Number Theory — Examples Sheet 1

Michaelmas Term 2011

V. Neale

Notation: for a real number x, we write $\lfloor x \rfloor$ for the *floor function* of x. That is, $\lfloor x \rfloor$ is the largest integer less than or equal to x.

- 1. Calculate d = (a, b) and find integers x and y such that d = ax + by when
 - (i) a = 841, b = 160;
 - (ii) a = 2613, b = 2171.
- 2. Let a and b be integers with a > b > 1. Let $\lambda(a, b)$ denote the number of individual applications of Euclid's algorithm required to compute the highest common factor of a and b.
 - (i) Find a pair of four-digit numbers a and b for which $\lambda(a, b)$ is very small.
 - (ii) Find a pair of four-digit numbers a and b for which $\lambda(a, b)$ is large.
 - (iii) Prove that

$$\lambda(a,b) \leqslant 2 \left\lfloor \frac{\log b}{\log 2} \right\rfloor$$

- 3. This question is about Diophantine equations of the form ax + by = c, where a, b and c are fixed natural numbers and we are interested in integer solutions (x, y). Where possible, give an example of such an equation that has
 - (i) no solutions;
 - (ii) exactly one solution;
 - (iii) infinitely many solutions;

and briefly justify your answers.

4. Let x be an integer greater than 1. Use the Fundamental Theorem of Arithmetic to show that

$$x \leqslant \left(1 + \frac{\log x}{\log 2}\right)^{\pi(x)}$$

Deduce that when $x \ge 8$ we have $\pi(x) \ge \frac{\log x}{2 \log \log x}$.

5. Let a and n be integers greater than 1. Prove that if $a^n - 1$ is prime, then a = 2 and n is prime. Is the converse true?

- 6. Let q be an odd prime. Prove that every prime factor of $2^q 1$ must be congruent to 1 mod q, and also congruent to $\pm 1 \mod 8$. Use this to factor $2^{11} 1 = 2047$.
- 7. We say that a natural number n is *perfect* if the sum of all the positive divisors of n is equal to 2n. Prove that a positive even integer n is perfect if and only if it can be written in the form $n = 2^{q-1}(2^q 1)$, where $2^q 1$ is prime.

(It is conjectured that there are no odd perfect numbers, but this is as yet unknown.)

- 8. By considering numbers of the form $n = 2^2 \cdot 3 \cdot 5 \cdots p 1$, prove that there are infinitely many primes congruent to 3 mod 4.
- 9. Find the smallest non-negative integer x satisfying the congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{11}$, $x \equiv 5 \pmod{16}$.
- 10. Find all integers x satisfying both $19x \equiv 103 \pmod{900}$ and $10x \equiv 511 \pmod{841}$.
- 11. A positive integer is said to be *square-free* if it is the product of distinct primes. (So 174 is square-free but 175 is not, for example.) Are there 100 consecutive numbers that are *not* square-free?
- 12. Prove that the classes of both 2 and 3 generate $(\mathbb{Z}/5^n\mathbb{Z})^{\times}$ for all positive integers n. For each of the primes p = 11, 13, 17 and 19, find a generator of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ for all $n \ge 1$.
- 13. Let A be the group $(\mathbb{Z}/65520\mathbb{Z})^{\times}$. Determine the least positive integer n such that $g^n = 1$ for all g in A.
- 14. Let a and n be integers greater than 1, and put $N = a^n 1$. Show that the order of $a + N\mathbb{Z}$ in $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is exactly n, and deduce that n divides $\phi(N)$. If n is a prime, deduce that there are infinitely many primes q such that $q \equiv 1 \pmod{n}$.

Please e-mail me with comments, suggestions and queries (v.r.neale@dpmms.cam.ac.uk).