Analysis I — Examples Sheet 3

Lent Term 2013 V. Neale

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) - f(y)| \leq |x - y|^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.

2. Given $\alpha \in \mathbb{R}$, define $f_{\alpha} : [-1,1] \to \mathbb{R}$ by $f_{\alpha}(x) = |x|^{\alpha} \sin(1/x)$ for $x \neq 0$ and $f_{\alpha}(0) = 0$. Is f_0 continuous? Is f_1 differentiable? Draw a table, with nine columns labelled $-\frac{1}{2}$, $0, \frac{1}{2}$, ..., $\frac{7}{2}$ and with six rows labelled " f_{α} bounded", " f_{α} continuous", " f_{α} differentiable", " f'_{α} bounded", " f'_{α} continuous", " f'_{α} differentiable". Place ticks and crosses at appropriate places in the table, and give justifications.

(If you wish, start by considering $g_{\alpha}(x) = x^{\alpha} \sin(1/x)$ for $x \neq 0$ and $g_{\alpha}(0) = 0$, for $\alpha \in \{0, 1, 2, 3\}$.)

- 3. By applying the mean value theorem to $\log(1+x)$ on [0,a/n] with n>|a|, prove carefully that $(1+a/n)^n\to e^a$ as $n\to\infty$.
- 4. Find $\lim_{n\to\infty} n(a^{1/n}-1)$, where a>0.
- 5. "Let f' exist on (a,b) and let $c \in (a,b)$. If $c+h \in (a,b)$ then $(f(c+h)-f(c))/h = f'(c+\theta h)$. Let $h \to 0$; then $f'(c+\theta h) \to f'(c)$. Thus f' is continuous at c." Is this argument correct?
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \exp(-1/x^2)$ for $x \neq 0$ and f(0) = 0. Show that f is infinitely differentiable (including at 0), and that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Comment, in the light of what you know about Taylor series.
- 7. Find the radius of convergence of each of these power series.

$$\sum_{n\geqslant 0} \frac{2\cdot 4\cdot 6\cdots (2n+2)}{1\cdot 4\cdot 7\cdots (3n+1)} z^n \qquad \sum_{n\geqslant 1} \frac{z^{3n}}{n2^n} \qquad \sum_{n\geqslant 0} \frac{n^n z^n}{n!} \qquad \sum_{n\geqslant 1} n^{\sqrt{n}} z^n$$

8. Find the derivative of $\tan x$. How do you know that there is a differentiable inverse function $\arctan x$ for $x \in \mathbb{R}$? What is its derivative?

Now let $g(x) = x - x^3/3 + x^5/5 - \cdots$ for |x| < 1. By considering g'(x), explain carefully why $\arctan x = g(x)$ for |x| < 1.

9. (L'Hôpital's rule.) Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Suppose that f(a) = g(a) = 0, that g'(x) does not vanish near a, and that $f'(x)/g'(x) \to \ell$ as $x \to a$. Show that $f(x)/g(x) \to \ell$ as $x \to a$.

Use the rule with g(x) = x - a to show that if $f'(x) \to \ell$ as $x \to a$, then f is differentiable at a with $f'(a) = \ell$.

Find a pair of functions f and g satisfying the conditions above for which $\lim_{x\to a} f(x)/g(x)$ exists, but $\lim_{x\to a} f'(x)/g'(x)$ does not.

Investigate the limit as $x \to 1$ of $\frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2}$.

10. The infinite product $\prod_{n=1}^{\infty} (1+a_n)$ is said to converge if the sequence $p_n = (1+a_1)\cdots(1+a_n)$ converges. Suppose that $a_n \geqslant 0$ for all n. Write $s_n = a_1 + \cdots + a_n$. Prove that $s_n \leqslant p_n \leqslant e^{s_n}$, and deduce that $\prod_{n=1}^{\infty} (1+a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges.

Evaluate $\prod_{n=2}^{\infty} (1 + 1/(n^2 - 1)).$

11. Let f be continuous on [-1,1] and twice differentiable on (-1,1). Let $\phi(x) = (f(x) - f(0))/x$ for $x \neq 0$ and $\phi(0) = f'(0)$. Show that ϕ is continuous on [-1,1] and differentiable on (-1,1).

By using a second-order mean value theorem for f, show that $\phi'(x) = f''(\theta x)/2$ for some $0 < \theta < 1$. Hence prove that there exists $c \in (-1, 1)$ with f''(c) = f(-1) + f(1) - 2f(0).

12. We say that f' has the property of Darboux if a < b and f'(a) < z < f'(b) means that there is some c with a < c < b and f'(c) = z.

Prove the theorem of Darboux: that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable, then f' has the property of Darboux.

Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that there does not exist a differentiable function $F: \mathbb{R} \to \mathbb{R}$ with F' = f.

- 13. (i) Show that $\sum_{n=1}^{\infty} \frac{z^n}{n}$ has radius of convergence 1, that it converges for all z with |z| = 1 and $z \neq 1$, and that it diverges if z = 1.
 - (ii) Let $|z_1| = |z_2| = \cdots = |z_m| = 1$. Find a power series $\sum_{n=0}^{\infty} a_n z^n$ that has radius of convergence 1, that converges for all z with |z| = 1 and $z \notin \{z_1, z_2, \cdots, z_m\}$, but that diverges if $z = z_j$ for some $1 \le j \le m$.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).