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Abstract. We compare the cohomology of Shimura curves constructed using

quaternion algebras over a totally real field with the cohomology of related
unitary Shimura curves. This allows us to pass information about generalised

Serre weight conjectures from unitary groups to indefinite quaternion algebras.

1. Introduction

In this paper, we investigate the relationship between generalised Serre weight
conjectures in two different contexts. On the one hand we consider the setting of
[BDJ10]. On the other hand we replace the quaternionic Shimura curves of [BDJ10]
with Shimura curves associated to unitary similitude groups1.

In the unitary situation, the approach of [BLGG] allows us to obtain a lot of
information about the possible weights of modular Galois representations. The
crucial difference between the quaternionic and unitary cases, which enables this
approach, is that the mod p local systems on unitary Shimura curves (with level
prime to p) attached to Serre weights arise as the reduction mod p of p-adic local
systems. In the quaternionic case (as for classical Hilbert modular forms) conditions
on the parity of weights and central characters mean that many of the relevant mod
p local systems do not lift to characteristic zero.

The close relationship between quaternionic and unitary Shimura curves, as ex-
plained by Deligne [Del71] and Carayol [Car86a], allows us to transfer informa-
tion about the weights of modular Galois representations between the unitary and
quaternionic settings. As a result, we are able to deduce results similar to those
of [BLGG] for quaternion algebras over totally real fields (see Theorem 7.1.3). We
now develop some notation to allows us to outline the statement of this Theorem.

Let F+ be a totally real number field of degree d > 1. For a place v|p of F+

denote the residue field by kv. Let D denote a quaternion algebra with centre
F+, such that D is split at precisely one infinite place, and is split at every place
above p. For any compact open subgroup K of (D⊗Q Af )× we have an associated
Shimura curve SK/F

+. Supposing K to be maximal compact at places over p (and
sufficiently small), any irreducible mod p representation of ⊗v|pGL2(kv) (which we
call a ‘weight’) defines a mod p étale local system on SK . We define an irreducible
two-dimensional representation ρ of GF+ (the absolute Galois group) on an Fp-
vector space to be modular of weight W if it appears in the étale cohomology
of SK with coefficients in the local system attached to W for some choice of K.
The representation ρ is said to be modular if it is modular of any weight. Note
that these notions depend on our fixed quaternion algebra D. We define a set of
weights Wpd(ρ) (see Definition 7.1.1) comprising those W such that ρ has, locally at
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places v|p, crystalline and potentially diagonalisable lifts of appropriate Hodge-Tate
weights. We then prove

Theorem. Suppose p > 2, that the continuous irreducible representation ρ : GF+ →
GL2(Fp) is modular, and that ρ(GF+(ζp)) is adequate2. Then for any W ∈Wpd(ρ),
ρ is modular of weight W .

By a crucial local result in [GLSa], our results are sufficient to completely deter-
mine the weights of irreducible modular representations

ρ : GF+ → GL2(Fp)

when p is unramified in the totally real field F+ (see Corollary 7.2.1), under the
same technical assumptions as the above Theorem. This essentially proves the
generalised Serre weight conjectures made in [BDJ10], although in a few cases it is
still only conjectured that the ‘explicit weight sets’ defined in [GLSa] coincide with
those defined in [BDJ10].

In recent work [GK] (announced whilst the author was preparing this paper),
Gee and Kisin have also, under similar technical assumptions3, proven the Serre
weight conjectures of [BDJ10]. Their work again transfers information from the
unitary case to the quaternionic case, but uses modularity lifting theorems and
the Breuil-Mézard conjecture to do so. They additionally treat the case of definite
quaternion algebras.

By contrast, the way we transfer information from the unitary to the quaternionic
setting is geometric (using the appropriate Shimura curves). We make no use of
modularity lifting theorems in this part of the paper. This means that we prove in
complete generality (see Theorem 7.1.2), that if an irreducible representation

ρ : GF+ → GL2(Fp)

is modular of some weight, then the local representations ρ|G
F

+
v

for places v|p have

crystalline lifts with the expected Hodge–Tate weights4.
In a very recent preprint [GLSb], Gee, Liu and Savitt have removed the assump-

tion that p is unramified from the main local theorem of [GLSa], and so (using the
results of [GK]) prove the weight part of Serre’s conjecture for GL2 over arbitrary
totally real fields (with p > 2 and a condition on the image of ρ|GF+(ζp)

). The

main local theorem of [GLSb] can also be combined with the results of this paper
to remove the assumption that p is unramified in F+ from Corollary 7.2.1.

Remark. The case of definite quaternion algebras could probably also be studied
geometrically, since at a finite place v of F where our indefinite quaternion algebra
D is non-split, there is a semistable model for SK (K maximal compact at v) over
OFv whose special fibre is described by the definite quaternion algebra with the
same non-split places as D, except it is non-split at every infinite place and split at
v. The author has not pursued this.

In what remains of the introduction, we summarise the contents of this paper. In
Section 2 we define the Shimura curves we will be working with. We have to define
four different Shimura data, with three different underlying algebraic groups. This
entails some cumbersome notation, for which we apologise to the reader. However,

2by [BLGG, Proposition A.2.1], this is equivalent to assuming ρ|F+(ζp)
irreducible and if p = 3

or 5 that the projective image of ρ|G
F+(ζp)

is not conjugate to PSL2(F3) or PSL2(F5) respectively.

3More precisely, they relax the adequacy condition for p = 3 to irreducibility of ρ|G
F+(ζp)

.

4If we assume that p > 2 and ρ|G
F+(ζp)

is irreducible, then this result is also proven in [GK]

(assuming the projective image of ρ|G
F+(ζp)

is not conjugate to PSL2(F5) if p = 5)
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this profusion of Shimura curves is more or less essential to the detailed comparison
between quaternionic Shimura curves and PEL unitary Shimura curves.

In Section 3 we explain how the theory of [Del79, 2.7] allows us to relate the
cohomology of Shimura varieties with the cohomology of their neutral components
(which are connected Shimura varieties). We could not find this material in the
literature, but the situation is quite simple: Shimura varieties are obtained from
connected Shimura varieties by an ‘induction’ construction [Del79, 2.7.3], so the
cohomology of a Shimura variety is given by a representation theoretic induction of
the cohomology of its neutral component. In Section 4 we apply this theory to our
Shimura curves, and define the mod p and p-adic local systems which will appear
as the coefficients in our cohomology groups.

In Section 5 we define the notion of being modular of a Serre weight with cen-
tral character, and discuss how to transfer weights between the different Shimura
curves. The most subtle issue is transferring between two Shimura curves with
rather different Shimura data, which is done in Corollary 5.4.3. This can probably
be done using the set up of Section 3, but we decided the proof was more transpar-
ent when carried out via a comparison of the action of Hecke operators on the two
curves.

In Section 6 we follow [BLGG], applying modularity lifting results to show mod-
ularity of predicted weights on a PEL unitary Shimura curve. Finally, in Section 7
we transfer these results to quaternionic Shimura curves.

1.1. Acknowledgements. It is a pleasure to thank Toby Gee for his encourage-
ment to complete this work and for helpful comments on an earlier draft. This
work originated in a discussion with Kevin Buzzard and Toby Gee about Carayol’s
article [Car86a] and ‘mod p functoriality’ between the various Shimura curves ap-
pearing in his paper. I also thank the anonymous referee for some useful comments.
The author is supported by Trinity College, Cambridge and the Engineering and
Physical Sciences Research Council.

2. Shimura curves

2.1. The basic set-up. Let F+ be a totally real number field of degree d > 1,
with real places τ1, ..., τd. Denote by Σp the places over p of F+, where p is a fixed
prime. Let D denote a quaternion algebra with centre F+, such that D is split at
the place τ1 and non-split at the other real places. We also assume that D is split
at all places in Σp. We denote by G the reductive group over Q defined by

G(R) = (D ⊗Q R)×

for Q-algebras R. We denote by T the torus ResF+/Q(Gm), by Z the centre of G
(which is isomorphic to T ), by G1 the derived subgroup of G, and by ν : G → T
the reduced norm map. Note that G1 is the kernel of ν.

Fix an imaginary quadratic field E in which p splits. Denote by F the com-
positum EF+, and denote by c ∈ Gal(F/F+) the non-trivial element of the Galois
group. We assume that if x is a place of F which is not split over F+ then D⊗F+Fx
is split. We will now define two more reductive groups over Q, which depend on the
choice of E and have derived subgroup G1. We fix an embedding τE of E into C —
the embeddings τi then have unique extensions to complex embeddings τi : F ↪→ C
which restrict to τE on E. For any Q-algebra R, we have an F+⊗QR-algebra endo-
morphism z 7→ zc of F ⊗Q R, given by c⊗ 1. Denote by TF the torus ResF/Q(Gm),
and let UF denote the subgroup of TF defined by

UF (R) = {z ∈ TF (R) : zzc = 1}
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for Q-algebras R. We also denote by T ′ the subtorus Gm ×UF of T ×UF . Denote
by G′′ the reductive group obtained by taking the amalgamated product G×

Z
TF .

Recall that this is the quotient of G×TF by the central subgroup {(g, g−1) : g ∈ Z}.
Denote the centre of G′′ by Z ′′ (it is isomorphic to TF ).

Define a morphism ν′ : G′′ → T × UF by ν′(g, z) = (ν(g)zz, z/z). We will write
T ′′ for the torus T ×UF . Define G′ to be the inverse image under ν′ of T ′. We also
denote the centre of G′ by Z ′. We have the following commutative diagram with
exact rows:

1 −−−−→ G1 −−−−→ G′
ν′−−−−→ T ′ −−−−→ 1∥∥∥ y y

1 −−−−→ G1 −−−−→ G′′
ν′−−−−→ T ′′ −−−−→ 1∥∥∥ a

x b

x
1 −−−−→ G1 −−−−→ G

ν−−−−→ T −−−−→ 1.

In this diagram, the map a is defined by a(g) = (g, 1), and b is defined by
b(z) = (z, 1). The other vertical arrows are the natural inclusions.

We fix ιp : Qp ∼= C, and denote by uE the place of E induced by the embedding

ι−1
p ◦τE : E ↪→ Qp. For each v ∈ Σp we denote by ṽ the unique place of F satisfying
ṽ|F+ = v and ṽ|E = up. We denote the other place of F above v by ṽc. We will

also fix an identification of Fp with the residue field of Qp.

2.2. Some Shimura data. Now we describe Shimura data for each of the groups
G,G′ and G′′. The group G(R) is isomorphic to GL2(R) × (H×)d−1, where H
denotes the quaternions, so we have a homomorphism

h : S = ResC/R(Gm)→ GR

which on real points sends x+ iy to

((
x y
−y x

)−1

, 1, ..., 1

)
. The G(R)-conjugacy

class of h, which we denote by X, is isomorphic to C − R. The pair (G, h) is a
Shimura datum, in the sense of [Del79], with reflex field F+, so we have an inverse
system of curves SK(G, h)/F+, indexed by compact open subgroups K of G(Af ).

We note here that we are using the conventions of [Del79] and [Car86a], but
we correct the sign error in the definition of canonical models, as described in the
note at the end of [Mil05, §12]. We also adopt the conventions that the Artin reci-
procity map sends uniformisers to geometric Frobenius elements and group actions
on schemes are right actions.

The complex embeddings τ1, ..., τd of F give an isomorphism TF (R) ∼= (C×)d, so
we have a homomorphism

hF : S→ (TF )R

which on real points sends z to (1, z−1, ..., z−1) (note that this depends on the choice
of τE). The map h× hF now induces a homomorphism

h× hF : S→ G′′R.

We can also consider the composite

h : S→ GR ↪→ G′′R.

The map ν′◦(h×hF ) has image contained in T ′, so h×hF has image contained inG′R.
It is clear that the G′′(R)-conjugacy class of h×hF is naturally isomorphic to X, as
is the G′′(R)-conjugacy class of h. On the other hand, the G′(R)-conjugacy class of
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h× hF , denoted X ′, is isomorphic to a single copy of the complex upper half plane
(since the norm of a quaternion is positive). The pairs (G′, h×hF ), (G′′, h×hF ) and
(G′′, h) are all Shimura data, the first two with reflex field F and the last with reflex
field F+. We obtain inverse systems of curves SK′(G

′, h×hF ), SK′′(G
′′, h×hF ) and

SK′′(G
′′, h) over their respective reflex fields, indexed by compact open subgroups

of G′(Af ) and G′′(Af ) as appropriate.
The natural embeddings G ↪→ G′′ and G′ ↪→ G′′ induce morphisms of Shimura

data (G, h)→ (G′′, h) and (G′, h×hF )→ (G′′, h×hF ), and hence induce morphisms
of the respective Shimura curves. In fact, they induce open and closed immersions,
by [Del71, Theorem 1.15].

2.3. Similitude groups. We can also describe G′ and G′′ as similitude groups,
following [Car86a, 2.2,2.6.1]. We denote by B the quaternion algebra D⊗F+ F over
F , and define V to be the Q-vector space underlying D.

Following Carayol, we may choose the following

• an involution β 7→ β∗ of the second kind on B
• an alternating non-degenerate bilinear form ψ on V

such that

(1) for all β ∈ B
ψ(βv,w) = ψ(v, β∗w)

(2) for all Q-algebras R we may identify G′′(R) with the set of β ∈ (B⊗Q R)×

such that there exists µ ∈ (F+ ⊗Q R)× with ψ(vβ,wβ) = µψ(v, w)
(3) the above induces an identification of G′(R) ⊂ G′′(R) with the subset

consisting of those β satisfying the above equation with µ ∈ R×

Now we can give a rather explicit description of the groups G′(Qp) and G′′(Qp).
Recall that we have fixed embeddings τE : E ↪→ C and τ1 : F+ ↪→ R. We also
denote by τ1 the unique embedding τ1 : F ↪→ C which restricts to τE on E and τ1
on F+.

Note that G′′(Qp) consists of β ∈ (B⊗QQp)× such that there exists µ ∈ (F+⊗Q
Qp)× with ψ(vβ,wβ) = µψ(v, w).

For each v ∈ Σp we choose isomorphisms jv : B⊗F+ F+
v = Bṽ⊕Bṽc ∼= M2(Fṽ)⊕

M2(Fṽc) such that jv(β
∗) = tjv(β)c. This determines an isomorphism

jp : G′′(Qp) ∼= (F+
p )× ×

∏
v∈Σp

GL2(F+
v )

given by jp(β) = (µ, (jv(βv)ṽc)v∈Σp). Here jv(βv)ṽc denotes the projection of jv(βv)
to its component in GL2(Fṽc). We identify this group with GL2(F+

v ) via the canon-
ical isomorphism GL2(Fṽc) ∼= GL2(F+

v ). The isomorphism jp restricts to an iso-
morphism

jp : G′(Qp) ∼= Q×p ×
∏
v∈Σp

GL2(F+
v ).

Definition 2.3.1. We denote by K ′′0 the compact open subgroup of G′′(Qp) given
by

K ′′0 := j−1
p (O×F+,p ×

∏
v∈Σp

GL2(Ov)).

Denote by K ′0 the intersection of K ′′0 with G′(Qp) and denote by K0 the intersection
of K ′′0 with G(Qp).

We denote by K ′′1 the compact open subgroup of G′′(Qp) given by

K ′′1 := j−1
p (O×F+,p ×

∏
v∈Σp

(1 +$vM2(Ov))).
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Denote by K ′1 the intersection of K ′′1 with G′(Qp) and denote by K1 the intersection
of K ′′1 with G(Qp).

Note that

K ′0 = j−1
p (Z×p ×

∏
v∈Σp

GL2(Ov))

and

K0 = j−1
p {(µ, (gv)v∈Σp) ∈ O×F+,p ×

∏
v∈Σp

GL2(Ov)|µv = det(gv)}.

We have similar descriptions of K ′1 and K1. The following, slightly smaller, compact
open subgroups will be useful in Section 6.

Definition 2.3.2. Denote by K ′1,1 the compact open subgroup of G′(Qp) given by

K ′1,1 = j−1
p ((1 + pZp)×

∏
v∈Σp

(1 +$vM2(Ov)))

Definition 2.3.3. Suppose Kp is a compact open subgroup of G(Apf ). We will say

that Kp is sufficiently small if SKpK0(G, h) has no elliptic points and

SKpK1
(G, h)→ SKpK0

(G, h)

is a finite Galois cover of schemes with Galois group K0/K1. We make the analo-
gous definitions for compact open subgroups of G′(Apf ) and G′′(Apf ).

Note that it doesn’t matter whether we use the Shimura datum (G′′, h) or
(G′′, h × hF ) for this definition in the case of subgroups of G′′(Apf ). Comparing

with the definition of ‘sufficiently small’ in [BDJ10] (before Definition 2.1), we are
additionally imposing the condition that SKpK0

(G, h) has no elliptic points. Nev-
ertheless, it is still the case that any compact open subgroup of G(Apf ) will contain

a sufficiently small subgroup. The same goes for the groups G′ and G′′.

3. Connected components and weakly canonical models: generalities

In this section we discuss some general results which will allow us to relate
the étale cohomology groups of the various Shimura curves defined in Section 2.2.
For these purposes we use the formalism of [Del79, §2.7]. This is recalled in sec-
tions 3.1 and 3.2. In section 3.3 we explain the cohomological consequences of this
formalism. The (presumably well-known) moral is that the ‘induction’ construc-
tion which Deligne applies to obtain (canonical models of) Shimura varieties from
(weakly canonical models of) connected Shimura varieties, translates into genuine
induction (in the sense of representation theory) when we pass to cohomology.

3.1. Preliminary definitions.

Definition 3.1.1. For a locally compact, totally disconnected group Γ, a scheme
(over some base scheme T ) with continous Γ-action is an inverse limit S = lim←−K SK
of quasi-projective schemes (over some fixed base), indexed by compact open sub-
groups K of Γ and equipped with a right Γ-action arising from isomorphisms γ :
SK → Sγ−1Kγ . We moreover require that these isomorphisms are the identity when
γ ∈ K, and that for K ⊂ K ′ ⊂ Γ with K an open normal subgroup of the com-
pact open K’, the map SK → SK′ from the inverse system induces an isomorphism
SK/(K

′/K) ∼= SK′ . This implies that the maps in the inverse limit are finite, hence
S is a scheme.
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Note that taking the inverse limit over K of the isomorphisms SK/(K
′/K) ∼= SK′

induces an isomorphism S/K ′ ∼= SK′ .
Suppose π is a profinite set, with a continuous transitive right action of Γ. We

suppose that the orbits of a compact open subgroup are open — equivalently, for
e ∈ π, with stabiliser ∆, the bijection

∆\Γ ∼= π

is a homeomorphism. Moreover, we assume that the action of Γ on π makes π a
torsor for an Abelian quotient of Γ. In particular, the subgroup ∆ is normal in Γ
with Abelian quotient, and it is independent of the choice of e.

Definition 3.1.2. Suppose T is a scheme with continuous ∆-action. Then ∆ acts
on the scheme Γ × T by (γ, s)δ = (δ−1γ, sδ). We define IΓ

∆(T ) to be the quotient
(Γ× T )/∆.

Lemma 3.1.3. [Del79, pp.285-6] Suppose we are in the setting of Definition 3.1.2.
Then S := IΓ

∆(T ) is a scheme with continuous Γ-action, where the Γ action is
induced by (γ0, t)γ = (γ0γ, t). Moreover, for K ⊂ Γ a compact open subgroup, we
have

SK =
∐

[γ]∈∆\Γ/K

T/(∆ ∩ γKγ−1).

Proof. It is clear that we have a canonical isomorphism between S and the inverse
limit of the SK := [(Γ× T )/∆] /K. So it suffices to check that∐

[γ]∈∆\Γ/K

T/(∆ ∩ γKγ−1) = [(Γ× T )/∆] /K.

This canonical isomorphism is induced by the maps taking the class of t in the γ
component of the left hand side to the class of (γ, t) in the right hand side. Note
that the group ∆ ∩ γKγ−1 is independent of the choice of coset representative γ
for [γ] ∈ ∆\Γ/K. �

We now put ourselves in the situation where the scheme S has a continuous Γ-
action and a Γ-equivariant continuous map S → π. By saying this map is continuous
we just mean that it is induced from an inverse limit of maps SK → πK . Now for
e ∈ π with stabiliser ∆ ⊂ Γ the fibre Se has a continuous ∆-action, and Lemme
2.7.3 of [Del79] says the following:

Lemma 3.1.4. The functor S → Se is an equivalence of categories between schemes
S with continuous Γ-action (over some base) and a Γ-equivariant continuous map
S → π, and schemes T with continuous ∆-action.

Proof. The inverse to the functor S → Se is given by sending T to IΓ
∆(T ). �

3.2. Galois actions. We now refine these constructions to take account of a Galois
action. Let L ⊂ Q be a number field, and suppose the profinite set π is equipped
with a continuous right action of Gal(Q/L), commuting with the Γ-action — i.e.
we have a (continuous) right action of Γ×Gal(Q/L). Suppose S is a scheme over L,
endowed with a continuous Γ-action and a continuous Γ and Gal(Q/L)-equivariant
map from SQ to π. We denote the category of schemes over L endowed with these
extra structures by AL. Fix e ∈ π with stabiliser in Γ denoted Γe, and stabiliser in
Γ×Gal(Q/L) denoted E . We have a commutative diagram with exact rows

1 −−−−→ Γe −−−−→ E −−−−→ Gal(Q/L) −−−−→ 1y y ∥∥∥
1 −−−−→ Γ −−−−→ Γ×Gal(Q/L) −−−−→ Gal(Q/L) −−−−→ 1.
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The fibre Se is a scheme over Q, with continuous E -action compatible with the
action of Gal(Q/L) on Q. We denote the category of schemes over Q endowed with
these extra structures by BL. Combining the above lemma with Galois descent,
one obtains [Del79, Lemme 2.7.9]:

Lemma 3.2.1. The functor S → Se is an equivalence of categories between AL

and BL.

Proof. We define an inverse functor from BL to AL. We start with a scheme T
over Q, with continuous E -action, compatible with the action of Gal(Q/L) on Q.

We set S = I
Γ×Gal(Q/L)
E (T ). By Galois descent, S descends to a scheme S over L

with the desired extra structures. �

We now depart a little from the setting of [Del79] and consider certain equivariant
sheaves on our schemes with continuous groups actions. In section 3.3 we then
consider the cohomology of these sheaves.

Definition 3.2.2. A smooth Γ-sheaf on S is defined to be a torsion étale sheaf F
of Abelian groups on S, arising from a system of finite locally constant sheaves FK

on SK for some cofinal system of compact open subgroups K ⊂ Γ, such that

• For each inclusion K ′ ⊂ K in the cofinal system, FK′ is the pullback to
SK′ of FK

• F comes equipped with isomorphisms

ργ : F ∼= γ∗F

for each γ ∈ Γ satisfying
(1) The isomorphisms ργ are continuous — i.e. they arise from compatible

systems of isomorphisms FK
∼= γ∗Fγ−1Kγ .

(2) For γ, δ in Γ, we have

δ∗(ργ) ◦ ρδ = ργδ.

In practice we will make use of the following extension of the previous definition:

Definition 3.2.3. Suppose we have a sheaf F of Fp-vector spaces on S which is

the extension of scalars to Fp of a smooth Γ-sheaf F ′ (of vector spaces over a finite
field of characteristic p). Then we again refer to F as a smooth Γ-sheaf. We denote
by FK the local system F ′K ⊗ Fp of Fp-vector spaces on SK (for small enough K).

Definition 3.2.4. Suppose F is a smooth Γ-sheaf on S. Then we denote by Fe

the sheaf on Se obtained by pulling back F . This is endowed with the structure of
a smooth E -sheaf.

3.3. Cohomology. In this section we suppose we have S, π, Γ, L as in section 3.2,
and suppose F is a smooth Γ-sheaf on S.

Definition 3.3.1. We define

H•(SQ,F ) = lim−→
K

H•et((SK)Q,FK)

and

H•(Se,Fe) = lim−→
K

H•et((Se)∆∩K , (Fe)∆∩K).

Here the limits are taken over the compact open K ⊂ Γ such that FK is defined.

Definition 3.3.2. Suppose a topological group H acts on an Abelian group M . We
say that m ∈ M is a smooth element if m is fixed by an open subgroup of H. If
every element of M is smooth, we say that M is a smooth H-representation.
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We similarly extend this definition to actions of H on Fp-vector spaces, as in
Definition 3.2.3.

Lemma 3.3.3. The natural Γ×Gal(Q/L)-action on H•(SQ,F ) makes H•(SQ,F )

a smooth Γ×Gal(Q/L)-representation.

Proof. The image of H•et((SK)Q,FK) in H•(SQ,F ) is fixed by K. Moreover, it

is a finitely generated Abelian group (or the extension of scalars to Fp of such),

so the action of Gal(Q/L) factors through a finite quotient. Since each element
of H•(SQ,F ) is in the image of H•et((SK)Q,FK) for some K, the action of Γ ×
Gal(Q/L) is smooth. �

In exactly the same way, we see that H•(Se,Fe) is a smooth E -representation.

Definition 3.3.4. Suppose we have a topological group H1 and a closed subgroup
H2. Suppose the Abelian group M is a smooth representation of H2. Then the
smooth induction IndH1

H2
(M) is a smooth representation of H1, defined to be the

Abelian group

{f : H1 →M uniformly locally constant|f(hx) = h · f(x) for all h ∈ H2}

with H1 acting by right translation. Here ‘f is uniformly locally constant’ means
that there exists a compact open subgroup K of H1 such that f(xk) = f(x) for all

x ∈M and k ∈ K. This construction defines a functor IndH1

H2
.

The following Lemma is standard:

Lemma 3.3.5 (Frobenius reciprocity). The functor IndH1

H2
is right adjoint to the

functor restricting smooth H1-representations to smooth H2-representations.

The canonical E -equivariant map Se → SQ gives an E -equivariant map

H•(SQ,F )→ H•(Se,Fe).

By Frobenius reciprocity this induces a canonical Γ×Gal(Q/L)-equivariant map

α : H•(SQ,F )→ Ind
Γ×Gal(Q/L)
E (H•(Se,Fe)).

Proposition 3.3.6. The map

α : H•(SQ,F )→ Ind
Γ×Gal(Q/L)
E (H•(Se,Fe))

is an isomorphism.

Proof. We can make the map α completely explicit: recall that by Lemma 3.1.3 we
have

(SK)Q =
∐

[γ]∈∆\Γ/K

Se/(∆ ∩ γKγ−1).

Choose a set of coset representatives R for the finite set ∆\Γ/K. Then we have
isomorphisms

H•((SK)Q,FK) ∼=
⊕
γ∈R

H•((Se)∆∩γKγ−1 , (γ∗FK)e)

∼=
⊕
γ∈R

H•((Se)∆∩γKγ−1 , (FγKγ−1)e).

The first isomorphism comes from applying γ∗ to the cohomology of the fibre over
eγK ∈ π/K = ∆\Γ/K of (SK)Q. The second isomorphism comes from apply-

ing ρ−1
γ . On the other hand, the choice of the transversal R also determines an
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isomorphism(
Ind

Γ×Gal(Q/L)
E (H•(Se,Fe))

)K ∼= ⊕
γ∈R

H•(Se,Fe)
∆∩γKγ−1

.

It is straightforward to check that the map α is then given by taking the direct
limit of the direct sums of the natural maps

αγ,K : H•((Se)∆∩γKγ−1 , (FγKγ−1)e)→ H•(Se,Fe)
∆∩γKγ−1

.

We can now show that α is an isomorphism. Suppose we have f in the kernel of
αγ,K . Recall that f is an element of H•((Se)∆∩γKγ−1 , (FγKγ−1)e), which may also
be thought of as an element of H•((SK)Q,FK). By the definition of H•(Se,Fe),

the image of f in H•((Se)∆∩γK′γ−1 , (FγK′γ−1)e) will be zero for some K ′ ⊂ K. It
is then easy to check that for any γ′ ∈ Γ satisfying ∆γ′K = ∆γK the image of f
in H•((Se)∆∩γ′K′(γ′)−1 , (Fγ′K′(γ′)−1)e) will also be zero. Hence the image of f in
H•((SK′)Q,FK′) is zero. From this, we may conclude the α is injective.

The surjectivity of α is clear from the fact that for fixed γ,K, each element

of H•(Se,Fe)
∆∩γKγ−1

is in the image of H•((Se)∆∩γK′γ−1 , (FγK′γ−1)e) for some
K ′ ⊂ K. �

4. Shimura curves: connected components and systems of
coefficients

4.1. Connected components of Shimura curves. We now discuss how some
of the formalism of the previous section applies to the Shimura curves of interest
in this paper. We will be using the notation and definitions of Section 2.

Definition 4.1.1. Denote by K the directed system whose objects are the compact
open subgroups K0K

p ⊂ G(Af ), where Kp is a compact open subgroup of G(Apf ).

The morphisms in K are the inclusions between subgroups. Denote by K′ and K′′ the
analogously defined directed systems for the groups G′ and G′′, where the factors of
the compact open subgroups at places over p are K ′0 and K ′′0 , respectively.

Definition 4.1.2. We define a scheme over F+, S0(G, h), to be the inverse limit
limK(SK(G, h)). Similarly define schemes over F ,

S0(G′, h× hF ) = lim
K′

(SK′(G
′, h× hF ))

and
S0(G′′, h× hF ) = lim

K′′
(SK′′(G

′′, h× hF )),

and a scheme over F+,

S0(G′′, h) = lim
K′′

(SK′′(G
′′, h)).

We also define profinite sets π, π′ and π′′ to be the sets of geometric connected
components of S0(G, h), S0(G′, h× hF ) and S0(G′′, h× hF ) respectively. Note that
π′′ is also the set of geometric connected components of S0(G′′, h). We use the
same letter e to denote the elements of π, π′ and π′′ arising from the connected
components containing the images of

{1} ×X+ ⊂ G(Af )×X, {1} ×X ′ ⊂ G′(Af )×X ′ and {1} ×X+ ⊂ G′′(Af )×X
respectively.

Definition 4.1.3. We set Γ = G(Apf ), Γ′ = G′(Apf ) and Γ′′ = G′′(Apf ).

Lemma 4.1.4. The natural actions of the groups Γ, Γ′ and Γ′′ on S0(G, h),
S0(G′, h × hF ) and S0(G′′, h × hF ) and S0(G′′, h) respectively are continuous (in
the sense of Definition 3.1.1).
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Proof. This follows immediately from the definition of a canonical model — for
example, see [Del71, Définition 3.1, Remarque 3.2]. �

For an algebraic group H/Q we denote by H(Q)+ the intersection of H(Q) with

the neutral component of H(R). We furthermore denote by H(Q)+ the closure of
H(Q)+ in H(Af ).

Proposition 4.1.5. • The morphism ν : G→ T induces an isomorphism

π
∼−→ T (Q)+\T (Af )/T (Zp).

• The morphism ν′ : G′ → T ′ induces an isomorphism

π′
∼−→ T ′(Q)+\T ′(Af )/T ′(Zp).

• The morphism ν′ : G′′ → T ′′ induces an isomorphism

π′′
∼−→ T ′′(Q)+\T ′′(Af )/T ′′(Zp).

The induced actions of Γ, Γ′ and Γ′′ on the right hand sides of these isomorphisms
are given by applying the maps ν, ν′ and ν′ respectively, then multiplying.

Proof. As in [Car86a, 1.2, 3.2.1], this follows from [Del71, Variante 2.5]. Note that
T ′(Q)+ is already closed in T ′(Af ), so we do not need to take a closure in this
case. �

Now we apply the construction of Section 3.2. We obtain extensions

1 −−−−→ ∆ −−−−→ E −−−−→ Gal(Q/F+) −−−−→ 1

1 −−−−→ ∆′ −−−−→ E ′ −−−−→ Gal(Q/F ) −−−−→ 1

1 −−−−→ ∆′′ −−−−→ E ′′(h× hF ) −−−−→ Gal(Q/F ) −−−−→ 1

1 −−−−→ ∆′′ −−−−→ E ′′(h) −−−−→ Gal(Q/F+) −−−−→ 1.

Here ∆, ∆′, ∆′′ denote the stabilisers of e in the relevant adelic group (Γ, Γ′ or
Γ′′), and E , E ′, E ′′(h× hF ), E ′′(h) denote the stabilisers of e in the product of the
adelic group and the absolute Galois group of the reflex field. For the definition of
E ′′(h × hF ) we regard e as a geometric connected component of S0(G′′, h × hF ),
whilst for the definition of E ′′(h) we regard e as a geometric component of S0(G′′, h).
The reciprocity laws for the various curves give explicit descriptions of these groups,
as in [Car86a, §4.1.3].

We will also find it useful to consider EF and E ′′(h)F , the pullbacks of E and
E ′′ via the inclusion Gal(Q/F ) ⊂ Gal(Q/F+).

Lemma 4.1.6. The natural injections

Γ×Gal(Q/F+) ↪→ Γ′′ ×Gal(Q/F+)

and
Γ′ ×Gal(Q/F ) ↪→ Γ′′ ×Gal(Q/F )

induce injections
E ↪→ E ′′(h)

and
E ′ ↪→ E ′′(h× hF ).

Proof. This follows from compatibilities between, on the one hand, the reciprocity
laws for S(G, h) and S(G′′, h), and on the other hand, the reciprocity laws for
S(G′, h× hF ) and S(G′′, h× hF ). �

We will, via these injections, regard E as a subgroup of E ′′(h) and E ′ as a
subgroup of E ′′(h× hF ).
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Lemma 4.1.7. We have open and closed immersions (of schemes over F+ and F
respectively)

S0(G, h) ↪→ S0(G′′, h)

and

S0(G′, h× hF ) ↪→ S0(G′′, h× hF )

which are equivariant with respect to the action of Γ and Γ′ respectively.

Proof. We give the proof for G and G′′. The map induced by the obvious mor-
phism of Shimura data (G, h) → (G′′, h) gives an open and closed immersion
S(G, h) ↪→ S(G′′, h). We need to check that this induces an open and closed
immersion S0(G, h) ↪→ S0(G′′, h). Since K0 ⊂ K ′′0 we certainly have an induced
map S0(G, h)→ S0(G′′, h). The lemma follows from applying the proof of [Del71,
Theorem 1.15] with fixed levels at p. �

Lemma 4.1.8. There are isomorphisms of schemes over Q

S0(G, h)e ∼= S0(G′′, h)e,

and

S0(G′, h× hF )e ∼= S0(G′′, h× hF )e,

which are equivariant for the E and E ′ actions respectively.

Proof. This follows immediately from the previous lemma. �

We now want to compare the cohomology of our various Shimura curves. First,
we introduce a couple more general notions.

Definition 4.1.9. Suppose H1 and H2 are topological groups, and V is a smooth
representation of H1 on a finite-dimensional Fp-vector space. Suppose that M is

a smooth H1 × H2-representation on an Fp-vector space. Define M(V ) to be the
Abelian group HomH1

(V,M). We endow M(V ) with a left group action of H2 as
follows: for h ∈ H2 and α ∈M(V ), let (h · α)(v) = h · α(v) for any v ∈ V .

Suppose N is a smooth H2-representation on an Fp-vector space. Then we define
the tensor product V ⊗ N to be V ⊗Fp N with a left group action of H1 × H2 as

follows: for h1 ∈ H1, h2 ∈ H2, v ∈ V and n ∈ N , let(h1, h2)·(v⊗n) = (h1v)⊗(h2n).

Lemma 4.1.10. The constructions of the above Definition give a smooth H2-
representation M(V ) and a smooth H1 × H2-representation V ⊗ N . We have
HomH1×H2

(V ⊗N,M) = HomH2
(N,M(V )).

Proof. We first prove the smoothness of M(V ). We have

Hom(V,M) = lim−→
K2

Hom(V,MK2) = lim−→
K2

M(V )K2 ,

where the limit is over open subgroups of H2. Indeed, any homomorphism from
the finite-dimensional V lands inside a finite-dimensional subspace of M , which is
invariant under some open subgroup of H1 ×H2 (by smoothness of M), and hence
invariant under some K2. Similar considerations show smoothness of the tensor
product V ⊗N .

We now prove the second part of the Lemma. We have

HomH1×H2(V ⊗N,M) = HomFp(V ⊗N,M)H1×H2 ,

where the action of g ∈ H1 ×H2 on λ ∈ HomFp(V ⊗N,M) is given by

(gλ)(x) = g(λ(g−1x)).
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By the tensor–hom adjunction we have

HomFp(V ⊗N,M)H1×H2 = HomFp(N,HomFp(V,M))H1×H2

= HomFp(N,HomFp(V,M)H1)H2

= HomFp(N,M(V ))H2 = HomH2
(N,M(V )).

�

Suppose we have a smooth Γ′′-sheaf of Fp-vector spaces, F , on S0(G′′, h). This
pulls back, via the immersion of Corollary 4.1.7, to a smooth Γ-sheaf (which we
again denote by F ) on S0(G, h). We denote the pullback of F to S0(G′′, h)e by
Fe. Note that Fe is a smooth E ′′-sheaf on Se. By restriction, we can also view it
as a smooth E -sheaf.

Corollary 4.1.11. Suppose that V is a finite-dimensional continuous representa-
tion of Gal(Q/F ) over Fp such that H1(S0(G′′, h)Q,F )(V ) 6= 0. Then

H1(S0(G, h)Q,F )(V ) 6= 0.

Proof. For brevity we set M := H1(S0(G, h)Q,F ) and M ′′ := H1(S0(G′′, h)Q,F ).

The Γ-equivariant inclusion S0(G, h) ↪→ S0(G′′, h) induces a Γ × Gal(Q/F+)-
equivariant inclusion M ↪→ M ′′ (since it identifies S0(G, h) as an open and closed
subscheme of S0(G′′, h)). Now suppose M ′′(V ) 6= 0. By Lemma 4.1.10, we have

HomΓ′′×Gal(Q/F )(V ⊗M
′′(V ),M ′′) = End(M ′′(V )) 6= 0.

On the other hand, Frobenius reciprocity and Proposition 3.3.6 imply that

HomΓ′′×Gal(Q/F )(V ⊗M
′′(V ),M ′′) = HomE ′′(h)F (V ⊗M ′′(V ), H1(S0(G′′, h)e,Fe)).

From here, since we have an EF -equivariant isomorphism

S0(G, h)e ∼= S0(G′′, h)e

we conclude that we have HomEF (V ⊗M ′′(V ), H1(S0(G, h)e,Fe)) 6= 0. Applying
Frobenius reciprocity and Proposition 3.3.6 again we have

HomΓ×Gal(Q/F )(V ⊗M
′′(V ),M) 6= 0.

Now Lemma 4.1.10 implies that HomΓ(M ′′(V ),M(V )) 6= 0, and hence

M(V ) 6= 0.

�

Remark 4.1.12. The above corollary is stated for representations of Gal(Q/F )
rather than Gal(Q/F+) simply because it is the former case which we will need
in applications.

In exactly the same way, if F is a smooth Γ′′-sheaf on S0(G′′, h×hF ), and if we
also denote by F the pullback to S0(G′, h× hF ), then we obtain

Corollary 4.1.13. Suppose that V is a finite-dimensional continuous representa-
tion of Gal(Q/F ) over Fp such that H1(S0(G′′, h× hF )Q,F )(V ) 6= 0. Then

H1(S0(G′, h× hF )Q,F )(V ) 6= 0.
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4.2. Serre weights, local systems. We follow [BDJ10] in defining Serre weights.
First we denote by G the finite group∏

v∈Σp

GL2(kv).

Note that the map jp defined in Section 2.3 induces an isomorphism K ′′0 /K
′′
1
∼= G,

which restricts to give isomorphisms K ′0/K
′
1
∼= G and K0/K1

∼= G. Using these
isomorphisms, we from now on identify all these groups with G.

Suppose that we have a finite Galois cover of schemes

S1 → S0

with Galois group G. Suppose S0 is connected. Then for x any geometric point of
S0, we obtain an identification of G with a quotient of π1(S0, x).

Definition 4.2.1. Suppose that W is a finite dimensional Fp-representation of G.
If W is irreducible, we say that it is a Serre weight. Suppose that S1 → S0 is a
finite Galois cover of schemes with Galois group G. Moreover, suppose that S0

is connected. Pick x a geometric point of S0. Then we define a locally constant
étale sheaf of finite dimensional Fp-vector spaces FW (S0, S1) on S0 to be the local
system attached to the action of π1(S0, x) on W via its quotient G. More generally,
if S0 is not necessarily connected, we may still define a locally constant étale sheaf
FW (S0, S1) on S0 by applying the above procedure to each connected component of
S0.

This construction will be applied to the Galois covers appearing in Definition
2.3.3. It is straightforward to list all possible Serre weights. We have the following
standard description

Definition 4.2.2. Suppose

a = (avτ,1, a
v
τ,2) ∈

∏
v∈Σp

∏
τ :kv↪→Fp

Z2

satisfies

0 ≤ avτ,1 − avτ,2 ≤ p− 1

for each v and τ . Then we refer to a as a weight vector, and define a Serre weight
Wa by

Wa =
⊗
v∈Σp

⊗
τ :kv↪→Fp

deta
v
τ,2 ⊗ Symavτ,1−a

v
τ,2 k2

v ⊗kv,τ Fp,

equipped with its natural action of G.

Lemma 4.2.3. Suppose W is a Serre weight. Then W ∼= Wa for some weight
vector a.

Proof. This is standard. One way of proving it is to find the number of isomorphism
classes of Serre weights using Brauer theory, then verify that the representations Wa

define precisely this many non-isomorphic Serre weights. For example, see [Bon11,
Theorem 10.1.8] for the determination of the irreducible representations of SL2(Fq)
over Fp. �

Note that, since detqv−1 is a trivial character of GL2(kv), different weight vectors
may give rise to the same Serre weight. If a is a weight vector, and S1 → S0 is as
in Definition 4.2.1, then we abbreviate FWa(S0, S1) by Fa(S0, S1).

We will need a p-adic variant of the construction of the mod p local systems
Fa(S0, S1) in a particular situation.
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Definition 4.2.4. Suppose

λ = (λvσ,1, λ
v
σ,2) ∈

∏
v∈Σp

∏
σ:F+

v ↪→Qp

Z2

satisfies
λvσ,1 − λvσ,2 ≥ 0

for each v and σ. Then we refer to λ as a weight.

Now we recall a special case of a standard construction of p-adic local systems
on Shimura varieties (see [Car86b, 2.1],[HT01, III.2] and [BDJ10, §2]). Suppose λ
is a weight. Then we have an irreducible algebraic representation of G′ over Qp
defined by

ξλ =
⊗
v∈Σp

⊗
σ:F+

v ↪→Qp

detλ
v
σ,2 ⊗ Symλvσ,1−λvσ,2(F+

v )2 ⊗F+
v ,σ

Qp,

where G′ acts via the isomorphism

G′ ×Qp ∼= Gm ×
∏
v,σ

GL2

induced by the map jp. Of course, ξλ is defined over some finite subextension
L/Qp. For small enough compact open subgroups K ⊂ G′(Af ) (for example,
with Kp ⊂ K ′0 and SK(G′, h × hF ) having no elliptic points), we may define,
following Carayol [Car86b, 2.1.4], an OL-sheaf F 0

λ,K on SK(G′, h× hF ) associated

to the representation ξλ (more precisely we fix the OL-lattice ξ0
λ in ξλ arising from

tensor products of symmetric powers of O2
L and construct our OL-sheaves using

this lattice). More generally, if ξ is any irreducible algebraic representation of G′

over Qp we denote by F 0
ξ,K the OL-sheaf given by this construction. Since L is a

subfield of Qp and we have identified the residue field of Qp with Fp, we obtain an

induced map OL/mL → Fp and hence an Fp-sheaf F 0
λ,K ⊗OL Fp on SK(G′, h×hF ).

Definition 4.2.5. Suppose a is a weight vector and λ is a weight. We say that λ is
a lift of a if for each v ∈ Σp and τ : kv ↪→ Fp there is one embedding σ : F+

v ↪→ Qp
lifting τ such that λvσ = avτ , and for the other σ′ lifting τ we have λvσ′ = 0.

Lemma 4.2.6. Suppose λ is a lift of a. Let Kp ⊂ G′(Apf ) be a sufficiently small
compact open subgroup. Then

F 0
λ,KpK′0

⊗OL Fp ∼= Fa(SKpK′0
(G′, h× hF ), SKpK′1

(G′, h× hF )).

Proof. This follows immediately from the fact that if λ is a lift of a then ξ0
λ⊗OL Fp

is isomorphic to Wa as a K ′0/K
′
1
∼= G representation. �

We now discuss how our Serre weights fit into the framework of Section 4.1.

Definition 4.2.7. Suppose W is a Serre weight. Then the construction of Defini-
tion 4.2.1 gives rise to

• a smooth Γ-sheaf of Fp-vector spaces on S0(G, h), which we denote by FW

• a smooth Γ′-sheaf of Fp-vector spaces on S0(G′, h × hF ), which we denote
by F ′W

• a smooth Γ′′-sheaf of Fp-vector spaces on S0(G′′, h× hF ), which we denote
by F ′′W (h× hF )

• a smooth Γ′′-sheaf of Fp-vector spaces on S0(G′′, h), which we denote by
F ′′W (h).

If a is a weight vector, then we denote FWa by Fa, and similarly for the other
sheaves defined above.
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We need a mild variant of the above definition in Section 6.

Definition 4.2.8. Suppose W is a Serre weight and n ∈ Z. Denote by W (n) the
representation of K ′0/K

′
1,1
∼= F×p ×G whose underlying G representation is W and

on which F×p acts by multiplication by nth powers. Then we define F ′W (n) to be

the smooth Γ′-sheaf of Fp-vector spaces on S0(G′, h×hF ) obtained by replacing K ′1
with K ′1,1 (see Definition 2.3.2), and using the representation W (n) of K ′0/K

′
1,1 in

the construction of Definition 4.2.1. Similarly, for a weight λ we define algebraic
representations ξλ(n) and characteristic zero local systems F 0

λ,KpK′0
(n).

Note that for a Serre weight W , we can identify F ′W (0) and F ′W .

Lemma 4.2.9. Suppose W is a Serre weight. The pullback of F ′′W (h) to S0(G, h),
via the inclusion of Corollary 4.1.7, is isomorphic to FW . Similarly, the pullback
of F ′′W (h× hF ) to S0(G′, h× hF ) is isomorphic to F ′W .

Proof. This is immediate from Corollary 4.1.7. �

5. Transfer of Serre weights

Corollary 4.1.11 will allow us to compare the Galois representations appearing in
the cohomology of S0(G, h) and of S0(G′′, h). Similarly, Corollary 4.1.13 will allow
us to compare the representations appearing in the cohomology of S0(G′, h × hF )
and of S0(G′′, h×hF ). In the main result of this section, Corollary 5.4.3, we relate
the cohomology of S0(G′′, h) with that of S0(G′′, h × hF ). This is essentially an
application of the fact that the neutral components of these Shimura curves are
isomorphic, by the uniqueness of weakly canonical models of connected Shimura
varieties. However, we will need to keep track of central characters, to allow us to
take account of the ‘twisted’ relationship between the groups E ′′(h × hF ), E ′′(h)
(see [Car86a, 4.2.1]).

5.1. Modularity. We begin with the definition of being modular of a certain Serre
weight, with a certain central character. This is essentially a refinement of [BDJ10,
Definition 2.1] — we need to keep track of a central character when we move between
S0(G′′, h) and S0(G′′, h× hF ).

In this section we fix a Shimura datum (G0, h0), with reflex field F0. We denote
by Z0 the centre of G0. We will assume that (G0, h0) is one of (G, h), (G′, h×hF ),
(G′′, h × hF ) or (G′′, h). We fix compact open subgroups K0 and K1 of G0(Qp)
(which will be those described in Definition 2.3.1), together with an isomorphism
K0/K1

∼= G. Via this isomorphism, we can view representations of G as represen-
tations of K0/K1, and by inflation as representations of K0.

We denote by H(G0, h0;Fp) the Fp[GF0
×G0(Af )]-representation

lim−→
K⊂G0(Af )
cpt. open

H1
et(SK(G0, h0)Q,Fp)⊗Fp Fp.

Suppose

ψ0 : Z0(Q)\Z0(Af )→ F×p
is a continuous character. Then we denote by H(G0, h0;Fp)[ψ0] the subrepresenta-

tion of H(G0, h0;Fp) where Z0(Af ) acts via the character ψ0. Note that the action

of Z0(Af ) onH(G0, h0;Fp) factors through the quotient Z0(Q)\Z0(Af ), since Z0(Q)
acts trivially on S(G0, h0).

Definition 5.1.1. Suppose F1 is a finite extension of F0 (in practice, F1 will be
either F+ or F ) and suppose

ρ : GF1
→ GL2(Fp)
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is a continuous irreducible representation. Let W be a Serre weight and let ψ :

Z0(Q)\Z0(Af )→ F×p be a continuous character. We say that ρ is (G0, h0)-modular
of weight W and central character ψ if

HomGF1
×K0

(ρ⊗W∨, H(G0, h0;Fp)[ψ]) 6= 0.

We say that ρ is (G0, h0)-modular of weight W if there exists ψ as above such
that ρ is (G0, h0)-modular of weight W and central character ψ. Similarly, we
simply say that ρ is (G0, h0)-modular if there exists a Serre weight W such that ρ
is (G0, h0)-modular of weight W .

Remark 5.1.2. Note that if ρ is (G0, h0)-modular of weight W and central character
ψ, then we are forced to have ψ|K0∩Z0(Af ) equal to the central character of the
representation W∨. Suppose we have ψ, W such that this is satisfied. Then we can
alternatively (and equivalently) define ρ to be (G0, h0)-modular of weight W and
central character ψ if

HomGF1
×K0Z0(Af )(ρ⊗W∨,ψ, H(G0, h0;Fp)) 6= 0,

where W∨,ψ denotes the representation of K0Z0(Af ) ⊂ G0(Af ) with underlying
K0 representation W∨ and z ∈ Z0(Af ) acting via ψ. The representation W∨,ψ is
well-defined because of the assumed compatibility between ψ and W .

Remark 5.1.3. Our conventions differ from those of [BDJ10] by a twist, so ρ is
(G, h)-modular of weight W implies that the Tate twist ρ(1) is modular of weight
W in the sense of [BDJ10, Definition 2.1]. Conversely, if ρ(1) is modular of weight
W in the sense of [BDJ10] then there exists a quaternion algebra D as in 2.1 such
that ρ is (G, h)-modular of weight W .

We can now record a consequence of Corollaries 4.1.11 and 4.1.13 as a lemma:

Lemma 5.1.4. Suppose ρ : GF → GL2(Fp) is a continuous irreducible representa-
tion. Let W be a Serre weight.

• If ρ is (G′′, h)-modular of weight W , it is (G, h)-modular of weight W .
• If ρ is (G′′, h × hF )-modular of weight W , it is (G′, h × hF )-modular of

weight W .

If a is a weight vector, then we say that ρ is modular of weight a if it is modular
of weight Wa (and similarly with a prescribed central character).

Definition 5.1.5. Let a be a weight vector. We define a character

ψa : O×Fp =
∏
w|p

O×Fw → F×p

by

ψa(zṽ) = 1

ψa(zṽc) =
∏

τ :kv→Fp

τ([zṽc ])
aτ,1+aτ,2 .

Here we denote by [zṽc ] the class of zṽc ∈ OFṽc = OF+
v

in the residue field kv.

Lemma 5.1.6. Suppose a is a weight vector. Consider the representation Wa of
K ′′0 . Let z ∈ O×Fp ↪→ K ′′0 . Then

z.v = ψa(z)v

for all v in Wa.

Proof. This is a direct calculation. �
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Lemma 5.1.7. Suppose
ρ0 : GF1

→ GL2(Fp)
is a continuous irreducible representation. Let W be a Serre weight and

ψ : Z0(Q)\Z0(Af )→ F×p
a continuous character. Then ρ is (G0, h0)-modular of weight W and central char-
acter ψ if and only if

HomGF1
(ρ,H1

et(SKpK0
(G0, h0)Q,FW )[ψp]) 6= 0,

for some sufficiently small compact open subgroup Kp ⊂ G0(Apf ).

Proof. This follows from combining Hochschild–Serre, as in [BDJ10, Lemma 2.4
(a)], with the fact that ψ is determined by ψp and ψ|K0∩Z0(Af ) (W determines the
latter, by remark 5.1.2). �

Lemma 5.1.8. Suppose ρ : GF → GL2(Fp) is (G′, h × hF )-modular of weight W
and central character ψ′. Then ρ is (G′′, h× hF )-modular of weight W and central

character ψ′′, with ψ′′ some character of Z ′′(Af )/Z ′′(Q) satisfying ψ′′|Z′(Af ) = ψ′.

Proof. By Lemma 5.1.7, we have

HomGF (ρ,H1
et(SKpK′0

(G′, h× hF )F ,FW )[ψ′p]) 6= 0,

for some compact open subgroup Kp ⊂ G′(Apf ). By Corollary 4.1.7 we have an open

and closed immersion (of schemes over F ) SKpK′0
(G′, h×hF ) ↪→ SK′′pK′′0 (G′′, h×hF )

for some sufficiently small compact open subgroup K ′′p ⊂ G′′(Apf ). This embedding

is equivariant with respect to the action of Z ′(Apf ), and by Lemma 4.2.9 the sheaf

F ′′a,K′′p pulls back to F ′a,Kp . Taken together, this gives a GF ×Z ′(Apf )-equivariant
embedding

H1
et(SKpK′0

(G′, h× hF )F ,FW ) ↪→ H1
et(SK′′pK′′0 (G′′, h× hF )F ,FW ).

Applying Lemma 5.1.7 again, we see that there is a character ψ′′ which restricts to
ψ′ on Z ′(Af ) such that ρ is (G′′, h×hF )-modular of weight W and central character
ψ′′. �

Similarly we obtain

Lemma 5.1.9. Suppose ρ : GF+ → GL2(Fp) is (G, h)-modular of weight W and
central character ψ. Then ρ is (G′′, h)-modular of weight W and central character

ψ′′, with ψ′′ some character of Z ′′(Af )/Z ′′(Q) satisfying ψ′′|Z(Af ) = ψ.

5.2. Hecke operators. Our main result in this section is a comparison between
the notions of (G′′, h)-modularity and (G′′, h× hF )-modularity. We initially hoped
to make use of the material in Section 3 to do this, but it is in fact significantly
easier to make this comparison using the action of certain Hecke operators. The
simplification arises because it is enough to work with Hecke operators at places
which split in F/F+. Fix a sufficiently small compact open subgroup Kp of G′′(Apf ).

By the Betti comparison isomorphism, since SKpK′′0
(G′′, h)C and SKpK′′0

(G′′, h ×
hF )C are isomorphic as topological spaces, we have an isomorphism

H1
et(SKpK′′0

(G′′, h)F ,Fa)
∼→ H1

et(SKpK′′0
(G′′, h× hF )F ,Fa),

which is equivariant with respect to the Hecke operator [KpgKp], for any g ∈
G′′(Apf ). Of course, this isomorphism is not equivariant for the Galois action.
We want to understand the relationship between the Galois actions on the Hecke
eigenspaces of these two cohomology groups.

Recall that we have fixed embeddings τE : E ↪→ C and τ1 : F+ ↪→ R. We also
denote by τ1 the unique embedding τ1 : F ↪→ C which restricts to τE on E and τ1
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on F+. In this section we will be interested in places v of F+ which split in F .
We fix a rational prime l which splits in E and let v be a prime of F+ lying over
l. Therefore, v splits in F . We also assume that Dv is split. Let w be one of the
places of F which divides v, so v = wwc. Denote by u the place w|E of E. We fix a
uniformiser $v of F+

v and denote by $w the uniformiser of Fw obtained from $v

under the canonical isomorphism F+
v
∼= Fw.

We recall that G′′(Ql) consists of β ∈ (B ⊗Q Ql)× such that there exists µ ∈
(F+ ⊗Q Ql)× with ψ(vβ,wβ) = µψ(v, w).

We choose an isomorphism jv : B ⊗F+ F+
v = Bw ⊕ Bwc ∼= M2(Fw) ⊕M2(Fwc)

such that jv(β
∗) = tjv(x)c. This determines an isomorphism

jw : G′′(Ql) ∼= (F+
l )× ×GL2(F+

v )×
∏

v′|l,v′ 6=v

D×v′ ,

just as in Section 2.3 (see also [Car86a, 2.6.3]).
We now suppose that we have chosen Kp, w and jv such that jw((Kp)l) =

(OF+
v

)× ×GL2(OF+
v

)× · · · . We denote by Tw the Hecke operator

[Kpj−1
w (1,

(
$v 0
0 1

)
, 1, ..., 1)Kp]

acting on H1
et(SKpK′′0

(G′′, h)F ,Fa) and H1
et(SKpK′′0

(G′′, h× hF )F ,Fa).

5.3. Eichler-Shimura relations.

Eichler-Shimura for (G′′, h).

Lemma 5.3.1. Let ρ : GF → GL2(Fp) be an irreducible continuous representation.
Fix a finite set of places S of F such that ρ is unramified outside S, and S contains
all the places over p, and all the places over places where D is non-split. Then

HomGF+ (ρ,H1
et(SKpK′′0

(G′′, h)F ,Fa)[ψp]) 6= 0

if and only if there exists a non-zero fρ ∈ H1
et(SKpK′′0

(G′′, h)F ,Fa)[ψp] satisfying

• for w any place of F , not in S, and split over F+ we have

ψ(ι−1
w ($v, 1, 1, ..., 1))Tw(fρ) = Tr(ρ(Frobw))fρ

Here Frobw denotes a geometric Frobenius element at w.

Proof. This follows from [Car86a, Proposition 10.3]. �

Eichler-Shimura for (G′′, h× hF ).

Lemma 5.3.2. Let ρ : GF → GL2(Fp) be an irreducible continuous representation.
Fix a finite set of places S of F such that ρ is unramified outside S, and S contains
all the places over p, and all the places over places where D is non-split. Then

HomGF+ (ρ,H1
et(SKpK′′0

(G′′, h)F ,Fa)[ψp]) 6= 0

if and only if there exists a non-zero fρ ∈ H1
et(SKpK′′0

(G′′, h)F ,Fa)[ψp] satisfying

• for w any place of F , not in S, and split over F+ we have

ψ(ι−1
w (NF+

v /Ql($v), 1, 1, ..., 1))Tw(fρ) = Tr(ρ(Frobw))fρ

Proof. This follows from [Car86a, 10.4]. �

Remark 5.3.3. We have

ι−1
w ($v, 1, 1, ..., 1) = $w ∈ F×w ↪→ F×l ↪→ G′′(Ql)

and

ι−1
w (NF+

v /Ql($v), 1, 1, ..., 1) = NFw/Eu($w) ∈ E×u ↪→ F×w ↪→ F×l ↪→ G′′(Ql).



20 JAMES NEWTON

5.4. Transferring weights.

Definition 5.4.1. Suppose ψ : Z ′′(Q)\Z ′′(Af ) → F×p is a continuous character.
Denote by Sψ the (finite) set of finite places q of Q where ψ|Z′′(Zq) is non-trivial.
We denote by

ϕψ : GF → F×p
the unique character satisfying

ϕψ(Frobw) = ψ(NFw/Eu($w)/$w)

for all geometric Frobenius elements Frobw at places w which are split over F+

and do not divide any of the places q ∈ Sψ.

Remark 5.4.2. If we denote by φ the map of algebraic groups φ : Z ′′ → Z ′′ given
by z 7→ NF/E(z)/z then ϕψ is the Galois character attached by class field theory
to the character

ψ ◦ φ : Z ′′(Q)\Z ′′(Af )→ F×p .

Corollary 5.4.3. Suppose ρ : GF → GL2(Fp) is a continuous irreducible represen-

tation. Let W be a Serre weight and ψ : Z ′′(Q)\Z ′′(Af )→ F×p a continuous charac-

ter. Let ϕψ : GF → F×p be the character defined above. Then ρ is (G′′, h)-modular
of weight W and central character ψ if and only if ρ⊗ϕψ is (G′′, h× hF )-modular
of weight W and central character ψ.

Proof. This follows from comparing the statements of Lemmas 5.3.1 and 5.3.2. �

Remark 5.4.4. Suppose ρ is (G′′, h)-modular of weight a and central character ψ.
Then we have ψ|K′′0 Z′′(Af ) = ψa. Hence, by Lemma 5.1.6, ϕψ is unramified at the
places ṽ (but will often be ramified at the places ṽc).

6. Serre weights for (G′, h× hF )

In this section, we concentrate exclusively on Serre weight conjectures for the
unitary similitude group G′. Our approach to investigating the weights of modular
Galois representations for the group G′ is identical to that of [BLGG] in the case
of definite unitary groups. The crucial fact which facilitates this approach in the
case of unitary groups (but not in the quaternionic setting) is Lemma 4.2.6.

6.1. Lifting modular Galois representations.

Proposition 6.1.1. Suppose ρ : GF → GL2(Fp) is a continuous irreducible repre-
sentation. Let a be a weight vector, and let λ be a lift of a. Finally, let

ψ : Z ′(Q)\Z ′(Af )→ F×p
be a continuous character. Then ρ is (G′, h×hF )-modular of weight W and central
character ψ if and only if there exists Kp a sufficiently small compact open subgroup
of G′(Apf ), L/Qp a finite subextension of Qp over which we can (and do) define ξλ,
a continuous character

ψ̃p : Z ′(Apf )→ O×L
and a continuous representation

ρ̃ : GF → GL2(OL)

such that

• ψ̃p ⊗OL Fp = ψp,

• ρ̃⊗OL Fp ∼= ρ and

• HomGF (ρ̃, H1
et((SK′0Kp(G′, h× hF ))Q,F

0
λ,K′0K

p)[ψ̃p]) 6= 0.
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Proof. This follows from Lemma 4.2.6 and the proof of [BDJ10, Proposition 2.10]
(where we adjust the latter by keeping track of the central character). �

Remark 6.1.2. By Matsushima’s formula, and the Eichler-Shimura relation for the
Shimura curves SK′0Kp(G′, h×hF ) the equivalent conditions of the above proposition
are also equivalent to the existence of a suitable automorphic representation of
G′(A).

6.2. Sets of weights determined by lifting properties of local Galois rep-
resentations. In this section we describe some sets of Serre weights given by the
existence of lifts of local Galois representations. We need a few preliminary defini-
tions.

Definition 6.2.1. Let K be a finite extension of Qp and suppose we have a de Rham

(or merely Hodge-Tate) representation ρK : GK → GL2(Qp). Let σ : K ↪→ Qp be
a continuous embedding. Then the multiset HTσ(ρK) of Hodge-Tate weights of
ρK with respect to σ is defined by the property that it contains an integer i with

multiplicity dimQp(ρK ⊗σ,K K̂(i))GK . With this definition the p-adic cyclotomic

character has Hodge-Tate weight −1.

Definition 6.2.2. Suppose we have, for some v ∈ Σp,

λv = (λvσ,1, λ
v
σ,2) ∈

∏
σ:F+

v ↪→Qp

Z2

satisfying

λvσ,1 − λvσ,2 ≥ 0

for each σ. Then we say that a de Rham representation

ρv : GF+
v

= GFṽ → GL2(Qp)

has weight λv if for each σ : F+
v ↪→ Qp we have

HTσ(ρv) = {λvσ,1 + 1, λvσ,2}.

Definition 6.2.3. Let ρ : GF → GL2(Fp) be a continuous irreducible representa-
tion. We denote by Wcr(ρ) the set of Serre weights comprising those Wa such that
there is a weight λ lifting a and for each v ∈ Σp there is a crystalline lift of ρ|GFṽ
with weight λv.

Similarly, we denote by Wpd(ρ) the set of Serre weights comprising those Wa

such that there is a weight λ lifting a and for each v ∈ Σp there is a crystalline
and potentially diagonalisable (in the sense of [BLGGT10, 1.4]) lift of ρ|GFṽ with
weight λv.

Corollary 6.2.4. Suppose ρ is (G′, h × hF )-modular of weight W . Then W ∈
W cr(ρ).

Proof. Pick a weight λ lifting a. It follows from Proposition 6.1.1 that we have a
lift ρ̃ of ρ (necessarily absolutely irreducible), with

HomGF (ρ̃, H1
et((SK′0Kp)Q,F

0
λ,K′0K

p)) 6= 0.

The representation ρ̃⊗OL L is crystalline at places dividing p (as in [HT01, Lemma
III.4.2]), and we can compute its labelled Hodge-Tate weights using [HT01, Propo-
sition III.2.1] to obtain the corollary (since the representations ρ̃|GFṽ have weight

λv). Note that the assumptions of the book [HT01] exclude the situation (which
we want to allow here) where D is split at all finite places, but everything we need
goes through in this case. �
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We have the following conjecture in the other direction, originally stated by Gee
in the case of Hilbert modular forms:

Conjecture. Suppose ρ is (G′, h × hF )-modular, and W ∈ Wcr(ρ). Then ρ is
(G′, h× hF )-modular of weight W .

6.3. Serre weight conjectures and modularity lifting theorems. In this sec-
tion we apply modularity lifting theorems, as in [BLGG], to show that, under cer-
tain technical hypotheses, if ρ is (G′, h×hF )-modular, then it is modular of weight
W for every W ∈ Wpd(ρ). We first need to relate automorphic representations
of G′(A) and automorphic representations of GL2(AF ). These are applications of
base change and Jacquet-Langlands functorialities. We will need some notation,
predominantly borrowed from [HT01]

Definition 6.3.1.

• We call a regular, algebraic, conjugate self-dual, cuspidal automorphic rep-
resentation Π of GL2(AF ) an RACSDC automorphic representation.

• For an algebraic Hecke character ψ of A×E we denote by rec(ψ) the unique

continuous character GE → Q×p satisfying

ιp ◦ rec(ψ) ◦ArtEx = ψ|E×x
for every finite place x - p of E (ArtEx denotes the local Artin map). We

denote by rec(ψ) the character GE → F×p obtained by reducing rec(ψ) mod
p.
• For an RACSDC automorphic representation Π, we denote by r(Π) the

two-dimensional representation GF → GL2(Qp) attached to Π, ιp, as in
[BLGHT11, Theorem 1.2]. We denote by r(Π) the semisimplified reduction
of this representation mod p.
• For ξ an irreducible algebraic representation of G′ over Qp, we write ξ′ =
ιp(ξ) for the corresponding irreducible algebraic representation of G′ over
C and ξ′E for the representation of GL2(F ⊗Q R) obtained from ξ′ by the
procedure described at the start of [HT01, VI.2]. We also adopt from loc. cit.
the definition of an irreducible admissible representation of GL2(F ⊗Q R)
being cohomological for ξ′E.

Proposition 6.3.2. Suppose we have Kp a sufficiently small compact open sub-
group of G′(Apf ), a weight λ, L/Qp a finite subextension of Qp over which we can

(and do) define ξλ, a continuous character

ψ̃p : Z ′(Apf )→ O×L

and a continuous representation

ρ̃ : GF → GL2(OL)

such that
HomGF (ρ̃, H1

et((SK′0Kp)Q,F
0
λ,K′0K

p)[ψ̃p]) 6= 0.

Then there exists an RACSDC automorphic representation Π of GL2(AF ), with cen-

tral character ψΠ, and an algebraic Hecke character ψ̃E of A×E such that ψ̃E |ApE,f =

ψ̃p|ApE,f and

r(Π) ∼= ρ̃⊗ rec(ψ̃E)|Gal(Q/F ).

The representation Π and character ψ̃E are unramified at all places dividing p,
and we have

ψ̃p = ι−1
p ◦ (ψ̃E × ψΠ)|Z′(Apf ).
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Proof. When D is non-split at some finite place, this follows from Remark 6.1.2,
[HT01, Theorem VI.2.1] (base change) and [HT01, Theorem VI.1.1] (Jacquet-
Langlands). When D is split at every finite place, the necessary ingredients are
provided by [Rog90]. �

Proposition 6.3.3. Suppose we have an RACSDC automorphic representation Π
of GL2(AF ), with central character ψΠ, an algebraic Hecke character ψ̃E of A×E
such that ψΠ|A×E = ψ̃cE/ψ̃E, and an algebraic representation ξ of G′ over Qp such

that Π∞ = Π|GL2(F⊗QR) is cohomological for ξ′E, and ξ′|−1

E×∞
= ψ̃E |cE×∞ . Moreover,

suppose that Πw is square-integrable at each finite place w of F where B is ramified,
and that Π and ψ̃E are unramified at all places dividing p.

Then there exists Kp a sufficiently small compact open subgroup of G′(Apf ), L/Qp
a finite subextension of Qp over which we can (and do) define ξ, a continuous
character

ψ̃p : Z ′(Apf )→ O×L
such that

ψ̃p = ι−1
p ◦ (ψ̃E × ψΠ)|Z′(Apf )

and a continuous representation

ρ̃ : GF → GL2(OL)

such that
r(Π) ∼= ρ̃⊗ rec(ψ̃E)|Gal(Q/F )

and
HomGF (ρ̃, H1

et((SK′0Kp)Q,F
0
ξ,K′0K

p)[ψ̃p]) 6= 0.

Proof. When D is non-split at some finite place, the result follows from [HT01,
Theorem VI.2.9] (characterising the image of base change), [HT01, Theorem VI.1.1]
and Remark 6.1.2. When D is split at every finite place, the necessary ingredients
are again provided by [Rog90]. �

Definition 6.3.4. If R is a commutative ring and r : GF → GL2(R) is a repre-
sentation, we say that r has split ramification if r|GFw is unramified for any finite
place w of F which is not split over F+.

Before we give the main result of this section, we need to prove a lemma regarding
twisting by certain characters and (G′, h× hf )-modularity. This is an analogue of
[BDJ10, Lemma 2.3]. First we need a small generalisation of Definition 5.1.1.

Definition 6.3.5. Suppose ρ : GF → GL2(Fp) is a continuous irreducible represen-
tation. Let W be a Serre weight and n ∈ Z. We say that ρ is (G′, h× hF )-modular
of weight W (n) if

HomGF×K′0(ρ⊗W∨(−n), H(G′, h× hF ;Fp)) 6= 0.

Equivalently, ρ is (G′, h× hF )-modular of weight W (n) if

HomGF (ρ,H1
et(SKpK′0

(G′, h× hF )Q,FW (n))) 6= 0,

for some sufficiently small compact open subgroup Kp ⊂ G′(Apf ).

Now we can state our twisting lemma:

Lemma 6.3.6. Suppose χ : GQ → F×p is a continuous character, with χ|Ip = ωn

for n ∈ Z, where ω denotes the mod p cyclotomic character. Suppose that ρ : GF →
GL2(Fp) is a continuous irreducible representation. Let W be a Serre weight. Then
ρ is (G′, h×hF )-modular of weight W if and only if ρ⊗(χ|GF ) is modular of weight
W (−n).
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Proof. This is proved just as [BDJ10, Lemma 2.3], using the reciprocity law for
the Shimura datum (G′, h × hF ). This reciprocity law is essentially described in
[Car86a, 3.2.2] — however, it is in fact the inverse of the map described there
(because of the sign error in [Del79]). Note that, similarly, the reciprocity map for
the Shimura datum (G, h) is the identity, rather than the inverse of the identity
as stated in [Car86a, 1.2]. We give some details of the proof. Fix a sufficiently
small compact open subgroup Kp of G′(Apf ) and set U = KpK ′0, U ′ = KpK ′1,1. We

denote the curve SU (G′, h× hF ) by S and denote the curve SU ′(G
′, h× hF ) by S′.

Class field theory gives an isomorphism

Gal(F ab/F ) ∼= TF (Q)+\TF (Af ).

We obtain a map

r : Gal(F ab/F )→ T ′(Q)+\T ′(Af )

by composing the isomorphism of class field theory with the map induced by a
certain morphism of algebraic groups R : TF → T ′. Denote by φ the map of
algebraic groups φ : TF → TF given by z 7→ NF/E(z)/z. Then we define R to be
the map

z 7→ (NF/Q(z), φ(z)/φ(z)c).

The map r is the reciprocity map for the Shimura datum (G′, h×hF ). In particular,
if we denote by πU the finite set T ′(Q)+\T ′(Af )/ν′(U) and denote by πU ′ the finite
set T ′(Q)+\T ′(Af )/ν′(U ′), then the map r induces a right action of Gal(F ab/F )
on these sets (by right multiplication) and hence we canonically obtain associated
0-dimensional schemes over F , which we again denote by πU , πU ′ . Then the map
ν′ induces a diagram of schemes over F

S′
ν′−−−−→ πU ′y y

S
ν′−−−−→ πU .

We denote by Fn the sheaf on πU induced by the F×p -valued character (a, b) 7→ a−n

mod p of ν′(U). The sheaf F1(−n) on S is isomorphic to the pullback of Fn

via the map S → πU . This map induces a bijection of geometrically connected
components, so it induces a GF -equivariant isomorphism

H0(SQ,F1(−n)) ∼= H0(πU,Q,Fn).

Let ψ be the F×p -valued character of T ′(Q)+\T ′(Af ) given by mapping to the first
component of the torus T ′ = Gm ×UF and then applying the character associated
to χ by class field theory. We have ψ ◦ r = χ|GF . Shrinking Up, we may suppose
that ψ is trivial on ν′(U ′). Since χ|Ip = ωn, we have ψ|ν′(U)(a, b) = a−n. Hence,

the character ψ gives rise to an element of H0(πU,Q,Fn), non-trivial on each geo-
metrically connected component of πU,Q, and on which GF acts via the restriction

of the character χ. If we denote by α the image of this element in H0(SQ,F1(−n))
then cupping with α gives a GF -equivariant isomorphism

H1(SQ,FW )⊗ F×p · α ∼= H1(SQ,FW (−n)).

The result now follows from unwinding definitions. �

The following is the main result of this section

Proposition 6.3.7. Suppose p > 2, ζp /∈ F and that ρ : GF → GL2(Fp) is
(G′, h× hF )-modular. We moreover suppose that

• ρ has split ramification,
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• ρ(GF (ζp)) is adequate, in the sense of [BLGG, Definition A.1.1].

Then for each W ∈Wpd(ρ), ρ is (G′, h× hF )-modular of weight W .
Moreover, if ρ is (G′, h×hF )-modular of weight W0 and central character ψ, for

some Serre weight W0, then for each W ∈ Wpd(ρ), ρ is (G′, h × hF )-modular of
weight W and central character ψW satisfying ψW |UF (Af ) = ψ|UF (Af ).

Proof. It suffices to prove the stronger statement giving information about central
characters. Starting from ρ, W0 and ψ as in the statement of the theorem, we apply
Propositions 6.1.1 and 6.3.2 to obtain an RACSDC automorphic representation Π
of GL2(AF ), unramified at all places over p, with central character ψΠ, and an

algebraic Hecke character ψ̃E of A×E such that ψ̃E |ApE,f = ψ̃p|ApE,f and

r(Π) ∼= ρ̃⊗ rec(ψ̃E)|Gal(Q/F ).

Here, ψ̃p is as in the statement of Proposition 6.1.1. We have

ψ̃p = (ψ̃E × ψΠ)|Z′(Apf ).

Now we suppose W ∈Wpd(ρ). By the definition of Wpd(ρ) we have W = Wa, λ
a lift of a and for each v ∈ Σp we have ρ̃ṽ a potentially diagonalisable lift of ρ|GFṽ
with weight λv.

We now apply [BLGG, Theorem 3.1.2]. This tells us that we can find a RACSDC
automorphic representation ΠW of GL2(AF ), unramified at all places over p, such
that

• ρ⊗ rec(ψ̃E)|Gal(Q/F )
∼= r(ΠW )

• ΠW is square integrable at every finite place of F where B is ramified
• for v ∈ Σp and σ : F+

v ↪→ Qp we have

HTσ(r(ΠW )|GFṽ ) = HTσ(ρ̃ṽ ⊗ rec(ψ̃E)|GFṽ ).

Now we must return to the group G′. For this, we combine [HT01, Lemma VI.2.10]

and Proposition 6.3.3. Lemma VI.2.10 gives us a character ψ̃′E of A×E/E× satisfying

ψΠW |A×E = ψ̃′cE/ψ̃
′
E .

Comparing this equation with the equation satisfied by ψ̃E , and the fact that
r(ΠW ) ∼= r(Π), we see that χ := rec(ψ̃E/ψ̃

′
E) extends to a character of GQ. We also

obtain an algebraic representation ξ′ of G′ over C, which will have the form (ξλ(n))′

for some integer n, such that ΠW,∞ is cohomological for ξ′E and ξ′|−1

E×∞
= ψ̃E |cE×∞ . We

apply Proposition 6.3.3 to ΠW , the character ψ̃′E and the algebraic representation

ξλ(n). We conclude that ρ⊗χ|GF = r(ΠW )⊗rec(ψ̃′E)|−1
GF

is (G′, h×hF )-modular of

weight W (n) and some central character, ψ′W , where ψ′pW is equal to the reduction

mod p of ι−1
p ◦ (ψ̃′E × ψΠW )|Z′(Apf ).

Now it follows from Lemma 6.3.6 that ρ is (G′, h×hF )-modular of weight W and
some central character ψW . It is easy to see that the twist given by Lemma 6.3.6
does not change the restriction of the central character to UF (Apf ), so ψW |UF (Apf ) co-

incides with ψ′W . Recall that ψp is equal to the reduction mod p of (ψ̃E×ψΠ)|Z′(Apf ).

Now we are done, since χ extending to GQ implies that the contribution of ψ̃E and

ψ̃′E to the central character (mod p and restricted to UF ) are the same, and ψΠW ,
ψΠ are the central characters of two RACSDC automorphic representations whose
attached Galois representations have isomorphic reduction mod p, so these again
have the same contribution. �
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7. Serre weights for (G, h), the Buzzard-Diamond-Jarvis conjectures

We now use the results of the the previous two sections to deduce some results
about Serre weights for the group G.

7.1. Serre weight conjectures for totally real fields. As in the previous sec-
tion, we are going to relate questions about being modular of some weight to the
existence of crystalline or potentially diagonalisable lifts of certain Galois represen-
tations. We make the following definition, parallel to Definition 6.2.3:

Definition 7.1.1. Let ρ : GF+ → GL2(Fp) be a continuous irreducible representa-
tion. We denote by Wcr(ρ) the set of Serre weights comprising those Wa such that
there is a weight λ lifting a and for each v ∈ Σp there is a crystalline lift of ρ|G

F
+
v

with weight λv.
Similarly, we denote by Wpd(ρ) the set of Serre weights comprising those Wa

such that there is a weight λ lifting a and for each v ∈ Σp there is a crystalline
and potentially diagonalisable (in the sense of [BLGGT10, 1.4]) lift of ρ|G

F
+
v

with

weight λv.

Theorem 7.1.2. Let ρ : GF+ → GL2(Fp) be a continuous irreducible representa-
tion. Suppose ρ is (G, h)-modular of weight W . Then W ∈Wcr(ρ).

Proof. We begin by choosing an imaginary quadratic field E as in section 2.1, and
setting F = EF+. We choose E such that ρ|GF remains irreducible. The idea
of the proof is to show that ρ|GF is (up to a twist by a character with controlled
ramification) (G′, h×hF )-modular of weight W (i.e. to transfer to the PEL unitary
Shimura curve) and then apply Corollary 6.2.4.

Lemma 5.1.9 shows that ρ is (G′′, h) modular of weight W and some central
character ψ. Corollary 5.4.3 implies that ρ|GF ⊗ ϕψ is (G′′, h × hF )-modular of
weight W . Applying Lemma 5.1.4, we see that ρ|GF ⊗ϕψ is (G′, h×hF )-modular of
weight W . Finally, Corollary 6.2.4 tells us that W ∈Wcr(ρ|GF⊗ϕψ), but since ϕψ is
unramified at the places ṽ (see Remark 5.4.4) we haveWcr(ρ|GF⊗ϕψ) = Wcr(ρ). �

Theorem 7.1.3. Suppose p > 2, that the continuous irreducible representation
ρ : GF+ → GL2(Fp) is (G, h)-modular, and that ρ(GF+(ζp)) is adequate. Then for
any W ∈Wpd(ρ), ρ is (G, h)-modular of weight W .

Proof. Again we begin by choosing an imaginary quadratic field E and setting
F = EF+. We can and do choose E so that

• ζp /∈ F
• ρ|GF is irreducible and has split ramification,
• ρ(GF (ζp)) is adequate.

The idea of the proof is that, up to a twist by a character, ρ|GF is (G′, h × hF )-
modular, and we can apply Proposition 6.3.7 to show modularity with the appro-
priate weights in the PEL unitary Shimura curve setting. Then we can transfer
back to the quaternionic Shimura curve, up to some ambiguity about a character
twist, which we resolve by ensuring that the character (a priori of GF ) extends to
GF+ , and is unramified at places over p, hence does not affect the weights for which
ρ is modular.

First we transfer ρ to the unitary setting. Lemma 5.1.9 shows that ρ is (G′′, h)-
modular of some weight W0 and some central character ψ. Therefore, we deduce
from Corollary 5.4.3 that ρ|GF ⊗ϕψ is (G′′, h×hF )-modular of weight W0 and some
central character ψ. Then Lemma 5.1.4 tells us that ρ|GF ⊗ ϕψ is (G′, h × hF )-
modular of weightW0 and some central character ψ′. We will need some information
on the relationship between ψ and ψ′. Lemma 5.1.8 tells us that ρ|GF ⊗ ϕψ is
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(G′′, h× hF )-modular of weight W0 and central character ψ′′ with ψ′′|Z′(Af ) = ψ′.

Another application of Corollary 5.4.3 tells us that ρ|GF ⊗ ϕψϕ−1
ψ′′ is (G′′, h× hF )-

modular of weight W0 and central character ψ′′. We conclude that the character
ϕψϕ

−1
ψ′′ extends to GF+ .

Let W ∈ Wpd(ρ) = Wpd(ρ|GF ⊗ ϕψ). Then Proposition 6.3.7 and Lemma 5.1.8
tell us that ρ|GF ⊗ϕψ is (G′′, h×hF )-modular of weight W and some central charac-

ter ψW with ψW |UF (Af ) = ψ′′|UF (Af ). Corollary 5.4.3 tells us that ρ|GF ⊗ϕψϕ−1
ψW

is

(G, h)-modular of weight W . Since ψW |UF (Af ) = ψ′′|UF (Af ) and ϕψϕ
−1
ψ′′ extends to

GF+ , we see that ϕψϕ
−1
ψW

extends to GF+ . By Remark 5.4.4, the character ϕψϕ
−1
ψW

is unramified at all places ṽ, so the extension to GF+ is unramified at all places
v ∈ Σp. It follows from [BDJ10, Corollary 2.11 (2)] that ρ|GF is modular of weight
W , so ρ or ρ ⊗ χ(F/F+) is (G, h) modular of weight W , where χ(F/F+) is the
quadratic character corresponding to F/F+. Since the places over p split in F/F+,
this character is also unramified at the places v ∈ Σp and another application of
[BDJ10, Corollary 2.11 (2)] tells us that ρ is (G, h)-modular of weight ρ. �

7.2. Buzzard-Diamond-Jarvis conjectures, p unramified in F+.

Corollary 7.2.1. Suppose p > 2 and that p is unramified in F+. Let ρ : GF+ →
GL2(Fp) be a continuous, irreducible, (G, h)-modular representation, and suppose
that ρ(GF+(ζp)) is adequate. Then ρ is (G, h)-modular of weight W if and only if
W ∈Wcr(ρ).

Proof. This follows from combining Theorems 7.1.2, 7.1.3 and [GLSa, Theorem
2.12]. This last reference shows that, if p is unramified in F+, Wcr(ρ) = Wpd(ρ) (and
also provides a more explicit description of these sets, see the following remark). �

Remark 7.2.2. See Remark 5.1.3 for a comparison of the notion of (G, h)-modularity
with the definition of modularity used in [BDJ10]. We refer to section 4 of [BLGG]
for a discussion of the various forms of the ‘weight part of Serre’s conjecture’ in
the literature for GL2. When p is unramified in F+ (and p > 2), the paper [GLSa]
shows that the set Wcr(ρ) is the same as the more explicit set denoted WBDJ(ρ) in
[BLGG, GLSa]. The setWBDJ(ρ) is in most cases the same as the set of conjectured
weights in [BDJ10], and is conjecturally always the same - we again refer to section
4 of [BLGG] for a discussion of the situation.

Remark 7.2.3. As mentioned in the introduction, a very recent preprint of Gee, Liu
and Savitt [GLSb] proves a generalisation of [GLSa, Theorem 2.12], removing the
assumption that p is unramified in F+. This enables us to likewise remove the ’p
is unramified’ hypothesis from Corollary 7.2.1.
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