Minimal weights of mod p
Hilbert modular forms (joint w/ F. Diamond).
Introduction: $N \geqslant 3, p \times N$ prime Recall from Lorenzo's talk:

- $\overline{X_{1}}(N)$ Complete modular curve/ \bar{F}_{p}
- ω the usual sheaf
- $H^{0}\left(\bar{X}_{1}(\nu), \omega^{k}\right)=\mu_{k}\left(T_{1}(N) ;, \bar{F}_{p}\right)$ space of mod-p modular forms.
- $h \in M_{p-1}\left(\Gamma_{c}(N), F_{p}\right)$ the Hose invariant-

Unlike Complex modular forms, mod-p modular forms of different weight Can have the same q-expansion. Let $0 \neq f \in M_{k}\left(r_{1}(N) ; \bar{F}_{p}\right)$. The filtration of f is the minimal weight of a modular form with the same q-expansion as f. If $f=h^{r} \cdot g$ where $r \geqslant 0$, and g is not divisible by h, then the filtration of f equals the weight of g.

Since ω is an ample line bundle on $\overline{X_{1}(N)}$, the filtration of f is always $\geqslant 0$.
Now let F be a quadratic totally real field in which p is inert. Recall from Chris's talk the notion of mod-p HMF for F. In particular, we have the partial Hasse invariants

$$
\begin{aligned}
& h_{1} \text { of weight }=(-1, p) \\
& h_{2} \text { of weight }=(p,-1)
\end{aligned}
$$

Unlike the Case of modular forms, it is possible for mod p HMFs to have weiglets with. negative components.
Andreatt-_Goren asked if the phenomenon of negative weights for HMFs Can be accounted for entirely by partial Hose invariants Let us explain. Let $f \neq 0$ be a $\bmod p$ HMF.
Write $f=h_{1}^{2} h_{2}^{s} g, r_{1} s \geqslant 0$ \& g is not divisible by h_{1}, h_{2}. We define the filtration of
$f, \phi(f)$, to be the weight of g.
$A G$ asked if it is true that $\phi(f)$ lies in the Cone of non-negative weights. In particular, this could imply that if $\varphi^{\text {tasse }}=$ Cone of weights spanned by the weights of the partial tasse invariants then there are no nonzero $\bmod p$ HMFs of weight outside $e^{\text {tasse. }}$

We answer this question in the positive. In fact, we prove a stronger result.
Let $e^{\min }\left\{\begin{array}{l|l}(x, y) \in \mathbb{Q}^{2} & \begin{array}{l}p x \geqslant y \\ p y \geqslant x\end{array}\end{array}\right\}$
We show that for every nonzero $\bmod p$ MF f, we have $\Phi(f) \in e^{\text {min }}$.

Notation
-P prime
$-F$ totally val field of degree $d>1$
$-O_{F}$ ring of integers
$-\forall 81 p: F_{8}, \theta_{8}, F_{8}=\sigma_{F} /_{8}$

- IF a finite field containing all \mathbb{F}_{8} for $81 p$

$$
\begin{aligned}
-\Sigma & =\operatorname{Hom}\left(F_{c}(\bar{R})\right. \\
-\Sigma_{8} & =\operatorname{Hom}\left(F_{8}\left(\bar{R}_{P}\right)\right. \\
& =\operatorname{Hom}\left(F_{8}, W(\mathbb{F})\right)
\end{aligned}
$$

$$
=\operatorname{Hom}\left(\mathbb{F}_{8}, \mathbb{F}\right) \bigcup_{\sigma}
$$

$$
\Rightarrow \Sigma=\frac{11}{81 p} \Sigma_{8}
$$

Hilbert modular Varieties:
Recall from Chris's talk the definition of HMUS. $N \geqslant 3$ p $N N, J \subset F$ fractional ideal

$$
M_{J, N}=x_{J} / W(\mathbb{F})
$$

the scheme representing the functor

$$
\begin{aligned}
& \left(\binom{\text { loo. north. }}{W(F)-S c}\right) \rightarrow((\text { sets })) \\
& S \longmapsto\{\underline{A}=(A, i, \lambda, \alpha) / s\} / \underline{\underline{o}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { J-polarizad HBAS. }
\end{aligned}
$$

X_{J} is a smooth quasi-prajective scheme over W(F).
Let J_{1}, \ldots, J_{r} be representatives for $\mathrm{Cl}^{+}(F)$.
Def $\quad X=\frac{1_{i=1}^{r}}{\underline{L}} X_{J_{i}}$
Def $\bar{X}=X \underset{w(\mathbb{F})}{\otimes} \mathbb{F}$

$$
\bar{X}_{\bar{F}_{p}}=\bar{X} \underset{\mathbb{F}}{\otimes} \overline{\mathbb{F}}_{p}
$$

We also need the HMV of Iwakori-level. Let $Y_{J} / W(\mathbb{F})$ be the HMV classifying

$$
\{(\underline{A}, H)=(A, i, \lambda, \alpha, H)\} / \cong
$$

- A is a J-polarized HBAS as before.
- $H \subset A[p]$ is an O_{F}-stable fin. flat subgr scheme of $n k p^{d}$ isotropic w.r. to any/all $\lambda \in \operatorname{Hom}_{O_{F}}^{\text {simm }}\left(A, A^{v}\right)$ (i.e. $\lambda(H)=\left(\frac{A[p]}{H}\right)^{v}=A^{\nu}[p]$).

Def $Y:=\frac{L^{r}}{i=1} Y_{J_{i}}$.

$$
\bar{Y}=Y_{W(\mathbb{F})}^{\otimes}
$$

$\exists \quad \pi, \pi^{\prime}: Y \rightarrow X$

$$
\begin{aligned}
& \pi(\underline{A}, H)=\underline{A} \\
& \pi^{\prime}(\underline{A}, H)=\underline{A} / H
\end{aligned}
$$

Note If R is a $W(F)$-algebra

$$
\Rightarrow G_{F} \mathbb{Q}_{\Sigma} R=\prod_{\tau \in \Sigma} R_{\tau}
$$

where R_{τ} is R with O_{F}-action Coming from ${O_{F}}_{T} \longrightarrow W(\mathbb{F}) \rightarrow R$
$\Rightarrow \forall\left(B_{F} \otimes_{Z} R\right)$-module Λ decomposes as $\Lambda=\underset{\tau \in \Sigma}{\oplus} \aleph_{\tau}$ where

$$
\Lambda_{\tau}=\left\{x \in \Lambda \mid a x=\tau(a) x, \forall a \in O_{F}\right\}
$$

Def Let $\alpha \xrightarrow{\varepsilon} X$ be the universal haas. Define

$$
\begin{aligned}
& \underset{H}{H}=R^{\prime} \varepsilon_{*} \Omega_{A / X}^{0} \\
& \underline{u}=\varepsilon_{*} \Omega_{A / X}^{1}
\end{aligned}
$$

- Then

$$
\begin{aligned}
H & =\bigoplus_{\tau \in \Sigma} H H_{\tau} \\
\omega & =\bigoplus_{\tau \in \Sigma} \omega_{\tau}
\end{aligned}
$$

and $\omega_{\tau} \subset \mathrm{H}_{\tau}$ are locally free sheaves of re 1,2 on X respectively.

- We devote the pullback of H_{τ}, ω_{τ} under $\pi=Y \rightarrow X$ by the same notation.
Let (\underline{B}, H) be the universal object over Y. We define

$$
\bigoplus_{\tau \in \Sigma} \omega_{\tau}^{\prime}=\omega^{\prime}=\pi_{*} \Omega_{(B / H) / Y}^{1}
$$

Each ω_{τ}^{\prime} is a line bundle on Y.

Mod p Hilbert modular forms

- Let $\vec{k}=\Sigma K_{\tau} \vec{e}_{\tau} \in \mathbb{Z}^{\Sigma}$ define $\omega^{\vec{k}}:=\bigotimes_{\tau \in \Sigma} \omega_{\tau}^{k_{\tau}}$
- Let R be an IF-algebra. The space of mod-p HMFs of weight K over R is defined to be

$$
M_{\vec{k}}(N ; R):=H^{0}\left(\underset{\mathbb{X}}{\underset{F}{ } R}, \omega^{\vec{k}}\right)
$$

- Example: $\forall \tau \in \Sigma$, the partial Hasse invariant $h_{\tau} \in M_{\vec{h}_{\tau}}(N, F)$ where $\vec{h}_{\tau}=p \vec{e}_{\sigma_{\tau} \tau}-\vec{e}_{\tau}$, defined by Chris last time:

$$
\begin{aligned}
& \text { by Chris Last time: } \\
& h_{\tau}=\operatorname{Ver}_{\tau}^{*} \in \operatorname{Hom}\left(w_{\tau}, w_{\sigma_{\tau}}^{p}\right)
\end{aligned}
$$

Filtration: $\quad 0 \neq f \in M_{\vec{k}}\left(N, \bar{F}_{p}\right)$
The filtration of $f, \Phi(f)$, is the weight of the corresponding g for the unique maxi element in

$$
\left\{\sum x_{\tau} \vec{e}_{\tau} \in \mathbb{Z}_{\geqslant 0}^{\sum} \left\lvert\, \begin{array}{l}
f=g \Pi h_{\tau}^{x_{\tau}} \\
\text { for some } g
\end{array}\right.\right\} .
$$

for some g

Def

$$
\begin{aligned}
& \text { Def } \\
& e^{\text {st }}=\left\{\sum_{\tau} x_{\tau} e_{\tau} \in \mathbb{Q}^{\Sigma} \mid x_{\tau} \geqslant 0 \quad \forall \tau \in \Sigma\right\} \\
& e^{\min }=\left\{\sum x_{\tau} \vec{e}_{\tau} \in \mathbb{Q}^{\Sigma} \mid p x_{\tau} \geqslant x_{\sigma \tau \tau} \forall \tau \in \Sigma\right\} \\
& e^{\text {Hasse }}=\left\{\sum y_{\tau} \vec{h}_{\tau} \in Q^{\sum} \mid y_{\tau} \geqslant 0 \forall \tau \tau\right\} \\
& e^{\min } \subset e^{s t} \subset e^{\text {Hose }}
\end{aligned}
$$

Each inclusion is an equality iff p splits Completely in F.

Theorem (Diamon d-K)
Suppose $\vec{k}=\Sigma k_{r} \vec{e}_{\tau} \in \mathbb{Z}^{\Sigma}$, and $\tau \in \Sigma$ is such that $p k_{\tau}<k_{\sigma_{\tau}^{-1}}$ Then multiplication by h_{τ} induces an isomorphism

$$
M_{\vec{k}-\vec{h}_{c}}\left(N ; \bar{F}_{p}\right) \xrightarrow{\sim} M_{\vec{k}}\left(N, \widetilde{F}_{p}\right)
$$

Cor: Let $\quad \neq F \in M_{\vec{R}}\left(N, \overline{\mathbb{F}}_{p}\right)$. Then $\Phi(f) \in \varphi^{\mathrm{min}}$.

Cor: If $M_{\vec{k}}\left(N, \bar{F}_{p}\right) \neq 0$, then $\vec{k} \in e^{\text {lase }}$
(Cor. proved indef. by Goldring-Koskivirta)

We prove the analogues of these results in the Case p is ramified in F in a recent work.

Stratifications on \bar{X}, \bar{Y}
X: $\quad \forall T=\Sigma$, we dine
(Goren-Oor.5)

$$
\begin{aligned}
& Z_{T}=V\left(h_{\tau}: \tau \in T\right) \\
& W_{T}=Z_{T}-\bigcup_{T^{\prime} \neq T} Z_{T^{\prime}}
\end{aligned}
$$

Then

- Z_{T}, W_{T} are nonsingular of pure dimension $d-|T|$
- Z_{T} projective if $T \neq \varnothing$ W_{T} quasi-affine
- The collection $\left\{W_{T}\right\}_{T \leq \Sigma}$ gives a stratification of \bar{x}.
\bar{Y} (Gore n-K).
Let (t, H) be the universal object over \bar{Y}. Let $f: A \rightarrow A / H$ be the natural projection and $g: A / H \rightarrow A$ induced by [p]. then $g \circ f=[p]_{A}$. Consider for $\tau \in \Sigma$:

$$
\begin{aligned}
& f_{\tau}^{*}: \omega_{\tau}^{\prime} \rightarrow \omega_{\tau} \\
& g_{\tau}^{*}: \omega_{\tau} \longrightarrow \omega_{\tau}^{\prime}
\end{aligned}
$$

In particular, $f_{\tau}^{*} \circ g_{\tau}^{*}=0$ $\forall \tau \in \Sigma$.

Def Let $\varphi_{1} \eta \subset \Sigma$ st. $\sigma^{-1}(\varphi) \cup \eta=\Sigma$ Define

$$
\begin{aligned}
& Z_{\varphi, \eta}=\bigcap_{\tau \in \sigma^{-} \varphi} V\left(f_{\tau}^{*}\right) \cap \bigcap_{\tau \in \eta} V\left(g_{\tau}^{*}\right) \\
& W_{\varphi, \eta}=Z_{\varphi, \eta}-\bigcup_{\left(\varphi_{i, \prime}^{\prime}\right) \mp(\varphi, \eta)} Z_{\varphi_{i}^{\prime} \eta^{\prime}}
\end{aligned}
$$

Then

- $\left\{W_{\varphi_{i}}\right\}_{\varphi_{i n}}$ forms a stratification of \bar{Y}.
- $Z_{\varphi, \eta}, W_{\varphi, \eta}$ are nonsingular of pure dimension $2 d-(|\varphi|+|\eta|)$ -
- Weir is quasi-affine.
- The irreducible components of \bar{Y} are the irreducible components
of $Z_{\sigma(\eta)^{c}, \eta}$ for $\eta \in \Sigma$.
Relationship between stratifications

$$
\begin{aligned}
& \pi\left(Z_{\varphi, \eta}\right)=Z_{\varphi \cap \eta} \\
& \cdot \pi^{\prime}\left(Z_{\varphi, \eta}\right)=Z_{\sigma^{-1} \varphi \cap \sigma \eta}
\end{aligned}
$$

- We have a commutative diagram
where pr is the natural projection and g is a Frobenius factor, i.e., $\exists \mathbb{P}\left(\underset{\tau \in \operatorname{cin}^{2}}{\oplus} H_{\tau}\right) \xrightarrow{g^{\prime}} Z \varphi, \eta$ s.t. $g_{g^{\prime}}=F_{\text {abs }}^{n}$ for some $n>0$.

Some Pictures:

$$
\begin{array}{ll}
d=1 & \zeta \\
\Sigma=\{\tau\} & \downarrow \\
& X
\end{array}
$$

$d=2, p$ inert, $\Sigma=\left\{\tau_{1}, \tau_{2}\right\}$

Global geometry of strata (à la Helm)

Tian-Xiao Each $Z_{T} \subset \bar{X}$ is
(Heder) isomorphic to a $\left(\mathbb{P}^{1}\right)^{r}$-bundle over some quaternionc shimura Variety (precise recipe)
Example: assume $\mathbb{F}_{8} \neq \mathbb{F}_{p}$, and $\tau_{0} \in \Sigma_{8}$. Then $Z_{\tau_{0}}$ is ism. to a \mathbb{P}^{1}-bundle over a quaternionic Shim. variety associated to B^{x} where B/F ramifies exactly at $\left\{\sigma^{-1} \tau_{0}, \tau_{0}\right\}$. (placed at infinity)

Diamond-K.-Sasaki
Each (Heck) to a $\left(\mathbb{P}^{1}\right)^{r}$-bundle over a quaternionic shimura variety. associated to the quaternion alg. B / F ramified exactly at $\left(\sigma^{-1} \eta-\eta\right) \cup\left(\eta-\sigma^{-1} \eta\right)$. (placed at ∞)
Note $Z_{r(\eta)^{s i n}} \quad \cdots$?
Prob. $\left(\mathbb{P}^{1}\right)^{s}$-bund $\downarrow^{\pi} \quad \ddots \quad \ddots$?
Warning

$$
Z_{\eta}-r(\eta) \xrightarrow[\left(\mathbb{P}^{1}\right)^{-} \text {-buddle }]{\vec{~}} X_{B}
$$

This doesn't give Correct Quant algebras!

We initially proved our main result in the case p unramified in F using the above result of TX. which is as yet unavailable in the ramified case. We Later proved the general case using instead properties of the stratification on Y that generalize to the ramified case.

2 cases $81 p, \tau_{0} \in \Sigma_{8}$
(1) $\mathbb{F}_{8} \neq \mathbb{F}_{p}$. Assume $p k_{\tau_{0}}<K_{\sigma-\tau_{0}}$ We have an exact sequence:

$$
0 \rightarrow H^{0}\left(\bar{x}, \omega^{\vec{k}-\vec{h}_{\tau_{0}}} \xrightarrow{h_{\tau_{0}}} H^{0}\left(\bar{x}, \omega^{\vec{k}}\right) \rightarrow H^{0}\left(z_{\tau_{0}}, \vec{k}^{\vec{k}}\right)\right.
$$

Enough to show $H^{\circ}\left(Z_{\tau_{0}}, \omega^{\vec{k}}\right)=0$
$Z_{\zeta_{0}} \cong \mathbb{P}^{1}$-bundle over a quaternionic shimura variety X_{B}.
Let $x \in X_{B}$ \& \mathbb{P}_{x}^{1} its fibre in $Z_{T_{0}}$
Prop $\left.\vec{\omega}^{K}\right|_{\mathbb{P}_{x}^{1}} \cong{O_{P_{\alpha}^{1}}\left(P K_{-}-K_{\sigma=} \tau_{0}\right)}$

$$
\Rightarrow H^{0}\left(Z_{T_{0}, \omega} \vec{r}\right)=0
$$

(2) $F_{8}=F_{p}$

We prove a stronger result:
If $K_{\tau_{0}}<0$, then

$$
H^{0}\left(\vec{x}, \omega^{\vec{k}}\right)=0
$$

This uses very closely the geometric properties of the Goven-Oort Strata including the quasi-affineness of the open strata. (which we prove in the).
general Case

The new proof

- Assume we are in case 1 above: $\mathbb{F}_{8} \neq \mathbb{F}_{p}$.

$$
\tau_{0} \in \Sigma_{8}, \quad K_{\sigma^{-1} \tau_{0}}>p K_{\tau_{0}}
$$

Enough to show $H^{0}\left(Z_{T_{0}}, \omega^{\vec{k}}\right)=0$
OR $H^{\circ}\left(\mathbb{P},\left(\pi^{\prime} g^{\prime}\right)^{*} \infty^{\vec{k}}\right)=0$

Prop: $\left.\left(\pi^{\prime} g^{\prime}\right)^{*} \omega^{\vec{k}}\right|_{\mathbb{P}_{x}^{1}} \simeq$

$$
\mathcal{O}_{\mathbb{P}_{x}^{1}}\left(\left(P K_{\tau_{0}}-K_{\sigma^{-} \tau_{0}}\right)\left(P^{r-1}\right)\right)
$$

From which the result follows.

Question asked by Pol on relationship between Gowen-Oort strata \& Newton Polygon strata.
Assume p is inert ic F. The possible P-div-groups up to isogeny are given by $G_{i / d}+G(d i) / \alpha$ for $0 \leq i \leq d$ and $d G_{1 / 2}$.
Let $\beta_{0}<\beta_{1}<\cdots<\beta_{\left[\frac{\alpha+1}{2}\right]}$ be the Newton polygons Let $T<\Sigma$, and recall $W_{T}=$ open stratum where $h_{\tau}=0 \Leftrightarrow \tau \in T$.

Let $\lambda(T)=$ the size of a maximal spaced subset S of T (i.e., $\forall \tau:\{\tau, \sigma \tau\} \notin S$) [exception: d add, $\lambda(\{1, \ldots, d\})=\frac{d+1}{2}$]
Then the generic point of every component of W_{T} has $N P=\beta_{\lambda(T)}$
For example when $d=4, p$ ines the dimension of the supersingulon locus is 2 . And the above gives the following generic description of NP s on
the Goren-Oot Strata:
T in blue, $\lambda(T)$ in red, dim W_{T} green

$$
\begin{aligned}
& \{131 \quad\{1,2\} 1 \\
& \{2\} 1\{1,3\} 2\{1,2,3\} 2 \\
& \left.\left.\begin{array}{lll}
\phi & \{3\} 1 & \{1,4\}\}
\end{array}\right\} 1,2,4\right\}=\{1,23,9\} \\
& \begin{array}{llll}
\{4\} \backslash & \{2,3\} 1 & \{1,3,4\} 2 \\
& \{2,4\} 2
\end{array} \\
& \{3,4\} \text {, } \\
& 43210
\end{aligned}
$$

