
1. Unramified representations and the Satake isomorphism

1.1. Unramified representations.

Definition 1.1. A smooth representations (π, V ) of G = GLn(F ) is said to be unramified
(or spherical) if the space V K0 of invariants under the maximal compact subgroup K0 =
GLn(OF ) is non-zero.

It follows from something we proved in the section on Hecke algebras that irreducible
unramified representations of G correspond to simple H(G,K0)-modules.

The ‘unramified’ terminology is natural from the point of view of Galois (or Weil group)
representations. Recall that local class field theory gives an isomorphism F× ∼= W ab

F

between the multiplicative group of F and the abelianisation Weil group WF (the pre-image
of FrobZ in Gal(F/F )), so unramified chacters of WF (characters with trivial restriction to
the inertia subgroup) correspond to unramified (one-dimensional) representations of F×.

Unramified representations are very important in global contexts, since all but finitely
local factors of an automorphic reprensentation are unramified.

Example. We can similarly think about unramified representations of the diagonal torus
T ⊂ G, i.e. those with non-zero fixed vectors under T0 = T ∩ K0. An irreducible such
representation is necessarily one-dimensional, and corresponds to a homomorphism

x : H(T, T0)→ C.

Since T is commutative, we can identifyH(T, T0) with the (commutative!) group algebra
C[T/T0] of the quotient group. We have T/T0 ∼= Zn, and we can identify it with the group
of cocharacters X•(T ) by sending λ ∈ X•(T ) to λ($) ∈ T .

So unramified representations of T correspond to homomorphisms x ∈ HomZ(X•(T ),C×) =:
T̂ (C) ∼= Cn, which are point of the dual torus T̂ = Spec(C[X•(T )]).

Now we go back to representations of G = GLn(F ). We can write down many example
of unramified representations, as follows: let χ : T → C× be an unramified character of
T , and consider the induced representation Iχ = n-IndGBχ. It follows from the Iwasawa
decomposition (G = BK0) and the fact that χ is trivial on B ∩K0, that

(Iχ)K0 = C · vχ
is one-dimensional, with basic vector vχ the spherical vector (i.e. fixed under K0) given by
f(tnk0) = δ

1/2
B χ(t).

For most choices of χ, Iχ is irreducible (we have discussed the case n = 2 a few times).
In general, since taking K0-invariants is an exact functor, we can say that there is a unique
irreducible sub-quotient of Iχ with a non-zero space of K0-invariants. We denote this
irreducible unramified representation of G by πχ.

Example. When n = 2 and χ = χ1 ⊗ χ2, with χi : F× → C× unramified characters with
χ1/χ2 6= | · |±1, πχ = Iχ is an irreducible unramified representation. When χ1/χ2 = | · |, πχ
is one-dimensional with character δ−1/2

B χ.
1
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Since Iχ and Iχw have isomorphic irreducible constituents for w ∈ W (this was stated
last week), we know that πχ ∼= πχw for all w ∈ W .

1.2. Satake transform.

Definition 1.2. The Satake transform S : H(G,K0)→ H(T, T0) is given by

(Sf)(t) = δB(t)1/2
∫
N
f(tn)dµN(n),

where µN is the left Haar measure on N with µN(N ∩K0) = 1.

(It’s not hard to check that this does indeed take values in the Hecke algebra H(T, T0).)
To motivate this definition, let’s think about how the spherical Hecke algebra acts on

the spherical vector vχ ∈ (Iχ)K0 .
Since (Iχ)K0 is one-dimensional, f ∈ H(G,K0) acts on vχ as multiplication by a scalar,

which we denote by πχ(f). To work out this scalar, we use the fact that we have µG =
µT × µN × µK0 , where the respective (left) Haar measures are all normalized to give the
intersection of K0 with the relevant group volume 1. In other words,∫

G
f(g)dµG =

∫
T

∫
N

∫
K0
f(tnk)dµK0(k)dµN(n)dµT (t).

Now we can compute our scalar as∫
G
f(tnk)vχ(tnk)dkdndt =

∫
T

∫
N

∫
K0
f(tn)δ1/2

B χ(t)dkdndt =
∫
T

∫
N
f(tn)δ1/2

B χ(t)dndt

=
∫
T

(Sf)(t)χ(t)dt.

We can write this as πχ(f) = Sf(χ) where on the right hand side evaluating a function
in H(T, T0) = C[T/T0] at the point χ ∈ T̂ (C).

So the Satake transform captures the action of H(G,K0) on unramified principal series
representations.

Theorem 1.3. The Satake theorem is a C-algebra homomorphism which maps H(G,K0)
isomorphically to the subalgebra H(T, T0)W ⊂ H(T, T0) of Weyl group invariants.

Remark 1.4. Note that H(T, T0)W = C[X•(T )]W = C[t±1
1 , . . . , t±1

n ]W , so the invariants
are given by the algebra C[e1, e2, . . . , en, e

−1
n ], where the ei are the standard symmetric

polynomials in the ti.

Proof. First we check that the map is a homomorphism and takes values in the W -
invariants. This can be done using the formula πχ(f) = Sf(χ). Note that if we know
(w · Sf)(χ) = Sf(χ) for all w and all χ (or even a Zariski dense set of χ), then we have
Sf ∈ H(T, T0)W . Since πχ ∼= πχw we do indeed have this equality.

For the homomorphism property, it is clear from the definition that S is additive. It
follows from the definition that S(eK0) is supported on T0, and for t ∈ T0 we have

S(eK0)(t) =
∫
N
eK0(tn)dµN(n) =

∫
N
eK0∩N(n)dµN(n) = 1,
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so S(eK0) = eT0 . If we know S(f1 ∗ f2)(χ) = ((Sf1) ∗ (Sf2)) (χ) for all χ then we get
S(f1 ∗ f2) = S(f1) ∗ S(f2). This follows from πχ(f1 ∗ f2) = πχ(f1)πχ(f2) (the eigenvalue of
f1 ∗ f2 is the product of the eigenvalues of the fi).

This leaves showing that the map is an isomorphism. This is the hard part! We now
have a map

H(G,K0)→ C[X•(T )]W

and we can identify bases on both sides indexed by λ ∈ X•(T )W = X•(T )+, where a
cocharacter is in X•(T )+ if it is given by a map z 7→ diag(za1 , za2 , . . . , zan) with a1 ≥ a2 ≥
· · · ≥ an.

For H(G,K0) we use the Cartan decomposition, so eλ := 1K0λ($)K0 , λ ∈ X•(T )+ give a
basis. For C[X•(T )]W , basis vectors are given by cλ = ∑

w∈W [wλ].
We write S(eλ) = ∑

µ aλ,µcµ, for aλ,µ ∈ C. To prove the theorem, it suffices to show
that the matrix aλ,µ is upper triangular, with respect to some ordering on X•(T )+, with
non-zero diagonal entries. To compute the matrix coefficients, we have

aλ,µ = S(eλ)(µ($)) = δ(µ($))1/2
∫
N
eλ(µ($)n)dn = δ(µ($))1/2µN(N∩µ($)−1K0λ($)K0).

For the diagonal entries, we easily see that aλ,λ 6= 0. A fact (which has a beautiful
geometric interpretation in terms of the affine Grassmannian) is that aλ,µ is zero unless
λ ≥ µ, with respect to the partial ordering given by asking that λ − µ is a non-negative
linear combination of positive coroots. More explicity, if λ, µ correspond to decreasing
n-tuples of integers (ai), (bi), this condition says that a1 + a2 + · · · ar ≥ b1 + b2 + · · · br
for all 1 ≤ r ≤ n − 1 and a1 + a2 + · · · an = b1 + b2 + · · · bn. This partial ordering can
be extended into a total ordering (for example, the lexicographic ordering), and so we
win. Satake originally just proves that aλ,µ is zero unless λ is above µ in the lexicographic
ordering (this is a weaker statement than the fact mentioned above), this can be proved
using elementary divisors in a relatively elementary way. As an example, let’s do n = 2.

We have a matrix µ($)
(

1 n
0 1

)
=
(
$b1 $b1n
0 $b2

)
which is in the Cartan cell indexed by

λ. Comparing determinants, we see that b1 + b2 = a1 + a2. Looking at 1-minors, we see
that inf(b1, b2, b1 + ord$(n)) = a2. We deduce that a2 ≤ b2, and hence (from the preceding
equality) a1 ≥ b1. �

Corollary 1.5. The irreducible principal series representations πχ give all the isomorphism
classes of irreducible unramified representations of G.
Proof. We have compute the H(G,K0) = H(T, T0)W -modules (πχ)K0 and we can now see
that they cover all isomorphism classes of simple H(G,K0)-modules. �

Corollary 1.6 (Unramified local Langlands). Fix an embedding T̂ (C) ⊂ GLn(C). There
is a bijection between isomorphism classes irreducible unramified representations of G and
semsimple unramified representations φ : WF → GLn(C).
Proof. The point is that an isomorphism class of semisimple unramified representations is
determined by the conjugacy class of the semisimple element φ(Frob) ∈ GLn(C). Standard
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theory of maximal tori implies that the conjugacy class intersected with T̂ (C) is a W -
conjugacy class of elements in T̂ (C). These biject with homomorphisms C[X•(T )]W → C,
which are identified with isomorphism classes of simple H(G,K0)-modules by the Satake
transform. �

2. Local Langlands for GLn(F )

To finish the course let’s finish with a quick discussion of the local Langlands correspon-
dence for G = GLn(F ). We have discussed the objects on one side of the correspondence:
irreducible smooth representations of G.

On the other side are Weil–Deligne representations: these are pairs (r,N), where r :
WF → GL(V ) is a representation of the Weil group on a C-vector space V , which is trivial
on a finite index subgroup of intertia IF , and N : V → V is a (nilpotent) linear map which
satisfies r(σ)Nr(σ)−1 = qn(σ)N , where σ maps to Frob−n(σ) in Gal(k/k) (Frob is geometric
Frobenius).

A Weil–Deligne representation (r,N) is called F -semisimple if r is semisimple. There
is a natural duality on Weil–Deligne representations (take the transpose of N to get an
endomorphism of the dual space).

Theorem 2.1 (Harris–Taylor,Henniart). For each n ≥ 1 there is a bijection recF between
isomorphism classes of irreducible smooth representations of GLn(F ) and n-dimensional F -
semisimple Weil–Deligne representations, uniquely determined by a number of conditions:

• When n = 1 the bijection is given by local class field theory.
• For a locally constant character χ : F× → C×,

recK(π ⊗ (χ ◦ det)) = recK(π)⊗ recK(χ)

• det recK(π) = recK(ωπ)
• recK(π∨) = recK(π)∨
• Two more conditions involving local L-factors and ε-factors for pairs of represen-

tations.

Classification results of Bernstein and Zelevinsky which we have touched on (describing
how all irreducibles contribute to parabolic inductions of supercuspidals) show that it suf-
fices to construct bijections (satisfying the above properties) between isomorphism classes
of cuspidal representations of GLn(F ) and irreducible n-dimensional representations of WF .

If gcd(n, q) = 1, there is a simple description of these irreducible Weil group represen-
tations (see Proposition 10.1 in Prasad–Raghuram). When n = 2 (and q is odd) there is
an corresponding explicit description of the irreducible cuspidal representations of GL2(F )
using a version of the Weil oscillator representation.

We already described the case of unramified principal series representations in the pre-
vious secton. More generally if Iχ = n-IndGBχ is an irreducible principal series, recK(Iχ) is
the Weil–Deligne representation (χ1 ⊕ χ2 ⊕ · · ·χn, 0) where we interpret χi : F× → C× as
a character of WF using the Artin reciprocity map.
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For the Steinberg representation, recK(St) = (| · |1/2 ⊕ | · |−1/2, N). We define N : if e1
is the basis vector on which WF acts by | · |1/2 and e2 is the basis vector with action by
| · |−1/2, then Ne1 = 0 and Ne2 = e1.
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