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Moduli of Galois representations and generalized class groups

James Newton

Abstract. This lecture describes some recent progress on establishing the conjectural rela-
tionships between Galois representations and automorphic forms, together with the number
theoretic motivation for these results. This includes equidistribution theorems like the Sato–Tate
conjecture concerning the number of points on reductions of elliptic curves modulo primes.
The connection to these equidistribution statements goes back to Dirichlet’s work on primes
in arithmetic progressions, in which the class number formula for real quadratic fields played
an important role. We discuss how results on ‘generalized class groups’ defined using Galois
cohomology have been crucial to more recent developments.

1. Dirichlet’s theorem

1.1. Primes in arithmetic progressions

A seminal result in number theory is Dirichlet’s theorem on primes in arithmetic pro-
gressions:

Theorem 1.1 ([9]). There are infinitely many primes of the form 𝑎 + 𝑘𝑁 , with 𝑎 and
𝑁 fixed coprime integers, and 𝑘 varying over Z.

This theorem (and its refinement, the Chebotarev density theorem) tells us about
the distribution of the images of the primes in the multiplicative group (Z/𝑁Z)× .
Dirichlet’s proof relied on using the character theory of the group (Z/𝑁Z)× .

Indeed, suppose we have a homomorphism 𝜒 : (Z/𝑁Z)× → C× .1 Orthogonality
of characters tells us that we can express the indicator function of the subset {𝑎} ⊂
(Z/𝑁Z)× as a linear combination of characters:

1{𝑎} =
1

𝜙(𝑁)
∑︁
𝜒

𝜒(𝑎)𝜒.
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1As is standard, we extend by zero to view 𝜒 as a function on Z/𝑁Z when convenient.
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Informally, to show that the primes distribute evenly over (Z/𝑁Z)× , it suffices to
show that the expectation E(𝜒(𝑝)) = 0 for every non-trivial character 𝜒, which gives
P(𝑝 ≡ 𝑎 mod 𝑁) = 1

𝜙 (𝑁 ) .
More precisely, if one shows that∑

𝑝≤𝑥 𝜒(𝑝)
#{𝑝 ≤ 𝑥} → 0 as 𝑥 → ∞

for every non-trivial 𝜒, then one deduces the equidistribution statement:

#{𝑝 ≤ 𝑥 : 𝑝 ≡ 𝑎 mod 𝑁}
#{𝑝 ≤ 𝑥} → 1

𝜙(𝑁) as 𝑥 → ∞. (1.1)

In fact, Dirichlet proved something a little weaker than this, showing that the infin-
ite sum over primes ∑︁

𝑝

𝜒(𝑝)
𝑝𝑠

(which converges absolutely for ℜ(𝑠) > 1) remains bounded as 𝑠 approaches 1 from
above. In contrast, the sum ∑︁

𝑝

1
𝑝𝑠

diverges as 𝑠 approaches 1.
The behaviour of these sums is closely related to, respectively, the behaviour of

the Dirichlet 𝐿-function 𝐿 (𝜒, 𝑠) and the Riemann zeta function 𝜁 (𝑠) at 𝑠 = 1. Recall
that

𝐿 (𝜒, 𝑠) =
∑︁
𝑛≥1

𝜒(𝑛)
𝑛

𝑠

=
∏
𝑝

(1 − 𝜒(𝑝)𝑝−𝑠)−1

(again, these expressions converge absolutely for ℜ(𝑠) > 1).
A formal manipulation shows that

∑
𝑝

𝜒 (𝑝)
𝑝𝑠 contributes to the principal branch of

the logarithm of 𝐿 (𝜒, 𝑠):

log 𝐿 (𝜒, 𝑠) =
∑︁
𝑝

∑︁
𝑛≥1

𝜒(𝑝)𝑛
𝑛𝑝𝑛𝑠

,

and the key input to Dirichlet’s theorem is to show that log𝐿 (𝜒, 𝑠) remains bounded
as 𝑠 approaches 1. This comes down to showing that 𝐿 (𝜒, 1) ≠ 0 for our non-trivial
character 𝜒. Next, we will relate the non-vanishing of this 𝐿-value to one of the fun-
damental objects in algebraic number theory, the ideal class group of a number field.
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1.2. Class groups and Dirichlet 𝑳-functions

We let 𝜁𝑁 = 𝑒2𝑖 𝜋/𝑁 . We may identify the multiplicative group (Z/𝑁Z)× with the
Galois group Gal(Q(𝜁𝑁 )/Q) using the cyclotomic character:

𝜒𝑁 : Gal(Q(𝜁𝑁 )/Q) → (Z/𝑁Z)×

𝜎 ↦→ 𝑖, where 𝜎(𝜁𝑁 ) = 𝜁 𝑖𝑁 .

From this point of view, the characters 𝜒 : (Z/𝑁Z)× → C× are Artin represent-
ations, i.e. complex representations of a Galois group. A special case of the Artin
formalism for 𝐿-functions of Artin representations gives the product formula:2

𝜁Q(𝜁𝑁 ) (𝑠) =
∏
𝜒

𝐿 (𝜒, 𝑠),

where the product is over all characters 𝜒 of (Z/𝑁Z)× and

𝜁Q(𝜁𝑁 ) (𝑠) =
∑︁

𝔫⊳Z[𝜁𝑁 ]

1
Nm(𝔫)𝑠

is the Dedekind zeta function of the number field Q(𝜁𝑁 ).
The analytic class number formula of Dedekind gives a precise formula for the

residue lim𝑠→1+ (𝑠 − 1)𝜁Q(𝜁𝑁 ) (𝑠) in terms of the size of the class group of Z[𝜁𝑁 ] (and
other arithmetic data). In particular this residue is non-zero, so 𝜁Q(𝜁𝑁 ) (𝑠) has a simple
pole at 𝑠 = 1.3 We can deduce immediately from this that the 𝐿 (𝜒, 𝑠) are non-vanishing
at 𝑠 = 1 for non-trivial 𝜒, since the trivial character already contributes a simple pole.

2. Distribution of Frobenius elements

We can re-interpret Dirichlet’s theorem, or more precisely the equidistribution result
(1.1), as a statement about the distribution of certain elements in the Galois group
Gal(Q(𝜁𝑁 )/Q).

2Strictly speaking, the product formula is only correct up to some simple factors indexed by
primes dividing 𝑁 . This can be fixed by replacing each 𝜒 with its associated primitive character:
a character of (Z/𝑀Z)× for the smallest divisor 𝑀 of 𝑁 such that 𝜒 factors through the quotient
(Z/𝑁Z)× → (Z/𝑀Z)× .

3To make sense of this, we rely on the fact that our 𝐿- and 𝜁-functions extend to meromorphic
functions for ℜ(𝑠) > 0.



4 J. Newton

2.1. Frobenius elements

Let 𝐿/𝐹 be a Galois extension of number fields and suppose 𝔭 is a prime ideal of O𝐹

which is unramified in O𝐿 (i.e. 𝔭O𝐿 factors as a product of distinct prime ideals in O𝐿).
Then for each prime 𝔮 |𝔭O𝐿 there is a unique element 𝜎𝔮 |𝔭 ∈ Gal(𝐿/𝐹) satisfying

𝜎𝔮 |𝔭 (𝑥) ≡ 𝑥Nm(𝔭)mod 𝔮 for all 𝑥 ∈ O𝐿 .

The conjugacy class of 𝜎𝔮 |𝔭 depends only on 𝔭, so we often denote one of these ele-
ments by 𝜎𝔭.

In our cyclotomic example Gal(Q(𝜁𝑁 )/Q), the unramified primes 𝑝 are those
coprime to 𝑁 and the Frobenius element 𝜎𝑝 corresponds under the cyclotomic char-
acter to the class of 𝑝 in (Z/𝑁Z)× . So the equidistribution statement (1.1) says that
the 𝜎𝑝 distribute uniformly over the 𝜙(𝑁) elements of Gal(Q(𝜁𝑁 )/Q) as 𝑝 varies.

2.2. Sato–Tate conjecture

We now move on to a more complicated equidistribution result, which is similar in
spirit. Suppose we have an elliptic curve 𝐸 defined over Q, given by the projective
planar curve with (affine) equation

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 (2.1)

for some coefficients 𝐴, 𝐵 ∈ Z satisfying 4𝐴3 + 27𝐵2 ≠ 0 (so the curve is nonsingular).
Consider odd primes 𝑝 with 𝑝 ∤ 4𝐴3 + 27𝐵2, so that the reduction of the equation (2.1)
defines an elliptic curve over F𝑝.4

The Sato–Tate conjecture describes the distribution of the integers

𝑎𝑝 (𝐸) = 𝑝 − #{(𝑥, 𝑦) ∈ F2
𝑝 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵} = 𝑝 + 1 − #𝐸 (F𝑝),

or, more precisely, the real numbers

𝑎𝑝 (𝐸)
2√𝑝

which lie in the interval [−1, 1] by a theorem of Hasse.
See [22] for examples of histograms generated from the values 𝑎𝑝 (𝐸 )

2√𝑝
for many

primes 𝑝.
We state the conjecture for the generic case of elliptic curves 𝐸 with no complex

multiplication:

4From this point on, we’ll ignore the finitely many primes 𝑝 dividing the discriminant 4𝐴3 +
27𝐵2. Omitting these primes doesn’t effect our subsequent analysis.
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Conjecture 2.1. For any subinterval [𝑎, 𝑏] ⊂ [−1, 1], the limit

lim
𝑋→∞

#{𝑝 ≤ 𝑋 : 𝑎𝑝 (𝐸 )
2√𝑝

∈ [𝑎, 𝑏]}
#{𝑝 ≤ 𝑋}

exists and is given by the integral ∫ 𝑏

𝑎

2
𝜋

√︁
1 − 𝑡2𝑑𝑡.

This says that a histogram plotting the values of 𝑎𝑝 (𝐸 )
2√𝑝

for primes 𝑝 up to 𝑋 will
approach a (rescaled) semicircle as 𝑋 gets large.

This conjecture was proved in a series of works published between 2008 and 2011,
using automorphic forms [3, 7, 11, 23]. The strategy is modelled on Dirichlet’s, as we
will now describe.

2.3. Sato–Tate and Frobenius elements

As in the case of Dirichlet’s theorem, we can rephrase the Sato–Tate conjecture as a
question about the distribution of Frobenius elements.

For each 𝑝, the integer 𝑎𝑝 (𝐸) can be interpreted as the trace of a 2x2 matrix
with determinant 𝑝. One way to construct this matrix is by 𝑙-adic approximation, for
a prime 𝑙 ≠ 𝑝. Firstly we look mod 𝑙. The 𝑙-torsion points 𝐸 [𝑙] of 𝐸 form a two
dimensional F𝑙-vector space with an action of Gal(Q/Q). One can show that the trace
of the Frobenius element 𝜎𝑝 under this representation is equal to 𝑎𝑝 (𝐸) mod 𝑙 [21,
Thm. V.2.3.1]. Extending this to the 𝑙𝑛-torsion points 𝐸 [𝑙𝑛] for each 𝑛 ≥ 1 and taking
the limit identifies 𝑎𝑝 (𝐸) with the trace of 𝜎𝑝 under a Galois representation

𝜌𝐸,𝑙 : Gal(Q/Q) → GL2(Z𝑙).

The Hasse bound implies that

𝑥2 −
𝑎𝑝 (𝐸)√

𝑝
𝑥 + 1

is the characteristic polynomial of a matrix 𝑢𝑝 (𝐸) ∈ 𝑆𝑈 (2), which is well-defined up
to conjugation.

A reformulation of Conjecture 2.1 is that the conjugacy classes of the 𝑢𝑝 (𝐸) are
equidistributed with respect to the Haar (i.e. translation-invariant) measure on the Lie
group 𝑆𝑈 (2).
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3. Symmetric power 𝑳-functions and functoriality

The proof of Dirichlet’s theorem on primes relied on a non-vanishing result for certain
(Dirichlet) 𝐿-functions. The same is true for the proof of the Sato–Tate conjecture. To
prove the equidistribution of the conjugacy classes of the 𝑢𝑝 (𝐸) in 𝑆𝑈 (2), we must
show that

lim
𝑋→∞

∑
𝑝≤𝑋 𝑓 (𝑢𝑝 (𝐸))
#{𝑝 ≤ 𝑋} =

∫
𝑆𝑈 (2)

𝑓 (𝑢)𝑑𝑢,

with 𝑑𝑢 the Haar probability measure on 𝑆𝑈 (2), for any continuous class function 𝑓

on 𝑆𝑈 (2).
The Peter–Weyl theorem implies that it suffices to check this equality for 𝑓 the

characters of irreducible representations of 𝑆𝑈 (2). These irreducible representations
are given by 𝑉𝑛 = Sym𝑛C2 for 𝑛 ≥ 0, where the action of 𝑆𝑈 (2) on C2 is the standard
action by matrix multiplication. Orthogonality of characters tells us that integrating
the character 𝜒𝑛 of 𝑉𝑛 over 𝑆𝑈 (2) gives 0 if 𝑛 ≥ 1 and 1 if 𝑛 = 0.

We are left needing to prove that

lim
𝑋→∞

∑
𝑝≤𝑋 𝜒𝑛 (𝑢𝑝 (𝐸))

#{𝑝 ≤ 𝑋} = 0 (3.1)

for 𝑛 ≥ 1.
As in §1.1, the sum

∑
𝑝

𝜒𝑛 (𝑢𝑝 (𝐸 ) )
𝑝𝑠 contributes the main term to the log of an 𝐿-

function, the 𝑛th symmetric power 𝐿-function defined by

𝐿 (𝐸, 𝜒𝑛, 𝑠) :=
∏
𝑝

det(1 − 𝑢𝑝 (𝐸)𝑝−𝑠 |𝑉𝑛).

To show (3.1), it suffices to prove that, for each 𝑛 ≥ 1, 𝐿 (𝐸, 𝜒𝑛, 𝑠) extends to a
meromorphic function on an open neighbourhood of the region ℜ(𝑠) ≥ 1, and is non-
zero on this half-plane. See, for example, [20, Appendix to Ch. I] for a proof using the
Wiener-Ikehara theorem.

Example 3.1. The first symmetric power 𝐿-function we need to understand is for
𝑛 = 1. In this case, 𝐿 (𝐸, 𝜒1, 𝑠) is essentially the Hasse–Weil 𝐿-function of the elliptic
curve 𝐸 . Its non-vanishing for ℜ(𝑠) ≥ 1 implies that (informally) the expected value
E
(
𝑎𝑝 (𝐸 )
2√𝑝

)
is zero.

The proof of this non-vanishing combines the modularity of elliptic curves with a
non-vanishing result for Hecke 𝐿-functions of modular forms.

Theorem 3.2 ([4,24,28]). There is a modular form 𝑓 (a cuspidal Hecke eigenform of
weight 2) with

𝐿 (𝐸, 𝜒1, 𝑠) = 𝐿 ( 𝑓 , 𝑠 + 1/2).
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The Hecke 𝐿-function 𝐿 ( 𝑓 , 𝑠) can be identified (up to some explicit factors) with the
Mellin transform

∫ ∞
0 𝑓 (𝑖𝑦)𝑦𝑠−1𝑑𝑦.

Theorem 3.3 ([18, 19]). Suppose 𝑓 is a cuspidal Hecke eigenform of weight 2. Then
𝐿 ( 𝑓 , 𝑠) ≠ 0 for ℜ(𝑠) ≥ 3/2.

3.1. Symmetric power functoriality

In order to prove the Sato–Tate conjecture, the natural way to proceed is to gener-
alize Example 3.1 to handle the higher (𝑛 > 1) symmetric power 𝐿-functions. The
generalization of the modularity theorem follows from special cases of Langlands’s
functoriality conjectures for automorphic forms. They are formulated in terms of the
modular form 𝑓 , and predict the existence of a related automorphic form Sym𝑛 𝑓 (a
special function on GL𝑛+1(R)). We were able to establish this existence, in joint work
with Thorne:

Theorem 3.4 ([14–16]). For each 𝑛 ≥ 1, there exists an automorphic form Sym𝑛 𝑓

with 𝐿-function 𝐿 (𝐸, 𝜒𝑛, 𝑠).

Importantly, whilst the 𝐿-function 𝐿 (𝐸, 𝜒𝑛, 𝑠) is very difficult to analyse directly,
the automorphic 𝐿-function 𝐿 (Sym𝑛 𝑓 , 𝑠) has an integral representation and the appro-
priate generalization of Theorem 3.3 was proved by Jacquet and Shalika [12].

With these ingredients, we can deduce the Sato–Tate conjecture. The original proof
of the Sato–Tate conjecture instead proved something weaker about the 𝐿-functions
𝐿 (𝐸, 𝜒𝑛, 𝑠): that they can be represented as an alternating product of automorphic 𝐿-
functions. The more precise statement of Theorem 3.4 can be used to prove an effective
enhancement of the Sato–Tate conjecture [26].

4. Hints at proofs of symmetric power functoriality

We have given two different proofs of symmetric power functoriality for modular forms
𝑓 . The second ([16]) applies more generally, to Hilbert modular forms. The two proofs
follow different strategies, but both work with the Galois representations

Sym𝑛𝜌𝐸,𝑙 : Gal(Q/Q) → GL𝑛+1(Z𝑙)

given by composing the 𝑛th symmetric power of the standard representation of GL2
with 𝜌𝐸,𝑙 . From this point of view, we want to show that these Galois representa-
tions are automorphic, which amounts to constructing the associated automorphic
form Sym𝑛 𝑓 .

Both strategies also build on the modularity lifting theorems introduced by Wiles
in the proof of Fermat’s last theorem, which propagate automorphy via congruences
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between Galois representations. However, the basic structure of the two strategies dif-
fers:

• [14, 15] A key ingredient is a result due to Buzzard and Kilford about 2-adic
modular forms [5]. It is closely related to the observation of Tate that if a Galois
representation

𝜌 : Gal(Q/Q) → SL2(F2)

is unramified at every odd prime, then its semisimplification is trivial. The proof
of our main theorem is an induction on the level of the modular form (equivalently,
on the conductor of the elliptic curve or associated Galois representation).

• [16] Our later work follows a strategy due to Clozel and Thorne [8] which relies
on reducibility of the representation Sym𝑛 (F2

𝑙 ) of GL2 in characteristic 𝑙 ≤ 𝑛. That
enables an induction on 𝑛, since the irreducible constituents of Sym𝑛 (F2

𝑙 ) involve
smaller symmetric powers.

On the other hand, a key ingredient in both proofs is to show that we don’t have
too many Galois representations.

Example 4.1. Let 𝐹 ⊂ C be a number field. There are finitely many Galois extensions
𝐿/𝐹 (in C) such that
• Gal(𝐿/𝐹) is Abelian
• all primes of O𝐹 are unramified in 𝐿.

In fact, the maximal such 𝐿 is the Hilbert class field, whose Galois group over 𝐹
is isomorphic to the ideal class group of O𝐹 .

Conjecture 4.2 ([10]). There are finitely many isomorphism classes of representa-
tions 𝜌 : Gal(Q/Q) → GL𝑛 (Q𝑙) with bounded ramification5.

We prove a weak form of this finiteness conjecture in [17], which is a crucial input
to the methods of [14] and [16]. This weaker statement is best interpreted in terms
of a moduli space of Galois representations, so we will end the lecture by giving this
interpretation.

5Describing the ramification condition at 𝑙 involves 𝑝-adic Hodge theory
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5. Geometry of group representations

To give an idea of how to think about these moduli spaces of Galois representations,
we introduce the representation and character variety of a finitely presented group

𝐺 = ⟨𝑔1, . . . , 𝑔𝑑⟩/⟨𝑟1, . . . , 𝑟𝑘⟩.

A homomorphism𝐺→GL𝑛 (C) corresponds to a 𝑑-tuple of matrices 𝐴1, . . . , 𝐴𝑑 ∈
GL𝑛 (C) satisfying the relations 𝑟1, . . . , 𝑟𝑘 . These can be identified with the C-points
of an algebraic variety 𝑅𝐺,𝑛, a closed subset of (GL𝑛)𝑑 . This is called the repres-
entation variety, whilst the quotient 𝐴𝐺,𝑛 = 𝑅𝐺,𝑛/PGLn(C) by the adjoint action is
the character variety, whose points parameterize isomorphism classes of semisimple
representations of 𝐺.

If we fix an irreducible representation 𝜌 : 𝐺 → GL𝑛 (C), the tangent space𝑇𝜌𝐴𝐺,𝑛

can be identified with a cohomology group 𝐻1(𝐺, 𝑀𝑛 (C)), where 𝐺 acts on 𝑀𝑛 (C)
by conjugation via 𝜌.

Constructing an analogue 𝐴𝑙

Gal(Q/Q) ,𝑛
of 𝐴𝐺,𝑛 parameterizing 𝑙-adic Galois rep-

resentations with bounded ramification is more involved, but this has been done by
Wake and Wang-Erickson [27] building on work of Mazur [13] and Chenevier [6].

The tangent space at an irreducible representation 𝜌 : Gal(Q/Q) → GL𝑛 (Q𝑙) is a
subspace of 𝐻1(Gal(Q/Q), 𝑀𝑛 (Q𝑙), where the group action on the coefficient space
is again conjugation via 𝜌. The subspace corresponds to the ramification conditions.
If Conjecture 4.2 holds, the Galois moduli space is just a finite set of points, and so
the tangent spaces would vanish6. Our weak finiteness result is the vanishing of these
tangent spaces:

Theorem 5.1. [1, 2, 17,25] Under some technical assumptions, the tangent spaces to
𝐴𝑙

Gal(Q/Q) ,𝑛
at points corresponding to automorphic Galois representations vanish.

We view this vanishing result as finiteness of (the 𝑙-primary part of ) a generalized
class group. In fact, for 𝑛 = 1, it follows from finiteness of the usual class group.
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