1. p-ADIC NUMBERS AND p-ADIC GROUPS

Q,: completion of QQ with respect to metric induced by non-Archimedean absolute value
|p"a/b| = p~™, a,b coprime to p, n € Z.
Q, is a topological field. It is locally profinite:

Definition 1.1. A topological group G is locally profinite if it is Hausdorff and every open
neighbourhood of the identity contains a compact open subgroup (equivalently, Hausdorff,
locally compact and totally disconnected).

Fact 1.2. (See Gruenberg’s article in Cassels—Frohlich) A Hausdorff topological group G is
profinite if and only if it is compact and totally disconnected.

More generally, we can consider p-adic local fields: finite extension fields F'/Q,, with
ring of integers O = Op C F, and maximal ideal mp = (w) generated by a uniformiser
wel.

In this course, we will interested in representations of the groups GL, (F"). Many things
generalize easily (and some less easily) to the F-points of reductive linear algebraic groups
G/F.

We equip GL,,(F) C M, (F') with the subspace topology induced by the product topology
on M,(F) = F®"  This makes GL,(F) into a topological group. We will often just write
G for GL,(F). We can check it is locally profinite. Here are some special compact open
subgroups:

Definition 1.3. Set Ky = GL,(0) C G, K, ={g € Ky: g =1, mod @'}

Then (K, ),>o is a basis of open neighbourhoods on the identity in G, in particular G is
locally profinite.

1.1. Structure of G. There are some important structure theorems for G.

1.1.1. Cartan decomposition. Let A = {diag(w™,@™2,...,@w™) : m; € Z} and AT =
{diag(@w™, w™2,..., ™) :mq > -+ > my,}.
Then G = K()AJFKO = HAGAJF Ko)\Ko.

Proof. This is the ‘Smith normal form’ It is a consequence of the structure theorem for
finitely generated modules over PIDs. U

Consequence: G/Kj is countable.
Real analogue: every g € GL,(R) has a polar decomposition g = qu, g a (symmetric)

positive definite matrix (¢ = vm!m) and u € O(n). We can furthermore diagonalise ¢
with an orthogonal matrix.

1.1.2. Iwasawa decomposition. G = BK,, where B C G is the Borel subgroup of upper
triangular matrices.

Proof. Exercise for n = 2. O
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1.1.3. Bruhat decomposition. W = Ng(T')/T = S,, Weyl group (T" C G diagonal matrices).
We have G = BW B = [],ew BwB.

Proof. For n =2, W = {1, w}, we are decomposing G = B[] BwB, you can check by hand
that BwB gives all matrices with non-zero bottom left entry.

In general this decomposition is best understood in terms of the flag variety G/ B, which
parameterizes filtrations

gZZO:ﬁ\oCCFlC"'Cyn:Fn

with dimp .%; = 1. The coset gB corresponds to the flag given by % = (gey, ..., ge;) with
€1, ..., e, the standard basis of F™. This flag is stabilized by the Borel subgroup gBg~*.
The ‘standard flag’ is Fgq : 0 C (e1) C (eq,e2).... We can measure the relative position
of # and %4 by a permutation: there is a unique element o € S,, such that there exists
a basis fi..., f, of F" with Fs4; = (for-.., foi) and F; = (f1,..., fi) for every i. If My
is the change of basis matrix corresponding to fi,..., f, then g = Mb for some b € B
(since My and g give the same point of G/B). We also have Mo € B, since Mo is the

change of basis matrix for f,i ..., fon. We deduce that ¢ € Bo~!B. O

1.2. Smooth representations. Now we are going to define the kinds of representations
of locally profinite groups we will be studying in this course. If H is any topological group
and V is a C-vector space equipped with a representation 7 : H — GL(V'), we say that V
is smooth if for every v € V the stabilizer Staby(v) is open in H.

Example. If y : FF* — C* is a locally constant character, then y defines a smooth
representation of GLj(F'). Composing x with the determinant, we obtains a smooth (one-
dimensional) representation of GL, (F') for any n > 1.

Note that x being locally constant is equivalent to X‘o; factoring through the finite

quotient (O/w")* for some r. We will see some more interesting examples of smooth
representations later!

Proposition 1.4 (Schur’s lemma). Suppose (V,7) is an irreducible smooth representation
of G. If ¢ € Endg(V) then ¢ is multiplication by a scalar.

Proof. First we need to find a singular value for ¢. Suppose that ¢ — A\Iy, is invertible for
all A € C. Then we get a map of C-algebras

C(X) — Endg(V)
X — .

The source is a C vector space of uncountable dimension. The target has countable di-
mension: if v € V — {0} then there is a compact open subgroup K C G fixing v and V' is
generated by the countably many vectors 7(g)v as g runs over G/K. OK, so we conclude
that there is a A € C with ¢ — A not invertible. Either it has a non-zero kernel or its image
is a proper subspace in V. In either case, it follows from irreducibility that ¢ — A = 0. [
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Exercise: check G/K is countable using the Cartan decomposition. Later we will in-
troduce admissible smooth representations; you can prove Schur’s lemma for admissible
things without using the countability argument.

Corollary 1.5 (Central character). Let Z C G denote the scalar matrices. If (V)
is an irreducible smooth representation of G, then there is a locally constant character
Wy Z — C* such that m(z) = we(2)Iy forall z € Z.

Proposition 1.6. Let (m,V) be a finite dimensional irreducible smooth representation of
GL,(F). Then dimV =1 and w(g) = x o det(g) for some locally constant x : F* — C*.

Proof. The essential point is to show that SL, (F) acts trivially on V. So the representation
factors through the determinant. Then use Schur’s lemma. To show that SL,(F’) acts
trivially, we use the fact that if V' is finite dimensional then there is a single compact open
subgroup K which acts trivially on V. In particular the kernel of 7 is an open normal
subgroup of GL, (F). Now there should be an argument using simplicity of PSL,, (F).
Alternatively, we can use the fact that SL,(F) = (N, N) where N C GL,(F) is the
subgroup of upper triangular matrices with 1’s on the diagonal and N is the lower triangular
analogue. Since N is a conjugate of N, it suffices to show that N acts trivially on V. Since
V' is finite dimensional and smooth, there exists a single open subgroup K which acts
trivially on all of V. For each element n € N and each r > 0, there is an element
t € GL,(F) with tnt™! € K, (in fact, we can take t € A). We can therefore choose t so
that tnt~! € K. Then tnt~! acts trivially on V, so n does. U

2. EXERCISES

2.1. Maximal compact. Let K be a compact subgroup of G = GL,,(F'). Show that there
exists g € G such that gK¢g~' C GL,(0O). Show that GL,(O) is maximal compact (i.e. any
compact subgroup of G which contains GL,,(O) is equal to GL,(O)).

Hint: show that a compact subgroup stabilises an O-lattice in F™.

2.2. Compact groups and admissibility. Here is an important definition:
Definition. A smooth representation (m,V’) of a topological group H is admissible if
VE is finite dimensional for all open subgroups K C H.

(1) Let K be a profinite group. Show that an irreducible smooth representation of K
is finite dimensional.

(2) Let (m, V) be a smooth representation of a locally profinite group H, and let K C H
be any compact open subgroup. Show that 7w is admissible if and only if the
restriction 7|k is a direct sum of irreducibles, each occurring with finite multiplicity.
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