Analysis I — Examples Sheet 1

Lent Term 2013 V. Neale

1. Let (a_n) be a sequence of real numbers. We say that $a_n \to \infty$ as $n \to \infty$ if given any K we can find an N (depending on K) such that $a_n \ge K$ for all $n \ge N$.

- (i) Write down a similar definition for $a_n \to -\infty$ as $n \to \infty$.
- (ii) Show that $a_n \to -\infty$ as $n \to \infty$ if and only if $-a_n \to \infty$ as $n \to \infty$.
- (iii) Suppose that $a_n \neq 0$ for all n. Show that if $a_n \to \infty$ as $n \to \infty$ then $\frac{1}{a_n} \to 0$ as $n \to \infty$.
- (iv) Suppose that $a_n \neq 0$ for all n. Is it true that if $\frac{1}{a_n} \to 0$ as $n \to \infty$ then $a_n \to \infty$ as $n \to \infty$? Give a proof or a counterexample.
- 2. Sketch the graphs of y = x and $y = (x^4 + 1)/3$, and thereby illustrate the behaviour of the real sequence (a_n) where $a_{n+1} = (a_n^4 + 1)/3$. For which of the three starting cases $a_1 = 0$, $a_1 = 1$, $a_1 = 2$ does the sequence converge? Prove your assertions (rigorously a picture is useful for intuition but insufficient for a proof).
- 3. Let $a_1 > b_1 > 0$ and let $a_{n+1} = (a_n + b_n)/2$ and $b_{n+1} = 2a_n b_n/(a_n + b_n)$ for $n \ge 1$. Show that $a_n > a_{n+1} > b_{n+1} > b_n$. Deduce that the two sequences converge to a common limit. What is that limit?
- 4. Let $[a_n, b_n]$, n = 1, 2, ..., be closed intervals with $[a_n, b_n] \cap [a_m, b_m] \neq \emptyset$ for all n, m. Prove that $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.
- 5. The real sequence (a_n) is bounded but does not converge. Prove that it has two convergent subsequences with different limits.
- 6. Investigate the convergence of the following series. For each expression containing the complex number z, find all z for which the series converges.

$$\sum_{n} \frac{\sin n}{n^2} \qquad \sum_{n} \frac{n^2 z^n}{5^n} \qquad \sum_{n} \frac{(-1)^n}{4 + \sqrt{n}} \qquad \sum_{n} \frac{z^n (1 - z)}{n}$$

7. Consider the two series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$ and $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$, having the same terms but taken in a different order. Let s_n and t_n be the corresponding partial sums to n terms. Let $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{n}$. Show that $s_{2n} = H_{2n} - H_n$ and $t_{3n} = H_{4n} - \frac{1}{2}H_{2n} - \frac{1}{2}H_n$. Show that (s_n) converges to a limit, say s, and that (t_n) converges to 3s/2.

- 8. Let (a_n) be a sequence of complex numbers. Define $b_n = \frac{1}{n} \sum_{i=1}^n a_i$ for all $n \ge 1$. Show that if $a_n \to a$ as $n \to \infty$ then $b_n \to a$ as $n \to \infty$ also.
- 9. Show that $\sum_{n} \frac{1}{n(\log n)^{\alpha}}$ converges if $\alpha > 1$ and diverges otherwise.

Does
$$\sum_{n} \frac{1}{n \log n \log \log n}$$
 converge?

10. Prove the *root test*, which says the following.

Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n \ge 0$ for all n. Suppose that there is some a such that $a_n^{1/n} \to a$ as $n \to \infty$. If a < 1, then the series converges. If a > 1, then the series diverges.

What happens if a = 1?

Add this test to your series grid.

11. Let z be a complex number such that $z^{2^j} \neq 1$ for every positive integer j. Show that the series

$$\frac{z}{1-z^2} + \frac{z^2}{1-z^4} + \frac{z^4}{1-z^8} + \cdots$$

converges to $\frac{z}{1-z}$ if |z| < 1 and converges to $\frac{1}{1-z}$ if |z| > 1. What happens if |z| = 1?

- 12. Let (a_n) be a sequence of positive real numbers such that $\sum_n a_n$ diverges. Show that there exist b_n with $\frac{b_n}{a_n} \to 0$ as $n \to \infty$ and $\sum_n b_n$ divergent.
- 13. Can we write the open interval (0,1) as a disjoint union of closed intervals of positive length?

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).