k_{\theta} + 2\ell_{\theta}$ is independent of θ), we define the sheaf $\mathcal{A}_{k,\ell}$ on \overline{Y} as the descent of the sheaf

$$\widetilde{\mathcal{A}}_{k,\ell} := \bigotimes_{\theta \in \Theta} \widetilde{\delta}_{\theta}^{\ell_{\theta}} \widetilde{\omega}_{\theta}^{k_{\theta}}.$$

We define Hilbert modular forms of level U and weight (k, ℓ) over $\overline{\mathbb{F}}_p$ by

$$M_{k,\ell}(U,\overline{\mathbb{F}}_p) = H^0(\overline{Y},\mathcal{A}_{k,\ell})$$

There is a Kodaira-Spencer isomorphism

$$\widetilde{\mathcal{A}}_{2,-1} = \bigotimes_{\theta} \widetilde{\delta}_{\theta}^{-1} \widetilde{\omega}^2 \simeq \mathcal{K}_{S/\mathcal{O}}$$

where $\mathcal{K}_{S/\mathcal{O}} \simeq \wedge^d \Omega^1_{S/\mathcal{O}}$ is the dualizing sheaf of S which descends to \overline{Y} . This can be seen via an explicit analysis of the deformation theory of S by using Grothendieck-Messing theory. There is furthermore a canonical trivialization of $\widetilde{\mathcal{A}}_{0,-1} = \wedge^2_{\mathcal{O}_F \otimes_\mathbb{Z} \mathcal{O}_S} \mathcal{H}^1_{dR}(A/S)$ which also descends to Y. This combines to give an isomorphism

$$M_{2,0}(U,R) \simeq H^0(Y,\mathcal{K}_{Y/R}).$$

This leads to the definition of Hilbert modular forms of parallel weight 2 of level $U_0(p)$ and level $U_1(p)$ as

$$M_{2,0}(U_0(p), R) = H^0(Y_0(p), \mathcal{K}_{Y_0(p)/R})$$
 and $M_{2,0}(U_1(p), R) = H^0(Y_1(p), \mathcal{K}_{Y_1(p)/R})$

respectively. The natural action of $(\mathcal{O}_F/p)^{\times} \simeq U_0(p)/U_1(p)$ on $Y_1(p)$ by acting on the generator P yields a decomposition

$$M_{2,0}(U_1(p),\mathcal{O}) = \bigoplus_{\chi:(\mathcal{O}_F/p)^{\times} \to \mathcal{O}^{\times}} M_{2,0}(U_1(p),\mathcal{O})^{\chi}$$

into χ components.

Remark 3.1. All of these constructions above make sense over a suitable localization at a prime above p of the ring of integers \mathcal{O}_L of a large enough field $L \subset \overline{\mathbb{Q}}$. For such a field, the Kodaira-Spencer isomorphism holds on $Y_U(G) \times L$ for any U without any hypothesis on the level at p. This (among other details) justifies our definition.

4 The main result

The main input in the proof of Theorem B is a technique dubbed dicing by the authors in which they use the stratification of $\overline{Y}_0(p)$ to define a filtration on its dualizing sheaf such that the graded pieces are supported on appropriate maximal strata.

Preliminaries: Let $h: Y_1(p) \to Y_0(p)$ be the natural projection, it is finite flat. Hence we have the relation $h_*\mathcal{K}_{Y_1(p)/\overline{\mathbb{F}}_p} \simeq \mathcal{H}om(h_*(\mathcal{O}_{Y_1(p)},\mathcal{K}_{Y_0(p)/\overline{\mathbb{F}}_p}) \text{ and } R^jh_*\mathcal{K}_{Y_1(p)/\overline{\mathbb{F}}_p} = 0 \text{ for } j > 0.$ Furthermore since $Y_1(p)$ can be described as a closed subscheme of the universal kernel $H \to Y_0(p)$ which is a Raynaud \mathcal{O}_F/p -scheme, we have a decomposition

$$h_*\mathcal{O}_{Y_1(p)} = \bigoplus_{\chi} \mathcal{L}_{\chi}$$

where the χ are characters of $(\mathcal{O}_F/p)^{\times}$, and \mathcal{L}_{χ} are line bundles on which $(\mathcal{O}_F/p)^{\times}$ acts via χ . For example Hence, by the above discussion (and the Leray Spectral Sequence), it follows that $H^i(Y_1(p), \mathcal{K}_{Y_1(p)/\overline{\mathbb{F}}_p})^{\chi} = H^i(Y_0(p), \mathcal{L}_{\chi^{-1}}^{-1} \mathcal{K}_{Y_0(p)/\overline{\mathbb{F}}_p})$ and in particular

$$M_{2,0}(U_1(p),\mathbb{F})^{\chi} = H^0(\overline{Y}_0(p),\mathcal{L}_{\chi^{-1}}^{-1}\mathcal{K}_{Y_0(p)/\overline{\mathbb{F}}_p}).$$

We now define a filtration on $\mathcal{O}_{\overline{Y}_0(p)}$ by the ideal sheaves \mathcal{I}_j which are given locally by (the descent of)

$$\mathcal{I}_j = \langle \prod_{\theta \in J} \operatorname{Lie}(f)_{\theta} \rangle_{|J|=j}.$$

Then $\mathcal{I}_0 = \mathcal{O}_{\overline{Y}_0(p)}$ and $\mathcal{I}_{d+1} = 0$. Writing \mathcal{I}_J for the analogous ideal sheaf on \overline{Y}_J , is generated by $\prod_{\theta \in J} \text{Lie}(f)_{\theta}$, one can check that the natural map

$$gr^{j}(\mathcal{O}_{\overline{Y}_{0}(p)}) \hookrightarrow \bigoplus i_{J,*}\mathcal{I}_{J}$$

is an isomorphism. Now, write \mathcal{J}_J for the invertible ideal sheaf on \overline{Y}_J generated by $\prod_{\theta \notin J} \operatorname{Lie}(f^{\vee})_{\theta}$. Some general Yoga yields a canonical isomorphism

$$i_{J,*}\mathcal{K}_{\overline{Y}_J} \xrightarrow{\sim} i_{J,*}(\mathcal{I}_J\mathcal{J}_J) \otimes \mathcal{K}_{\overline{Y}_0(p)}.$$

Now, we can use this to define a filtration on $\mathcal{K}_{\overline{Y}_0(p)}$ by

$$\operatorname{Fil}^{j} = \mathcal{I}_{j} \mathcal{K}_{\overline{Y}_{0}(p)} \simeq \mathcal{I}_{j} \otimes \mathcal{K}_{\overline{Y}_{0}(p)}$$

Then combining the discussion above yields an isomorphism

$$gr^{j}(\mathcal{K}_{\overline{Y}_{0}(p)}) \xrightarrow{\sim} \bigoplus_{|J|=j} i_{J,*}(\mathcal{J}_{J}^{-1}\mathcal{K}_{\overline{Y}_{J}}).$$

Repeating the same process after tensoring by $\mathcal{L}_{\chi^{-1}}^{-1}$ combined with the machinery of spectral sequences yields a Hecke equivariant spectral sequence

$$E_1^{j,i} = H^{i+j}(\overline{Y}_0(p), gr^j(\mathcal{K}_{\overline{Y}_0(p)}\mathcal{L}_{\chi^{-1}}^{-1}) \simeq \bigoplus_{|J|=j} H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}\mathcal{K}_{\overline{Y}_J}i_J^*\mathcal{L}_{\chi^{-1}}^{-1}) \Rightarrow H^{i+j}(\overline{Y}_0(p), \mathcal{K}_{\overline{Y}_0(p)}\mathcal{L}_{\chi^{-1}}^{-1}) = H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}\mathcal{K}_{\overline{Y}_J}i_J^*\mathcal{L}_{\chi^{-1}}^{-1}) \Rightarrow H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}\mathcal{K}_{\overline{Y}_J}i_J^*\mathcal{L}_{\chi^{-1}}^{-1}) = H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}\mathcal{K}_{\chi^{-1}}) = H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}\mathcal{K}_{\chi^{-1}}) = H^{i+j}(\overline{Y}, \mathcal{J}_J^{-1}) = H^{i+j}(\overline{Y}, \mathcal{J}_$$

We finish the proof of our result by computing the sheaves $\Xi_{J,*}(\mathcal{J}_J^{-1}\mathcal{K}_{\overline{Y}_J}i_J^*\mathcal{L}_{\chi^{-1}}^{-1})$ on $\prod \mathbb{P}(\mathcal{V}_{\theta})$ and their projection to \overline{Y}_{Σ_J} .

We start by remarking that there is a canonical isomorphism

$$\mathcal{J}_J^{-1} \xrightarrow{\sim} \bigotimes_{\theta \notin J} i_J^* (\mathcal{L}_{\theta}^{-1} \mathcal{L}_{\phi^{-1} \circ \theta}^p).$$

Roughly speaking, this identification comes in two parts, the first is to relate the sections $\operatorname{Lie}(f^{\vee})_{\theta}$ to $\operatorname{Lie}(g)_{\theta}$ where $g: A_2 \to A_1$ is the unique map such that $g \circ f = p$. The second is to exploit the properties of the stratification coupled with an explicit analysis of the description of H in terms of Raynaud bundles. As an example of such a property, we have isomorphisms $\operatorname{Lie}(H)_{\theta} \simeq \operatorname{Lie}(A_1)_{\theta}$ and so $i_J^* \mathcal{L}_{\theta} \simeq i_J^* \omega_{1,\theta}$ for $\theta \notin J$.

If we write $\psi_J : X = \prod \mathbb{P}_{\overline{Y}_{\Sigma}}(\mathcal{V}_{\theta}) \to \overline{Y}_{\Sigma}$ for the natural projection, it is a fact that the dualizing sheaf \mathcal{K}_X is isomorphic to

$$\psi_J^* \mathcal{K}_{\overline{Y}_{\Sigma}} \bigotimes \left(\bigotimes_{\theta \in \Sigma} \psi_J^*(\delta_{\theta})(-2)_{\theta} \right),$$

where the $(-2)_{\theta}$ denotes a twist by $\mathcal{O}(-2)_{\theta} = \mathcal{O}(1)_{\theta}^{-2}$ where $\mathcal{O}(1)_{\theta}$ is the pullback of $\mathcal{O}(1)$ to the θ component of the product bundle. Combining this with the Kodaira-Spencer isomorphism and the fact that $\Xi_{J,*}\mathcal{K}_{\overline{Y}_0(p)} \simeq \mathcal{K}_X$ yields

$$\mathcal{K}_X \simeq \left(\bigotimes_{\theta \notin \Sigma} \delta_{\theta}^{-1} \omega_{\theta}^2\right) \left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}(-2)_{\theta}\right).$$

Finally, we remark that the line bundles $\Xi_{J*}\mathcal{L}_{\chi}$ have explicit descriptions in terms of the sheaves ω_{θ} , δ_{θ} and $\mathcal{O}(1)_{\theta}$, which come from an explicit analysis of the moduli theoretic construction of the map Ξ_J .

Now, Recalling that in the situation $\psi : \mathbb{P}_{S}(\mathcal{V}) \to S$, we have an isomorphism $\psi_*\mathcal{O}(n) \simeq \operatorname{Sym}_{S}^{n}(\mathcal{V})$ We now have a description of $\Xi_{J,*}(\mathcal{J}_{J}^{-1}\mathcal{K}_{\overline{Y}_{J}}i_{J}^{*}\mathcal{L}_{\chi^{-1}}^{-1})$ in terms of the sheaves $\omega_{\theta}, \delta_{\theta}$, and $\operatorname{Sym}_{\overline{Y}_{\Sigma}}^{n}(\mathcal{V}_{\theta})$. In particular, we find that

$$R^{i}\psi_{J,*}\left(\Xi_{J,*}(\mathcal{J}_{J}^{-1}\mathcal{K}_{\overline{Y}_{J}}i_{J}^{*}\mathcal{L}_{\chi^{-1}}^{-1})\right)=0$$

for $i \ge 1$ and

$$\psi_{J,*}\left(\Xi_{J,*}(\mathcal{J}_J^{-1}\mathcal{K}_{\overline{Y}_J}i_J^*\mathcal{L}_{\chi^{-1}}^{-1})\right) \simeq \left(\bigotimes_{\theta \notin \Sigma} \delta_{\theta}^{\ell_{J,\theta}-1} \omega_{\theta}^{n_{J,\theta}+2}\right) \left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}^{\ell_{J,\theta}} \operatorname{Sym}_{\overline{Y}_{\Sigma}}^{n_{J,\theta}}(\mathcal{V}_{\theta})\right)$$

Where the ℓ_J and n_J are given by $V_{\chi,J} \simeq V_{n_J,\ell_J}$. This can be rewritten as $\delta^{-1}\mathcal{A}_{\chi,J}$ for $\delta = \bigotimes \delta_{\theta}$ a trivial sheaf and

$$\mathcal{A}_{\chi,J} = \mathcal{A}_{n_J+2,\ell_J} = \left(\bigotimes_{\theta \notin \Sigma} \delta_{\theta}^{\ell_{J,\theta}} \omega_{\theta}^{n_{J,\theta}+2}\right) \left(\bigotimes_{\theta \in \Sigma} \delta_{\theta}^{\ell_{J,\theta}+1} \operatorname{Sym}_{\overline{Y}_{\Sigma}}^{n_{J,\theta}}(\mathcal{V}_{\theta})\right)$$

One last application of the Leray Spectral sequence gives us Theorem B:

$$E_1^{j,i} = \bigoplus_{|J|=j} H^{i+j}(\overline{Y}_{\Sigma_J}, \mathcal{A}_{\chi,J}) \Rightarrow H^{i+j}(\overline{Y}_1(p), \mathcal{K})^{\chi}.$$

The corollary follows readily from the shape of the spectral sequence.