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Understand modular functions arising from genus 1 superstring amplitudes. \
Modular graph functions are single-valued iterated Eisenstein integrals. \




Understand modular functions arising from genus 1 superstring amplitudes.
Modular graph functions are single-valued iterated Eisenstein integrals.

MGF ::/ eMPL S':V/eMPL =:eMZV C iEi ¢ MMV
ks ol

Players:

MGF modular graph functions (Green, Vanhove, D'Hoker, Giirdogan)
eMPL elliptic multiple polylogarithms (Brown & Levin, Vanhove)
sv single-valued integration (Schnetz)
eMZV elliptic multiple zeta values (Enriquez, Matthes, Zerbini)
iEi iterated Eisenstein integrals (Brown, Schlotterer, Brodel)

MMV multiple modular values (Brown, Hain)



String worldsheets = genus expansion:

Amplitude:

Ag= A5+ AT+ AT+

=/ Qo-i-/ Ql+/ Qo+
Mo.a Mi.4 Mo, 4



Tree level (g =0): Moas = C\{0,1} 524 via (z1,22,23) — (0,1, 00)

A8=0 / A%z - |z |1 — z4|
C

- F(l — Slg)r(]. — 513)I'(1 — 514)
F(l + 512)F(1 + 513)F(1 + 514)

where s;; = (kj + kj)2 -’ /4 and s12 + 513 + s14 = 0.
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Tree level (g =0): Moas = C\{0,1} 524 via (z1,22,23) — (0,1, 00)

A8=0 / A%z - |z |1 — z4|
C

- F(l — Slg)r(]. — 513)I'(1 — 514)
F(l + 512)F(1 + 513)F(1 + 514)

where s;; = (kj + kj)2 -’ /4 and s12 + 513 + s14 = 0.

71 3% = exp (510 |z — 1)

In |z; — zj| = Green's function on the sphere

One-loop (g =1): Integrate over punctures first: 9ty 4 — M1

g=1 d27'
A;(s12,514) =/ 5 Ba(s12, 514| T)
M1 ( )

ImT

= modular functions on 9t 1 (non-holomorhpic)



Modular graph functions

The genus 1 contribution to the graviton amplitude of closed superstrings
are integrals over the moduli 7 = 71 + iy € My 1 = H/PSLy(Z) of

Ba({sy}|7) = (H L dzk>exp( > s,-,-g<z,-—zj|7>)

1<i<j<4

Z4:0

The Green's function on the torus & = C/A; with A, =Z & 77 is

To 1 T, _

G(z|7) = = > oF exp {72 (wz — wz)] .
weN\{0}

The low energy expansion is indexed by graphs G, with coefficients

II /gdzk) I oG-z

vev(6)’E T2 | iLjcE(o)

D[G](7,T) = (



Examples:

g
- d2 2
D {A .. 7221 / a2 G(z1|7)G(22|7)G(z1 — 22|7)
g

MGFs are modular invariant, real analytic, with MZV coefficients d,Em’"):

D[G] = Z(WTz)k Z qmandl((m,n)

k n,m>0



Examples:

g
- d2 P2
D [A_ . 7-221 / a4z 9(21\7 (ZQ’T)g(zl — 22’7-) = E;
g

)

MGFs are modular invariant, real analytic, with MZV coefficients d,Em’" :

DGl =Y (mm2)* 3 q"g"d™"

k n,m>0

Real analytic Eisenstein series




D [@ -D [ ’/;\.] 4G (Zagier)
D[@: — 24D l@-' —180[ ]+3D K}r
10D {@ — 20D lO:j 4D [@} + 3¢

Eigenvalue equations with respect to A = 4720,0-, e.g.

(A — k(k —1))Ex =0

(A-2)D [O>-1 = 0F, — E2
(A—-6)D [O:] %Es —4EE; + 1104“




D [@ -D [ ’/;\.] 4G (Zagier)
D{@: — 24D l@-' —180[ ]+3D K}r
10D {@ — 20D lO:j —4D [Q} + 3¢

Eigenvalue equations with respect to A = 4720,0-, e.g.

(A — k(k —1))Ex =0

(A-2)D [O>-1 = 0F, — E2
(A—-6)D [O:] %Es —4EE; + 1104“

= MGFs look like “integrals of Eisenstein series”




iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

[or=] o (wn)(1)
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iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

forom [0

@ hyperlogarithms (multiple polylogarithms):

Examples:

d
X=C\T, Lwe{z:UEZ}
7 —
@ iterated integrals of modular forms:
X =H, wi € {d7f(71): f € M(SL2(7Z))}
© multiple elliptic polylogarithms:

X=E\X



Iterated integrals of Eisenstein series

Holomorphic Eisenstein series:

1 2(2im)k
Gou(T) = > —% = 2¢(2k) ( _) > oau-1(n)g
(2k —1)!
weNS >1
Iterated integrals:
"dq fi(q) , "
MNf,...,fx;q) = — M(fa, ..., 1 r(1 = —
(17 ’ kvq) /0 q/ 472 (27 ) kvq) ( ) 47'('2 o
SV(f,..., Zr e ) T(Fy e fL) SV(1):—%

(all fx = 1 but one +— Eichler integral)




Iterated integrals of Eisenstein series

Holomorphic Eisenstein series:

1 2/7T
G2k(7') = Z ﬁ = 2((2[( Zgzk 1
Iterated integrals:
q dq f(q") , logg it
MfA,....,f;q) = M(fa, ..., f M) =—"-4o=—
(17 ) qu) 0 q 47I‘2 (27 ; qu) ( ) 472 o
SV(fi,....f Zr(ﬁ+1,..., T(f,... f) SV(1):—%

(all fx = 1 but one +— Eichler integral)

om0 ) 81 (25—3) (25 —1)! (s—1) (s—-1)
E. = e {(%)25_1 <S_2> —=——-sy (171, Gs, 1671




Recall Zagier's result:

D{@}:D{A]JrQ:Efng

Higher loop sunrise integrals are Eisenstein integrals of higher depth:

18 10 43272
D {@] =T E- 367 + yC5 - TWSV(I, Ga, 1, Gy, 1)

. 72y<3 (P2, o)+ T(L. Ga) — 26, T (VF(1))

© T (a)[(b) are linearly independent = identities trivialize

@ straightforward g-expansion I'(---) = > log” 4> m>0anmq™
© action 0,07 and A = 47'22878; on ['s easy to work out

© rich theory developed recently by Francis Brown

= modular polynomials in holomorphic and antiholomorphic iterated
Eisenstein integrals explain the properties of MGFs



Elliptic polylogarithms (Brown & Levin)

Let X =&X =& \{0} and & = C/A; where A\, = Z & 77Z. The series

PO +alr) | §~ g 1)

el = =5Gniamn -~ &

defines meromorphic functions gx(z) on € with

k (—2imy
gk(z + 1|7) = gk(z|7) gk(z + 7|7) = g(z|7) +ng_1 z|lT)—.

Jj=1 J!

g =1, g1(z) = (s :§+O(z) o(z) = p(2) — gf(2)

@ g1 has first order poles (with unit residue) on A,
@ gx has no poles on Z (for any k # 1)



Fix a finite set ¥ C C of punctures to define closed forms
wg")(z) =gi(z—0)dz €QYT\ (0c+A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/wg’l)---wg”) f( ) /dtgnlt—zl)~<n2"'nr;z>
0 Z2...zr



Fix a finite set ¥ C C of punctures to define closed forms
w((,”)(z) =gi(z—0)dz €QYT\ (0c+A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

z V4
(n1)_“ (nr):r n]_--‘nr_ ):/dt £ F(nz-..nr. )
/0 Y War (Zl"‘Zr,Z 0 g ( 71) 22_“Zr,Z

@ holomorphic, homotopy invariant

@ not doubly-periodic, not even the forms w,(,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X




Fix a finite set ¥ C C of punctures to define closed forms
w((,”)(z) =gi(z—0)dz €QYT\ (0c+A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

z V4
(n1)_“ (nr):r n]_--‘nr_ ):/dt £ F(nz-..nr. )
/0 Y War (Zl"‘Zr,Z 0 g ( 71) 22_“Zr,2

@ holomorphic, homotopy invariant

@ not doubly-periodic, not even the forms w,(,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X

G(z|t) = i Z %exp [W(wi —@z)}

wervoy 1l 2



Fix a finite set ¥ C C of punctures to define closed forms
W(2) = ga(z—0) dz € QY(C\ (0 +A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/ “51"1)"'“’57'):r<n1.”nr?2) :/ dt gn,(t - 21) f<n2--.,,r;z>
0 7212 0 22,

© holomorphic, homotopy invariant

© not doubly-periodic, not even the forms w((,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X

J(z|7)
n(7)

™

G(z|t) =—1In (z—E)2

_277_2



Fix a finite set ¥ C C of punctures to define closed forms
W(2) = ga(z—0) dz € QY(C\ (0 +A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:
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© not doubly-periodic, not even the forms w((,")
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Fix a finite set ¥ C C of punctures to define closed forms
W(2) = ga(z—0) dz € QY(C\ (0 +A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/ “51"1)"'“’57'):r<n1.”nr?2) :/ dt gn,(t - 21) f<n2--.,,r;z>
0 7102, 0 Zy- -z

© holomorphic, homotopy invariant

© not doubly-periodic, not even the forms w((,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X

I(zlr)

G(z|T) ~ —In I 272(2 —2)?

_ _r<(1);z> +c.c._j2(r(g g;z) +c.c._r(g;z> o <gz>)

s




So: (MGF integrand) € algebra A, generated by periods (eMPLs)

Zr+1
/ wlm) .. .wg") and their c.c.
Z(

21
0

where n; > 0 and z; € ¥. This A, defines a subsheaf of C¥(Conf, (&;)).



So: (MGF integrand) € algebra A, generated by periods (eMPLs)

Zr+1
/ lm) ‘wg”) and their c.c.

21
0

where n; > 0 and z; € X. This A, defines a subsheaf of C¥(Conf,(&;)).

Approach: Integrate out each puncture sequentially along fibrations
EN\A{z1,...,zp—1} — Conf, (&) — Confp_1 (&)




So: (MGF integrand) € algebra A, generated by periods (eMPLs)
Zr+1
/ wg'l) . -wg”) and their c.c.
20

where n; > 0 and z; € X. This A, defines a subsheaf of C¥(Conf,(&;)).

Approach: Integrate out each puncture sequentially along fibrations
E-\A{z1,...,zp—1} — Conf, (&;) - Conf,r_1(&;)

SSHSOOSS

Every period f € A, is an iterated integral on the fibre, e.g.

f= /znu-(/znv) - fy,
;O 0 u,v

where f,, € A,_1 and u, v are forms independent of z,.




So: (MGF integrand) € algebra A, generated by periods (eMPLs)

Zr+1
/ wim) .. ~w§f’) and their c.c.
Z

21
0

where n; > 0 and z; € ¥. This A, defines a subsheaf of C¥(Conf, (&;)).

Approach: Integrate out each puncture sequentially along fibrations
57— \ {21, 600 ,Z,,_l} — Conf,, (57—) — Conf,,_l (57—)




Integration

Suppose we have written the integrand in the form

f = [Z/Ou(/ov> f] -dz, A dz,,

Then we can easily find a primitive F with dF = f as

F= lZ/Onw(()o)u-</0nv) -fuﬂ,] -dz,.

Apply Stokes to the fundamental domain D = [0, 1] x [0, 7] \ X:

/f: F.
D oD

Problem: F does not extend to a smooth function on D°. In other words,
F is not single-valued.



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

W

To decompose

[ wn= [ ey w(e)osn) wm)(n),

7*N 0<t1<tr<1

split the interval
{a<tl={n<n<}u{n<i<nlu{;<n<t}

wawi
f"/*"



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

~

1 to n

To decompose

[ o = (% m)*(w2) (22) (3 % 1) (wa) (1),
Yxn 0<t;: <tr<1
split the interval

(h<tt={a<n<iu{u<i<nlu{i<tu<t}
N——— —_——

waw1 f wow
I |



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

31 Y to 1

To decompose

/7 o= [ ) (m)(@)0 ) (w)(w)

split the interval

(h<tl={u<n<iu{n<i<nluld<u <t}

waw1 fww fwfw
f“/*n 721 772'71




Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

~
n
t1 P

To decompose

/7 o= [ ) (m)(@)0 ) (w)(w)

split the interval

{t1<t2}— {t1<t2 2}U{t1 % t2}U{2<t1<t2}

f w2owi f wowi f wgf w1 f wow1
N el n Y n




Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

~
n
t1 P

To decompose

/ Worw1 :/WQLU1+/(U2/CU1—|—/U)20)1,
Y*n v n Y n

split the interval
(h<tt={n<n<itu{un<i<nlu{i<u<n}
———

f w2owi f wowi f wgf w1 f wow1
N el n Y n




Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

~
n
t1 P

To decompose

/ Worw1 :/WQLU1+/(U2/CU1—|—/U)20)1,
Y*n v n Y n

split the interval
{t1<t2}— {t1<t2 }U{tl % t2}U{2<t1<t2}
——_———

f w2owi f wowi f wgf w1 f wow1
N el n Y n

More generally, the path concatenation formula reads

r
/ Wr“'wl:Z/Wr"'wk—f—l/wk"'wl-
Y*n k=0"" Y



Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
Mn/ wr...wlzz-/ wr”'wk—l-l/wk"'wl'
0 k=0"0 "

—_———
G-Anfl



Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
Mn/ wr...wlzz-/ wr”'wk—l-l/wk"'wl'
0 k=0"0 "

—_———
G-Anfl

Monodromy and derivatives commute

0, (M, — id) F = (M,, — id) 8,F = (M, —id) f =0

= the monodromies of F are antiholomorphic:



Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
Mn/ wr...wl:Z/ wr"'wk+1/Wk”'w1-
0 k=0"0 "

—_———
G-Anfl

Monodromy and derivatives commute

0, (M, — id) F = (M,, — id) 8,F = (M, —id) f =0

= the monodromies of F are antiholomorphic:

(/\/l%—id)F:zu:(/()znu>*Fg

for any basis 1, € m1(&; \ L) of loops. We can choose them such that

/ wg") = (2im)05,701,n

o



Note that the leading length of the monodromy is

z 4
(M??_id)/o wn---wlz/o wn---wg/wl—i—lower length
n



Note that the leading length of the monodromy is

z 4
(M??_id)/o wn---wlz/o wn---wg/wl—i—lower length
n

So there is an antiholomorphic form with the opposite monodromies:

(M, —1id) {Z Z (/Ozn uwé) 2/:1‘(’;} = —zu: (/Ozn u)* F7+lower length

pEY U



Note that the leading length of the monodromy is
zZ V4
(M, —id)/ Wh w1 :/ wn--'wz/wl + lower length
0 0 n

So there is an antiholomorphic form with the opposite monodromies:

{ZZ(/ );;}: — (M, —id) F + lower length

pEY U

Corollary: Existence of single-valued primitives

By adding antiholomorphic functions, we can find a primitive F € A, with

dF =f and (M,, —id)F=0 forallgex




Stokes' theorem [, f = [; F gets contributions from
@ the punctures o € ¥:

lim 7( F=0
r—=0J|z—o|=r

@ the sides of D:
1 T 1
/0 F+ 1+TF:—/O (Mo —id) F
1+7 0 T
/1 F+/TF:/O (Mo —id) F



Stokes' theorem [, f = [, F gets contributions from
@ the punctures o € ¥:

Hm%‘ F=0
r=0Jz—g|=r

@ the sides of D:

/OlF—i- ’ F:—/Ol(./\/l[oyT]—id)FE.An_l

147

147 0 T
/ F +/ F= / (M[O,l] — id) FeA, 1
1 T 0

The monodromies

@%ﬂq@Fam @%HAQF

are antiholomorphic iterated integrals.




Given a function f € A, single-valued on Conf, (&;):
@ There is a function F € A, that is single-valued on D° with 0, F = f.
@ We can apply Stokes' theorem to d(Fdz,) = fdz, A dz,.
© All contributions are eMPL on the base A,_1.

© Due to convergence, the result is necessarily single-valued and
descends to Conf,_1 (&;).



Given a function f € A, single-valued on Conf, (&;):
@ There is a function F € A, that is single-valued on D° with 0, F = f.
@ We can apply Stokes' theorem to d(Fdz,) = fdz, A dz,.
© All contributions are eMPL on the base A,_1.

© Due to convergence, the result is necessarily single-valued and
descends to Conf,_1 (&;).

After integrating out all but one puncture, a MGF is thus expressed in
terms of iterated integrals on £X, that is, eMZV and their c.c.

1 T
wA(n17... 7nl’) :/O wé"l)_.-wénf)7 wB(nl’... 7nr) :A w(()nl) ,.-w(()nr)



Iterated Eisenstein integrals

Theorem (Enriquez)

eMZV can be written (uniquely) as iterated Eisenstein integrals, with
coefficients that are multiple zeta values.

b b b
27Tiar/ 8n " 8n = n1g1_|_,,1(b)/ 8ny - 'gnr_”rgl—&-nr(a)/ 8ny " 8nr_yq
a a a

r—1 ",u+”u+1+1
k—1 k—1
— k _
+Z (ny+ nps1 — k) l(”/ﬁl _1> (k—n,)

p=1 k=0

nu+nu1+1—k

b
X / gn1 e gnuflgkgnyl+2 e gn,
a

3
wa(0,1,0,0) = 4—532

—36¢,M(1,1,1) + 18M(1,1, Gy)




Summary
@ modular graph functions are real analytic modular functions for
SLo(Z)
@ they are bilinear in holomorphic and antiholomorphic iterated integrals
of Eisenstein series

@ such representations can be computed algorithmically

The coefficients of the g-expansions are rational linear combinations of
multiple zeta values.




Summary
@ modular graph functions are real analytic modular functions for
SLo(Z)
@ they are bilinear in holomorphic and antiholomorphic iterated integrals
of Eisenstein series

@ such representations can be computed algorithmically

| A\

Corollary
The coefficients of the g-expansions are rational linear combinations of
multiple zeta values.

A,

Conjecture (Zerbini, Schlotterer, Brodel)

The coefficients of the g-expansions are rational linear combinations of
single-valued multiple zeta values.

\




extras




Shuffle product

The shuffle product of two words
Wnim** Wpy1 W Wp-- Wy = Z Wo(n+m) =" Wo(1)
a

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

(o) (L) = [ewn



Shuffle product

The shuffle product of two words
Wnim** Wpy1 W Wp-- Wy = Z Wo(n+m) =" Wo(1)
a

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

(o) (L) = [ewn

/wa : /wzwl = /w3w2w1 —|—/w2w3w1 +/w2w1w3
g v & g &

B} x{th<tl={t<tb<tlu{t<ts<blU{ts<t <t}




Shuffle product

The shuffle product of two words
Wnim** Wpy1 W Wp-- Wy = Z Wo(n+m) =" Wo(1)
a

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

(o) (L) = [ewn

/wa . /w2w1 = / (w3wow1 + wrw3wy + wowiws)
v v ~

{3} x{th<tl={t<tb<tlu{t<ts<blU{ts<t; <t}




g-expansion of real analytic Eisenstein series

425 -3)! s s Cos
b2 S e (o 1) S Dy
(s—1)! M= 71-2s T T4 L=y mi(n—m—1)! Y



KZB connection

k—1
() < Famn (a0

Z1 0 Zr p—1 ”.ZP_]-OZP"F]-”'

k metl np—1+r—1 - Np—1+7r Npy1 np—r

p=1 r=0 np—1—1 Zp—1  Zp+1
. nP+1+r_1 I’i ”.npfl np+1+r”' wnp—rl
Mpy1—1 Zo1 Zp p.p+
where
ndT

wi = (dzj — dzj)gn(zj — z;;7) + Egn+1(zj —2z;7)



