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Abstract. This lecture is concerned with some recent applications of mathematical
logic to Diophantine geometry. More precisely it concerns applications of o-minimality, a
branch of model theory which treats tame structures in real geometry, to certain finiteness
problems descending from the classical conjecture of Mordell.
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1. Introduction

This is a somewhat expanded version of my lecture at ICM 2014 in Seoul. It surveys
some recent interactions between model theory and Diophantine geometry.

The Diophantine problems to be considered are of a type descending from the
classical Mordell conjecture (theorem of Faltings). I will describe the passage from
Mordell’s conjecture to the far-reaching Zilber-Pink conjecture, which is very much
open and the subject of lively study by a variety of methods on several fronts. The
model theory is “o-minimality”, which studies tame structures in real geometry,
and offers powerful tools applicable to certain “definable” sets. In combination
with an elementary analytic method for “counting rational points” it leads to a
general result about the height distribution of rational points on definable sets.
This result can be successfully applied to Zilber-Pink problems in the presence of
certain functional transcendence and arithmetic ingredients which are known in
many cases but seemingly quite difficult in general.

Both the methods and problems have connections with transcendental number
theory. My further objective is to explain these connections and to bring out the
pervasive presence of Schanuel’s conjecture.

Though the broad family of Diophantine problems is the same, o-minimality
is a rather different flavour of model theory to that employed in the Diophantine
results of Hrushovski [62, 64] and the subsequent developments (e.g. [24, 129];
for more on “stability” and its applications see [63, 65]). However, both flavours
involve fields with extra structure and hinge on suitable tame behaviour of the
definable sets.

As there are excellent survey papers on these developments (e.g. [130, 131]),
this exposition will stay at a broader level and keep technicalities to a minimum.
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2. From Mordell to Zilber-Pink

The Mordell conjecture. Diophantine geometry deals in the first instance
with the solution of systems of algebraic equations in integers and in rational
numbers. It is a broad subject with a central place in number theory going back
to antiquity. The problems we will consider are finiteness questions. One seeks to
show that certain forms of Diophantine problems have only finitely many solutions,
or a solution set that has a finite description in certain specific terms.

The ur-conjecture here is the Mordell conjecture asserting the finiteness of the
number of rational points on curves of genus at least 2. For example, a non-singular
plane quartic curve. This conjecture was proposed by Mordell [94] in 1922, and
proved by Faltings [46] in 1983. In the meantime it evolved into the Mordell-
Lang conjecture (ML; see Lang [77], I, 6.3) proved in the work of Faltings, Hindry,
Laurent, McQuillan, Raynaud, Vojta, and others; see e.g. [90, 97, 18].

This was the first of three crucial steps in the evolution of the Mordell conjecture
into what is known as the Zilber-Pink conjecture (ZP).

The Mordell-Lang conjecture. The first step, due to Lang (e.g. [76]),
recasts the conjecture in terms of a subvariety (i.e. irreducible closed algebraic
subset defined over C; we identify varieties with their sets of complex points) V
of a (semi-abelian) group variety X. The conjecture concerns the interaction of
V with certain “special” subvarieties of X distinguished in terms of its group
structure.

The simplest result of “Mordell-Lang” type concerns a curve V ⊂ X = G2
m.

Here Gm = Gm(C) = C× is the multiplicative group of non-zero complex numbers,
so V is the set of solutions in (C×)2 of some irreducible (over C) polynomial
F (x, y) = 0. The result, which appears in Lang [76] is the following. If there are
infinitely many points (ξ, η) ∈ V such that (ξ, η) is a torsion point of (C×)2, then
F has either the form xnym = ζ or xn = ζym for some non-negative integers n,m
(not both zero) and root of unity ζ. In the exceptional case V is a torsion coset : a
coset of an irreducible algebraic subgroup (subtorus) of X by a torsion point, and,
being positive-dimensional, contains infinitely many torsion points. Observe that
a torsion point is a torsion coset (of the trivial group).

With a view to generalisations, torsion cosets of X = Gnm will be called “special
subvarieties” and torsion points “special points”. The (countable) collection of
special subvarieties will be denoted S = SX . For later use, general cosets of
subtori will be called “weakly special subvarieties”. We observe that special points
are Zariski dense in any special subvariety.

The Multiplicative Manin-Mumford conjecture, which is a special case of a
theorem of Laurent [79] (for V defined over Q it may be deduced from results of
Mann [82]; see Dvornicich-Zannier [42] for generalisations, see also an independent
proof by Sarnak [126]), asserts the converse. Consider a subvariety V ⊂ X.

(∗) If special points are Zariski-dense in V then V is a special subvariety.

Since the Zariski-closure of any set of points consists of finitely many irreducible
components (∗) may be equivalently formulated as (∗′) or (∗′′) as follows.
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(∗′) A component of the Zariski closure of a set of special points is special.

(∗′′) V contains only finitely many maximal special subvarieties.

If one replaces the group of torsion points by the division group Γ of a finitely
generated subgroup of Gnm, and takes special subvarieties to be cosets of subtori by
elements of Γ, then (∗) is the “Multiplicative Mordell-Lang conjecture”, a theorem
of Laurent [79].

The Manin-Mumford conjecture (MM; proved by Raynaud [122, 123]) is the
statement (∗) for a subvariety of an abelian variety with its torsion cosets as “spe-
cial subvarieties” (the original formulations of Manin and Mumford concerned a
curve of genus at least two embedded in its Jacobian); for the division group of
a finitely generated subgroup it is ML. Note that ML, in both the multiplicative
and abelian settings, is ineffective (one cannot bound the height of points, though
one can bound their number).

While there is no explicit mention of rational points in the formulation of ML,
implications for these, including the original Mordell conjecture, are recovered via
the Mordell-Weil theorem: the group of rational points on an abelian variety over
a number field is finitely generated ([78], I.4.1, [18]).

The André-Oort conjecture. André [1] and Oort [98] made conjectures
analogous to the Manin-Mumford conjecture where the ambient variety X is a
Shimura variety (the latter partially motivated by a conjecture of Coleman [33]).
A combination of these has become known as the André-Oort conjecture (AO).

Shimura varieties have a central role in arithmetic geometry, in particular in
the theory of automorphic forms see e.g. [91]. As the formal definition (see e.g.
[91, 92]) is rather involved, I will just give some examples. The simplest examples
are modular curves, for example the curve Y (1) = SL2(Z)\H whose set of complex
points is just the affine line C, parameterising isomorphism classes (over C) of
elliptic curves by their j-invariant (see e.g. [155]). However, the André-Oort
conjecture is trivial for one-dimensional ambient varieties; the simplest non-trivial
cases concern cartesian products of modular curves. The paradigm examples of
Shimura varieties are the Siegel modular varieties Ag parameterising principally
polarised abelian varieties of dimension g [17].

Associated with a Shimura variety X is a countable collection S = SX of
special subvarieties, the zero-dimensional ones being called special points. For
example, in Y (1)2, a special subvariety of dimension 1 is: a “vertical line” x = j0
or “horizontal line” y = j0 where j0 is the j-invariant of an elliptic curve with
complex multiplication (“CM”; i.e. a “singular modulus” see e.g. [155], §6); or
the zero set of a modular polynomial ΦN (x, y) (see e.g. [155]). The other special
subvarieties are Y (1)2 itself and special points, being the points for which both
coordinates are singular moduli. There is also a larger (uncountable) collection of
weakly special subvarieties which includes, in addition, all vertical and horizontal
lines. In Ag the special subvarieties become rather complicated to describe, but
special points are again those x ∈ Ag for which the corresponding abelian variety
Ax is CM (see e.g. [98]). Special points are Zariski dense in any special subvariety,
and AO asserts the converse:



4 Jonathan Pila

Let X be a Shimura variety and V ⊂ X a subvariety. Then (∗) holds.

Equivalently, AO may be formulated as (∗′), or (∗′′) which we take as the
“official” version.

Conjecture 2.1 (AO). Let X be a Shimura variety and V ⊂ X. Then V contains
only finitely many maximal special subvarieties.

The simplest non-trivial case of AO, for Y (1)2 (and more generally products
of two modular curves), was established unconditionally by André [2]. AO is
open in general, though it is known to be true under the Generalised Riemann
Hypothesis for CM fields (by work of Edixhoven, Klingler, Ullmo, and Yafaev
[43, 45, 71, 144]) and it is known unconditionally in several cases and under various
additional hypotheses on the special points in question (see [152]). In particular,
AO for arbitrary products of modular curves was affirmed using o-minimality and
point-counting in [108]. We will describe this approach below as well as further
results which have been established by the same methods. Though unconditional,
theses results are ineffective in that they do not produce a bound on the height of
the special points. The only effective result known is for products of two modular
curves, due recently to Kühne [74] and Bilu-Masser-Zannier [16].

The broader class of mixed Shimura varieties (see e.g. [120]) includes for
example the “mixed” variety Xg associated with Ag, namely Ag fibered at each
point by the abelian variety parameterised by that point, and analogous varieties
with additional level structure (see e.g. [17]). These include elliptic modular
surfaces. More exotic examples, like the Poincaré bi-extension ([13]), include copies
of Gm as special subvarieties. The second step in the evolution of ZP is to enlarge
the category of “ambient” varieties to that of mixed Shimura varieties, which also
have a geometrically defined collection of “special subvarieties” [120].

This gives a class of varieties in which all the Diophantine problems so far
considered can be comprehended. The “special point conjecture” (∗) in this setting
was formulated by André [1]. It contains AO and MM for CM abelian varieties,
but it does not include the full MM or ML statements.

The Zilber-Pink conjecture. One further extension, which significantly
enlarges its scope and reach, gives the Zilber-Pink conjecture. The setting is again
V ⊂ X where X is a mixed Shimura variety, but instead of special subvarieties T
contained in V , we consider (components of) intersections V ∩T , with T a special
subvariety, which are atypical in dimension (see below).

This idea has three independent sources, expressed in different formulations.
Zilber [159] formulated a version (“CIT”) in the setting of semi-abelian varieties,
motivated by his work on the model theory of complex exponentiation (see below).
Bombieri-Masser-Zannier [20] proved a theorem and formulated a conjecture about
curves in Gnm originating with a question of Schinzel [132], leading to a result for
intersections of subvarieties with one-dimensional tori and the formulation of a
general conjecture in [21]. Pink [121] formulated a conjecture encompassing MM,
ML, and AO by the same device of “unlikely intersections”, meaning intersections
of a variety V ⊂ X with special subvarieties of codimension exceeding dimV .
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The irreducible components of the intersection of two subvarieties V,W ⊂ X
typically have dimension

dimV + dimW − dimX,

as one would expect by “counting conditions” (and never less if X is smooth [95]).

Definition 2.2. Let X be a mixed Shimura variety with collection S of special
subvarieties, and let V ⊂ X. An irreducible component A ⊂ V ∩ T , where T ∈ S
is called an atypical subvariety (of V in X) if

dimA > dimV + dimT − dimX.

Conjecture 2.3 (ZP). Let X be a mixed Shimura variety and V ⊂ X. Then V
contains only finitely many maximal atypical subvarieties.

This is essentially the formulation of Zilber and Bombieri-Masser-Zannier in
Pink’s setting. There are several alternative formulations; see [22] for a proof
that they are equivalent in the multiplicative setting. As it is always atypical for
a proper subvariety of X to contain a special subvariety, ZP for X and all its
special subvarieties implies the assertion (∗′′), the “special point” or “generalised
André-Oort” conjecture for X, via an inductive argument.

There has been a lot of work on problems subsumed within ZP. Nevertheless
it is open even in the multiplicative case. I will describe a theorem established in
work of Bombieri, Masser, Zannier, and Maurin that affirms ZP for a curve in Gnm.

An atypical subvariety of a curve in Gnm is either a point in its intersection
with a subgroup of codimension at least 2, or the curve itself if it is contained in
a subgroup of codimension 1. The following definition is convenient.

Definition 2.4. For a mixed Shimura variety X with its collection S of special
subvarieties and a non-negative integer k we let S [k] denote the (countable) union
of all special subvarieties of X of codimension ≤ k.

Theorem 2.5 ([20, 89, 22]). Let V ⊂ Gnm be a curve defined over C. If V is not
contained in a proper special subvariety then V ∩ S [2] is a finite set. 2.

An alternative proof (for V defined over Q, the algebraic closure of Q in C) is
given in [19] and, in conjunction with the “Bounded height theorem” of Habegger
[52] leads to an effective result [53]. A proof of the main result of [20] using
o-minimality and point-counting has been developed by Capuano [28].

ZP formally implies ML ([159, 121]), which may be seen in the multiplicative
setting for curves as follows. Let V ⊂ G2

m be a curve and suppose that c1, . . . , ck ∈
C× are multiplicatively independent (no nontrivial monomial on them gives unity).
Define

V ∗ = {(x, y, z1, . . . , zk) ∈ G2+k
m : (x, y) ∈ V, zi = ci, i = 1, . . . , k}.

Two multiplicative conditions on (x, y, z) ∈ V ∗ will in general mean that x and y
belong to the division closure of the multiplicative group 〈c1, . . . , ck〉 generated by
c1, . . . , ck. Thus ZP for all Gnm implies ML for all Gnm.



6 Jonathan Pila

I do not give a survey of results. The known results for abelian varieties are less
complete than those for Gnm, and in the Shimura setting less complete still. Below
I will discuss various specific problems that have been tackled using o-minimality
and point-counting. See Zannier [156] for further discussion and references on ZP
as well as more general problems under the rubric of “unlikely intersections”, and
[157] for some specific problems and applications. See also Chambert-Loir [29].
For analogous results in other settings see [85, 30].

3. Transcendental Number Theory

Classical results. Transcendental number theory is concerned primarily with
the algebraic nature of the values of special functions, especially the exponential
function. I want to mention two famous results: Lindemann’s theorem (also known
as the Lindemann-Weierstrass theorem) and Baker’s theorem (see e.g. [8]). Here
log x means any determination of the logarithm of x ∈ C×.

Theorem 3.1 (Lindemann (-Weierstrass)). Let x1, . . . , xn ∈ Q be linearly inde-
pendent over Q. Then ex1 , . . . , exn are algebraically independent over Q. 2

Theorem 3.2 (Baker). Suppose that x1, . . . , xn ∈ Q. If log x1, . . . , log xn are
linearly independent over Q then they are linearly independent over Q. 2

Baker’s theorem has been partially extended to elliptic and abelian functions
in work of Baker, Bertrand, Masser, Philippon, Wüstholz and others (see e.g. [9]).
These developments also impacted substantially on Diophantine problems, but I
want to note in particular that the Masser-Wüstholz isogeny estimates led to a new
proof [86] of the Mordell conjecture. More recently, Kühne [74] uses quantitative
results for linear forms in (elliptic and classical) logarithms in his unconditional
proof of AO for products of two modular curves.

So the methods of Diophantine geometry and transcendence theory are cognate;
but the underlying conjectures are also cognate in the work of Zilber on the model
theory of exponentiation described below.

Schanuel’s conjecture. Schanuel’s conjecture (SC; see Lang [77], p31) seems
to encapsulate all reasonable transcendence properties of the exponential function.

Conjecture 3.3 (SC). Let z1, . . . , zn ∈ C be linearly independent over Q. Then

tr. deg.QQ(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n.

The special case with all the zi algebraic recovers Lindemann’s theorem. The
special case with all the exp zi algebraic is open for n ≥ 2, the best result known
towards “algebraic independence of logarithms” is Baker’s theorem.

“Ax-Schanuel”. Ax [5] (see also [4]) established Schanuel’s conjecture in the
setting of a differential field (apparently also conjectured by Schanuel; see [5]); this
theorem is known as “Ax-Schanuel”.
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Let Q ⊂ C ⊂ K be a tower of fields and {D1, . . . , Dm} a set of commuting
derivations of K with C =

⋂
µ kerDµ. By “rank” below we mean rank over K.

Definition 3.4. Elements x1, . . . , xn ∈ K are called linearly independent over Q
modulo C if there is no nontrivial relation

∑
ν qνxν = c where qν ∈ Q, c ∈ C.

Ax’s theorem is then the following. Condition (a) encapsulates “yν = exν”
in a general differential field. However, by the Seidenberg embedding theorem
[133, 134], a finitely generated differential field may be embedded into a field of
meromorphic functions.

Theorem 3.5 (“Ax-Schanuel”). Let xν , yν ∈ K×, ν = 1, . . . , n, with

(a) for all µ, ν, Dµyν = yνDµxν :

(b) the xν are linearly independent over Q modulo C [or (b’), the yν are mul-
tiplicatively independent over C].

Then

tr. deg.CC(x1, . . . , xn, y1, . . . , yn) ≥ n+ rank
(
Dµxν

)
µ=1,...,m,ν=1,...,n

.

This implies a (weaker) variant in the complex setting that will be important
in the sequel. A statement along these lines was established by Ax [6] in the
semiabelian setting.

We consider π : Cn → Gnm given by z 7→ e(z) = exp(2πiz) on each coordinate.
Fix V ⊂ Gnm. Ax-Schanuel implies that the “best” intersections of π−1(V ) with
algebraic subvarieties W ⊂ Cn are achieved by weakly special W . We formulate a
precise statement as follows.

Definition 3.6. 1. A component with respect to V is a complex analytically
irreducible component A of W ∩ π−1(V ) for some irreducible algebraic W ⊂ Cn.

2. If A is a component w.r.t. V we define its defect δ(A) to be dim Zcl(A) −
dimA where Zcl(A) is the Zariski closure of A.

3. A component A w.r.t. V is called optimal for V if there is no component B
w.r.t. V with A ⊂ B, A 6= B, and δ(B) ≤ δ(A). Note that if A is optimal it must
be a component of Zcl(A) ∩ π−1(V ).

4. A component A w.r.t. V is called weakly special if it is a component of
W ∩ π−1(V ) for some weakly special W = Zcl(A).

Then Ax-Schanuel implies the following statement (see [111]).

Theorem 3.7. An optimal component w.r.t. V ⊂ Gnm is weakly special. 2

In particular, we have δ(W ) = 0 just if W ⊂ π−1(V ). An optimal component
with defect zero is then a maximal irreducible algebraic subvariety contained in
π−1(V ).

Corollary 3.8. A maximal algebraic subvariety W ⊂ π−1(V ) is weakly special. 2
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Another way to formulate the corollary is that if algebraic functions z1, . . . , zm
(say elements of the function field C(W )) are linearly independent modulo con-
stants (i.e. the locus z1, . . . , zm is not contained in any weakly special subvari-
ety) then the exponentials exp z1, . . . , exp zn are algebraically independent over C,
which is a functional analogue of Lindemann’s theorem. Accordingly I call the
assertion of the corollary and its various analogues “Ax-Lindemann”; see also [15].

Tsimerman [141] has recently given a new proof of Ax-Schanuel via o-minimality
and point-counting.

4. Model Theory

Model theory of C and R. See e.g. [160]. The first-order theory of
the complex field (C,+,×, 0, 1) is just the theory of algebraically closed fields of
characteristic zero and is categorical (has a unique model up to isomorphism) in
every uncountable power. This is a very strong property of a theory. Algebraically
closed fields are also “strongly minimal”: the definable subsets of C are either finite
or cofinite. Indeed, by quantifier elimination, the definable (with parameters from
C) subsets of Cn are precisely the constructible sets: the Boolean algebra generated
by the zero-sets of polynomials (with coefficients in C) in Cn. The theory is also
decidable.

Strong minimality fails for the real field as the order is definable, whence in-
tervals are definable; however (Tarski-Seidenberg theorem) the definable sets are
just the semi-algebraic sets: finite boolean combinations of sets defined by finitely
many polynomial equalities and inequalities. The theory is again decidable (Tarski
[139]). A definable subset of R is still relatively simple, being a finite union of points
and (possibly unbounded) intervals.

Model theory of complex exponentiation. The integers are definable
in the complex numbers with exponentiation:

Z = {z ∈ C : ∀w ∈ C
(

exp(w) = 1→ exp(zw) = 1
)
}.

Therefore, by Gödel’s Theorem, the first-order theory of Cexp = (C,+,×, 0, 1, exp)
is undecidable and the definable sets can be “wild”. The theory is very far from
categorical. Nevertheless, Zilber showed that categoricity can be recovered if one
works with a stronger infinitary logic. He used a Hrushovski-style construction in
which Schanuel’s conjecture plays a fundamental role to construct [158] a candidate
“logically perfect” algebraically closed field of power continuum with a “standard”
(cyclic kernel) exponentiation, Bexp, and conjectured that this field is isomorphic
to Cexp (entailing SC and more; see e.g. [34, 35]).

Considering the first-order theory of this structure led Zilber to his “CIT”
conjecture [159] in the setting of Gnm and more generally semiabelian varieties: it
is the “difference” between SC and a uniform version of SC that admits first-order
axiomatization.
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Conjecture 4.1 (Uniform Schanuel Conjecture; USC). Let V ⊂ C2n be a closed
algebraic set defined over Q with dimV < n. There exists a finite set µ(V ) of
proper Q-linear subspaces of Cn such that if

(z1, . . . , zn, e
z1 , . . . , ezn) ∈ V

then there is M ∈ µ(V ) and k ∈ Zn and such that (z1+2πik1, . . . , zn+2πikn) ∈M .
Moreover if M is codimension 1 (in Cn) then k = 0.

Part of this program has been carried out for the j-function by Harris [59] and
more generally for Shimura curves [36] by Daw-Harris. A very general picture of
“special subvarieties” and generalised Schanuel conjectures is set out in [161].

Model theory of real exponentiation. O-minimality grew out of the
attempt to understand the model theory of the real field with exponentiation.
The real exponential has no overt periodic behaviour, thus no obvious source of
“Gödelian problems”. Upon proving the decidability of the real field, Tarski [139]
asked whether the theory of the real field with exponentiation, i.e. the structure
Rexp = (R,+,×, 0, 1, exp), is decidable.

In studying this question, van den Dries [38] noted the key role played by the
above mentioned finiteness property of semi-algebraic sets and formulated the con-
dition “a definable subset of R is a finite union of points and intervals” that is the
key defining property of a general theory of “o-minimal structures” subsequently
undertaken by Pillay and Steinhorn [118] (see also [73, 119]). They prove the fun-
damental Cell Decomposition Theorem, from which the remarkable tameness and
uniformity properties of o-minimal structures flow. For completeness I include a
“model-theory free” definition of an o-minimal structure over the real field. Being
a “structure” means that the sets in

⋃
n Σn are precisely the definable sets (with

parameters) in a suitable expansion of the real field.

Definition 4.2. 1. A pre-structure is a sequence Σ = (Σn)n=1,2,... where each Σn

is a collection of subsets of Rn.

2. A pre-structure Σ is called a structure (over the real field) if, for all n,m =
1, 2, . . . with m ≥ n, the following conditions are satisfied:

(i) Σn is a Boolean algebra
(ii) Σn contains every semi-algebraic subset of Rn
(iii) if A ∈ Σn and B ∈ Σm then A×B ∈ Σn+m

(iv) if A ∈ Σn then π(A) ∈ Σm where π : Rn → Rm is a coordinate projection.
If Σ is a structure and Z ⊂ Rn we say that Z is definable in Σ if Z ∈ Σn.

3. A structure Σ is called o-minimal if the boundary of each set in Σ1 is a finite
set of points.

A function f : Rn → Rm is said to be definable in a structure Σ if its graph is.
If A, . . . , f, . . . are sets or functions then RA,...,f,... denotes the smallest structure
containing A, . . . , f, . . .. By a definable family of sets we mean a definable subset
Z ⊂ Rn × Rm which we view as a family of fibres Zy ⊂ Rn as y varies over the
projection of Z onto Rm (which is definable, along with all the fibres Zy). A family
of functions is definable if the family of their graphs is.



10 Jonathan Pila

In the sequel, a definable set will mean a definable set in some o-minimal
structure over R. The o-minimal condition has very strong consequences for de-
finable sets and functions. For example, a definable function is continuous (and
also differentiable) except at finitely many points. Moreover, in a definable fam-
ily of functions, the number of points of discontinuity (or of non-differentiability)
is bounded uniformly for all members of the family. Another example (relevant
later): in a definable family, the set of parameters for which the fibre has a given
dimension is definable. For these and other properties see van den Dries [39].

Of course the theory is only useful if there are non-trivial examples. van den
Dries observed that the o-minimality of the structure Ran generated by all restricted
analytic functions, i.e. all f : T → R where T ⊂ Rn is a compact box and f is
analytic on an open neighbourhood of T , follows from a fundamental theorem of
Gabrielov [49] on subanalytic functions.

This is a large and useful structure, but did not answer the question raised by
van den Dries for the (unrestricted) exponential function. This was affirmed by
Wilkie [148] (who in fact established the “model-completeness” of Rexp, giving its
o-minimality in view of the results of Khovanskii [68]).

Theorem 4.3 (Wilkie [148]). The structure Rexp is o-minimal. 2

The structure Ran, exp generated by the union of Rexp and Ran is o-minimal
([41], see also [40]). Note that in general the structure generated by the union of
o-minimal structures need not be o-minimal ([125]): there is no “largest” minimal
structure over R. Larger and stranger o-minimal structures followed ([138, 125]),
but Ran, exp suffices for all the applications we will consider (Ran doesn’t).

Macintyre and Wilkie [80] affirmed Tarski’s original question assuming SC.

Theorem 4.4 ([80]). Assuming SC, the theory of Rexp is decidable. 2

5. Counting Points

Counting rational points in algebraic varieties. Counting solutions
to a Diophantine equation up to a given height T and probing the behaviour of
their number N(T ) as T → ∞ is a well-travelled path in Diophantine geometry,
especially in connection with Waring’s problem and, more recently, the Batyrev-
Manin conjectures; see e.g. [61]. For example, it is believed (see [137]) that there
is no positive integer n which can be written as a sum of two fifth powers in two
essentially different ways. This amounts to saying that all solutions in non-negative
integers to

X5 + Y 5 = U5 + V 5

are trivial in that {X,Y } = {U, V }. Hooley proved (see [60], improved in [26]) that
there are at most Oε(T

5/3+ε) non-trivial solutions with 0 ≤ X,Y, U, V ≤ T , which
are thus dominated by the 2T 2 + O(T ) trivial ones. The conjectures of Bombieri
and Lang (see e.g. [18], 14.3.7, [61], F.5.2) imply that all but finitely many rational
points on a variety lie in the geometrically defined “special set”.
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Thus, conjecturally, general Diophantine problems, like the special ones of
Mordell-Lang type, only have infinitely many solutions if there is a “reason”.

Counting rational points in definable sets. Prompted by questions
posed by Sarnak (motivated by his analytic proof of the multiplicative Manin-
Mumford conjecture [126]; see also [127]), Bombieri-Pila [23] counted integer points
up to a given height on plane curves in various categories (convex, transcenden-
tal real-analytic, algebraic) by an elementary real-variable method. The same idea
was applied to rational points on a real analytic plane curve in [104]. Heath-Brown
[60] introduced a variant p-adic “determinant method” applicable to rational points
on algebraic varieties in any dimension, which prompted the idea of applying the
“real” version to count rational points in higher-dimensional sets defined by ana-
lytic conditions.

We define the height of a rational number x = a/b in lowest terms (i.e.
gcd(a, b) = 1) by H(x) = max(|a|, |b|), and the height of a tuple x = (x1, . . . , xn) ∈
Qn by H(x) = max(H(xi), i = 1, . . . , n). For a set Z ⊂ Rn we put

Z(Q, T ) = {x ∈ Z : x ∈ Qn, H(x) ≤ T},

and define the counting function of Z by

N(Z, T ) = #Z(Q, T ).

We would like to have a result expressing that a “reasonable” set Z ⊂ Rn has
“few” rational points unless there is a “reason”. We will take “reasonable” to mean
definable. If Z contains positive dimensional semi-algebraic subsets (e.g. a piece
of a line or circle) then these may contain quite a lot of algebraic points; thus we
will exclude such subsets from the counting.

Definition 5.1. Let Z ⊂ Rn. We define the algebraic part Zalg of Z to be the
union of positive-dimensional connected semi-algebraic subsets of Z.

The algebraic part is a coarse analogue of the “special set”. But one cannot
expect finiteness of rational points outside the algebraic part in view of curves like
y = 2x. The following theorem provides a sense in which there are “few” rational
points outside the algebraic part of a definable set.

Theorem 5.2 (Counting Theorem; Pila-Wilkie [116]). Let Z ⊂ Rn be a definable
set and ε > 0. Then there is a constant c(Z, ε) such that, for all T ,

N(Z − Zalg, T ) ≤ c(Z, ε)T ε. 2

Suppose Z is the image of a map φ : (0, 1)k → Rn. The underlying analytic
idea of [23], extended to higher dimension in [105], is that Z(Q, T ) is contained in
the intersection Z ∩ V of Z with “few” hypersurfaces V of some suitable degree
d = d(Z, ε), whose number depends on the maximum size of coordinate functions
of φ and some number (depending on ε) of their partial derivatives. The key to
proving the Counting Theorem is a parameterisation theorem ([116], Thm 2.3) by
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means of which the intersections Z ∩ V can be realised as images of finitely many
maps whose derivatives up to a given order are bounded uniformly as V varies
in the family of all hypersurfaces of given degree. This o-minimal version of the
“Algebraic Lemma” of Yomdin-Gromov [154, 50] allows the analytic idea to be
applied inductively; it yields a result which is uniform for definable families.

One can establish a bound of the same quality for algebraic points of bounded
degree. For a definable set Z and k ≥ 1 put

Z(k, T ) = {x ∈ Z : [Q(xi) : Q] ≤ k,H(xi) ≤ T, i = 1, . . . , n},

Nk(Z, T ) = #Z(k, T ),

whereH(x) here is the multiplicative height (see [18], 1.5.7) of an algebraic number.

Then for definable Z, positive k and ε > 0 we have

Nk(Z − Zalg, T ) ≤ c(Z, k, ε)T ε.

The result is again uniform for Z in definable families.

A further refinement, necessitated by applications, makes the result look more
like a generalised “special point” statement. Namely, one shows that Z(k, T ) is
contained in “few” definable connected subsets which locally coincide with semial-
gebraic sets (“blocks”), and which come from finitely many (depending on Z, k, ε)
definable families. For the precise statement I refer to [108].

To make the result effective for a particular o-minimal structure one would
need an effective bound on the number of connected components of a definable set
in that structure, as a function of the “complexity” of the formula which defines
it. This is known in only special cases [11].

Non-archimedean analogues have been announced by Cluckers-Comte-Loeser
[31]. For an earlier result about integer points on definable curves, including a much
stronger bound for curves in Ran, see Wilkie [151]. For a still earlier application
of Khovanskii theory to “unlikely intersections” see Cohen-Zannier [32].

Wilkie’s conjecture. The Counting Theorem cannot be much improved in
general (see [105]); in particular one cannot in general replace the �ε T

ε bound
with a power of log T . However, Wilkie ([116], 1.11) has conjectured:

Conjecture 5.3. Let Z be definable in Rexp. Then there are constants C(Z), c(Z)
such that

N(Z − Zalg, T ) ≤ C(log T )c.

Partial results are established in [27, 66, 67, 107], some for sets definable in the
larger o-minimal structure RPfaff . It would be nice to go further and establish such
results for the structures in which (the restrictions of) the uniformising maps of
mixed Shimura varieties are definable.
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6. O-minimality and “special point” problems

The setting. The basic strategy is due to Zannier, who proposed using the
Counting Theorem to give a new proof of MM. This was implemented in [117].
He and Masser saw that the same strategy could be applied to certain “relative
Manin-Mumford” problems posed by Masser ([87], further described below). These
turn out to be also special cases of ZP.

The generalisation of the Counting Theorem to algebraic points [106], and
the analogies between MM and AO (as highlighted e.g. in [153, 142]) prompted
the idea of applying the same idea to the latter problem: for products of Y (1),
for example, the “special points” correspond to tuples of j-invariants of elliptic
curves with complex multiplication. These are precisely the points j(z) where
z ∈ H = {τ ∈ C : Im(τ) > 0} is a quadratic irrationality, thus they correspond to
algebraic points in Hn of bounded degree.

Indeed all the “special point” problems take a similar form. The ambient variety
X has a transcendental uniformisation

π : U → X

by a complex domain U with certain properties. Examples (set e(u) = exp(2πiu)):

(i) X = Gnm, U = Cn, π(u1, . . . , un) = (e(u1), . . . e(un));
(ii) X an abelian variety, U = CdimX , π periodic under a suitable lattice Λ;
(iii) X = Y (1)n, U = Hn, and π(u1, . . . , un) = (j(u1), . . . j(un));
(iv) X = Ag, U = Hg, Siegel upper half-space, π is Sp2g(Z)-invariant [17].

While a general abelian variety is not a mixed Shimura variety, it is a subvariety
of one, and the “induced” ZP on its subvarieties is equivalent to the statement of
ZP when X is endowed with its torsion cosets as “special subvarieties” [121].

This picture is essentially the same for any Shimura (or mixed Shimura) variety
X, where U may be taken to be an open domain in some ambient complex affine
space, π is invariant under a discrete arithmetic subgroup Γ of a real algebraic
group G acting on U as biholomorphisms, and where U and the (graph of the) G
action on it are semi-algebraic.

In each case, the pre-images of special points are algebraic points of bounded
degree, when considered in suitable real coordinates on U (e.g. for an abelian
variety we take a basis of Λ to define our real coordinates). Thus the search
for special points in V ⊂ X can be translated into a search for their pre-images
(which we will also just call special points) in π−1(V ). This set is in general far
from algebraic.

Moreover, components of pre-images of special subvarieties are algebraic (in a
sense described below) and appear in definable families. For example in Y (1)n they
are the just the subvarieties of Hn defined by some collection of equations of the
form zi = gijzj , where (i, j) ∈ E ⊂ {1, . . . , n}2 and gij ∈ GL+

2 (Q) acting by Mobius
transformations. Here E is any set, possibly empty, and we allow i = j in which
case the fixed point zi is quadratic. They sit in the family of subvarieties defined
by relations from SL2(R), and this family is definable (indeed semi-algebraic).
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As the map π is invariant under the group Γ acting on U (in the examples: Zn,
Λ, SL2(Z)n, Sp2g(Z)), we may restrict our attention to a fundamental domain F
for this action, which may also be taken to be semi-algebraic. We let

Z = π−1(V ) ∩ F

and we are now interested in certain algebraic points of bounded degree in Z.

Definability. The map e : C→ C× (i.e. its graph in C× C×) is not definable
in any o-minimal structure, due to the infinite discrete group acting, and the same
holds for the map π : U → X for every mixed Shimura variety X of positive
dimension. But in all the examples given so far, the restriction of π to a suitable
fundamental domain F for Γ is definable in Ran, exp.

Theorem 6.1 (Peterzil-Starchenko [103]). The restriction of π : Hg → Ag to the
classical fundamental domain for the Sp2g(Z) action is definable. 2

Indeed the corresponding assertion holds for Xg, generalising the earlier result
by the same authors for Weierstrass ℘-functions [100] established in the course
of a study of non-standard complex tori. The generalisation of this result to all
Shimura varieties has been announced by Klingler-Ullmo-Yafaev [72], and to all
mixed Shimura varieties by Gao [48]. With these results, o-minimal methods are
available across the full breadth of the Zilber-Pink conjecture.

The strategy. The Counting Theorem tells us that Z(k, T ) is contained in
“few” blocks contained in Zalg. In the arithmetic settings, one then has essentially
two tasks to turn this statement into the Diophantine conclusion:

(i) to characterise Zalg as (essentially) coinciding with the exceptional locus in
the Diophantine problem, i.e. weakly special subvarieties. This is a problem in
functional transcendence.

(ii) to reduce “few” (i.e. �ε T
ε) to finite. This is effected by playing off the

upper bound against a lower bound for the size of the Galois orbit of a special
point.

Characterising the algebraic part. We need to understand Zalg, but
it is more natural to consider first π−1(V )alg, which turns out to be a union of
complex algebraic subvarieties (intersected with U). These will generally not be
fully contained in Z (or indeed in F ).

I have not defined weakly special varieties except in the case of exponentiation,
but they may be characterised by the following result of Ullmo-Yafaev [145]. By
an “algebraic subvariety of U” we will mean a (complex analytically irreducible)
component of W ∩U where W is an algebraic subvariety of the ambient space (we
always assume that the uniformising space U is semialgebraic).

Theorem 6.2 (Ullmo-Yafaev [145]). Let X be a Shimura variety. A subvariety
W ⊂ X is weakly special if and only if the components of its pre-image in U are
algebraic subvarieties. 2
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Weakly special subvarieties are thus precisely the algebraic varieties preserved
(as algebraic) by π. It turns out that the algebraic part of π−1(V ) is equal to the
union of weakly special subvarieties of positive dimension it contains:

Theorem 6.3 (“Ax-Lindemann”). For X and π : U → X as in our examples, a
maximal algebraic W ⊂ π−1(V ) is weakly special. 2

Thus, the algebraic part of π−1(V ), a coarse analogue of the special set, turns
out to be a close relative. For the exponential function this follows, as already
observed, from Ax-Schanuel; for abelian varieties it is likewise due to Ax [6]; see
also [25, 69]. For Ag it is due to Pila-Tsimerman [114], building on [113, 147, 108].
Klingler-Ullmo-Yafaev [72] have announced the result for all Shimura varieties (and
indeed a bit more generally), and a further generalisation to all mixed Shimura
varieties has been announced by Gao [48]. A version for the modular function “with
derivatives” is in [109]. While Ax’s theorem is in the setting of differential fields
and is proved by differential algebra, in all the Shimura variety settings mentioned
“Ax-Lindemann” is proved directly in the complex setting using o-minimality and
point-counting. This uses the fact that the group Γ gives rise to “many” integer
points in suitable definable subsets of G. Mok has indicated how such results can
be proved via complex differential geometry.

From “few” to finite. The definability of Z allows the Counting Theorem
to be applied to the relevant algebraic points. This implies that there are “few”
such points. How does one get from this to a finiteness statement?

The key here is that special points in X are algebraic and are (at least con-
jecturally) of high degree, while their pre-images have small height, relative to a
suitable measure of their “complexity”. For example, a root of unity ζ of order
(precisely) T has degree

[Q(ζ) : Q] = φ(T )�ε T
1−ε

for every positive ε (see e.g. [58], 18.4, Theorem 327), while its pre-image (under
the map e(z) = exp(2πiz)) in the fundamental domain F = {z ∈ C : 0 ≤ Re z < 1}
has height T . (The “complexity measure” here is the order T .)

Lower bounds for the size of Galois orbits of torsion points in abelian varieties
are much studied, e.g. in connection with isogeny estimates and Serre’s Open
Image Theorem. Suitable results for [117] are due to Masser [83]. For products of
elliptic modular surfaces (torsion points on CM curves) one has results of Silverberg
[136].

Lower bounds for the size of Galois orbits of special points are essential in
all current approaches to AO. The following was suggested by Edixhoven [44] for
special points in Ag, where an appropriate complexity measure for x ∈ Ag is
afforded by the discriminant ∆(x) of the centre of the endomorphism ring of the
corresponding abelian variety Ax.

Conjecture 6.4. Let g ≥ 1. There exist positive constants Cg, δg such that, for a
CM point x ∈ Ag,

[Q(x) : Q] ≥ Cg|∆(x)|δg .
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For g = 1 the conjecture is affirmed by the theory of complex multiplication of
elliptic curves and the (ineffective) Landau-Siegel lower bound for class numbers
[75, 135]. It has been affirmed unconditionally for g ≤ 6, and for all g under GRH,
by Tsimerman [140] (for the latter see also [146]).

A suitable upper bound for the height of the pre-image in a fundamental domain
of a special point in Ag is established in [113] ; its generalisation to general Shimura
varieties is expected. Then the upper and lower bounds for the number of points
outside the algebraic part are incompatible for large height: there are only finitely
many “isolated” special points.

Concluding the proof. Once the “Ax-Lindemann” result is established, a
further property follows: that the maximal weakly special subvarieties contained
in π−1(V ) come from a finite number of “families” (because being “optimal” is
a definable condition on a larger semi-algebraic collection of subvarieties of U
containing all the weakly special subvarieties, while by Ax-Lindemann the weakly
special families in which optimal subvarieties lie are characterised by rational data:
a definable subset of Q must be finite). In the exponential case, this means that
they are translates of finitely many rational linear spaces. In the other cases, one
can also view the weakly special subvarieties in a given family as “‘translates”,
parameterised by points in a suitable “quotient”. The translate is special if and
only if the corresponding parameter is a special point.

This finally enables the argument to be concluded by induction as follows.
Given V , one has finitely many families Ui, i = 1 . . . , k of weakly special subva-
rieties, parameterised by points of some ambient varieties Xi of the same general
type, but of lower dimension (except that points are weakly special and are param-
eterised by X itself). With each one has a subvariety Vi ⊂ Xi consisting of those
parameters for which the corresponding weakly special subvariety is contained in
V . One may suppose by induction that V contains only finitely many special
subvarieties of positive dimension. Then apply the Counting Theorem directly to
see that a special point of large complexity has “many” Galois conjugates over V
and all its positive dimensional special subvarieties, and leads to a contradiction.
To conclude one observes that there are only finitely many special points whose
complexity is below a given bound.

Theorem 6.5 ([37, 108, 113, 114, 143, 147]). AO holds for Ang , n ≥ 1, g ≤ 6. 2

The efficacy of the Counting Theorem in these applications lies firstly in that
it may be applied even when the Galois lower bounds are far from optimal: the
problem then devolves to understanding the algebraic part, which is a question in
functional transcendence. Secondly, it can be applied to this latter problem due to
the arithmetic nature of Γ. Ullmo [143] has shown that, for a Shimura variety X,
these ingredients (definability of π on F , Ax-Lindemann, lower bound for Galois
orbits, upper bound for the height of a pre-image of a special point in F , the last
two in terms of a suitable “complexity”) suffice to establish AO for X.

Special points results in mixed settings are obtained in [3, 48, 110]. A proof of
semi-abelian MM along these lines is in [101].
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7. O-minimality and atypical intersections

Torsion anomalous points. For λ ∈ P1 − {0, 1,∞} we denote by Eλ the
elliptic curve in Legendre form defined (in affine coordinates) by

y2 = x(x− 1)(x− λ).

We let Pλ, Qλ ∈ Eλ be the points

Pλ =
(
2,
√

2(2− λ)
)
, Qλ =

(
3,
√

6(3− λ)
)

(with some fixed determination of
√

; whether the point is torsion is independent

of the choice). Masser and Zannier [87, 88] prove the following theorem.

Theorem 7.1. There are only finitely many complex numbers λ 6= 0, 1 such that
Pλ and Qλ are both torsion point in Eλ. 2

This is a “Relative Manin-Mumford” problem, in that it concerns a curve (the
locus of (Pλ, Qλ)) in a family of abelian varieties (the squares of the Eλ for λ ∈
P1 − {0, 1,∞}). A general “Relative Manin-Mumford” conjecture is framed by
Pink [121] where it is shown to follow from his general conjecture (but note that
it requires a slight correction: see Bertrand [13]).

The relative Manin-Mumford conjecture for a curve in the Poincaré bi-extension
has been announced by Bertrand-Masser-Pillay-Zannier [14]. See Zannier [157] for
further developments and applications.

Atypical modular intersections. It is natural then to apply a similar
strategy to other problems of atypical intersections. Since special subvarieties
are defined by rational (or bounded degree algebraic) data, and the dimension
conditions characterising atypical intersections are detectable by definable sets,
the methods are prima facie available once one has definability of π on F .

Habegger and Pila [56] establish a partial analogue of Theorem 2.5 concerning
atypical intersections of a curve in Y (1)n: i.e. points where the coordinates satisfy
two independent “special” relationships (either the elliptic curves corresponding
to two coordinates are isogenous, or the curve corresponding to one coordinate is
CM). The result again depends on a functional transcendence statement (algebraic
independence of “modular logarithms”) and a suitable lower bound for Galois
orbits. The lower bound is obtained only under an additional hypothesis.

Definition 7.2. For a curve V ⊂ Y (1)n, define degi V to be the number of inter-
sections of V with the hyperplane determined by a generic fixed value of the ith
coordinate. The curve V is called asymmetric if, among the positive degi V , there
are no repetitions, save that one value may appear at most twice.

Theorem 7.3 ([56]). Let V ⊂ Y (1)n be an asymmetric curve defined over Q. If
V is not contained in a proper special subvariety then V ∩ S [2] is a finite set. 2

Looking to atypical intersection problems more generally, it seems reasonable
to conjecture the following “complex Ax-Schanuel” statement.
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Conjecture 7.4 (Weak Complex Ax; WCA). Let X be a mixed Shimura variety,
with its uniformisation π : U → X, and V ⊂ X. Then an optimal component for
V is weakly special.

Habegger and Pila [57] show that WCA for Y (1)n together with a conjecture
on the size of Galois orbits of certain “optimal” atypical intersections in Y (1)n

enable the point-counting strategy to be carried through to give ZP for Y (1)n. (A
proof of WCA for Y (1)n has been announced in [115].) The same ideas yield an
unconditional result for curves in abelian varieties. We give some definitions in
order to formulate this conjecture.

Let X be a mixed Shimura variety and S its collection of special subvarieties.
Since S is closed under taking irreducible components of intersections, for any
subvariety A ⊂ X there is a smallest special subvariety containing A which we
denote 〈A〉. We call ∂(A) = dim〈A〉 − dimA the defect of A. Fix V ⊂ X. A
subvariety A ⊂ V is called optimal (for V ) if there is no subvariety B ⊂ V with
A ⊂ B,A 6= B and ∂(B) ≤ ∂(A).

Another formulation of ZP for X is then that for any V ⊂ X there are only
finitely many optimal subvarieties. (Apart from V itself, which is optimal for its
defect, any optimal proper subvariety of V must be atypical.)

Definition 7.5. The complexity ∆(T ) of T ∈ SY (1)n is the maximum of the
absolute values of the discriminant of any fixed (quadratic) coordinates and the
heights of any g ∈ GL2(Q)+ defining a pre-image of T in Hn (see [108]).

Conjecture 7.6 (Large Galois Orbits; LGO). Let X = Y (1)n and V ⊂ X defined
over K, a field finitely generated over Q. Then there are constants C(V ), δ(V ) > 0
such that for any optimal isolated point component {x} one has

[K(x) : K] ≥ C(V )∆(〈{x}〉)δ(V ).

The following two results are announced in [57].

Theorem 7.7. Assume WCA for Y (1)n and LGO. Then ZP holds for Y (1)n. 2

The same blueprint works for abelian varieties (and I would expect a suitable
formulation to apply to any mixed Shimura variety). WCA is known for abelian
varieties (Ax [6]) while LGO may be affirmed unconditionally for curves when
everything is defined over Q. This relies on a height inequality of Rémond [124].

Theorem 7.8. Let X be an abelian variety, V ⊂ X a curve, both defined over Q.
If V is not contained in a proper special subvariety then V ∩ S [2] is a finite set. 2

Analogues of Mordell-Lang. Just as ZP for curves in Gnm entails ML for
curves, ZP for curves in Y (1)n entails an analogue of ML. The same circle of ideas
(o-minimality, point counting, and lower bounds for Galois orbits coming from
isogeny estimates for elliptic curves [86]) enable a proof of “modular ML” for a
general subvariety of Y (1)n; see [56, 110]. The latter includes an extension to
products of elliptic modular surfaces. Various partial results for subvarieties of Ag
have been obtained by Orr, including the following full result for curves.
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Theorem 7.9 (Orr [99]). A curve V ⊂ Ag having infinitely many points for which
the corresponding abelian varieties are isogneous is weakly special. 2

A further result in this general area (though not a special case of ZP) is an
analogue of the Tate-Voloch conjecture for products of modular curves, proved by
Habegger [55]. I will not state the result, but note that the proof makes use of
the above mentioned modular Mordell-Lang, established via o-minimality, while
results of Scanlon [128] in the original semi-abelian setting made use of the model
theory of difference fields.

Some further questions. The section above contains many stated results
but they are at the same time fragmentary. Functional transcendence questions
and lower bounds for Galois orbits seem to pose significant (though fascinating)
challenges. I would like to conclude with some further questions that seem to arise
naturally from the considerations around the Ax-Schanuel theme.

Consider a mixed Shimura variety X, its uniformisation π : U → X, and an
algebraic subvariety W ⊂ U in the sense defined earlier. When W is an orbit
of a suitable kind, results from ergodic theory (“Ragunathan conjecture”) govern
when π(W ) is dense (in the usual analytic topology) in a weakly special subvariety.
Ax-Lindemann says that the Zariski closure of π(W ) is always weakly special.

Question 7.10. For π : U → X and an algebraic W ⊂ U as above:
1. Are there natural conditions under which π(W ) is dense in X?
2. Are there natural conditions under which π(W ) intersects every algebraic

subvariety V ⊂ X of complementary dimension (cf Ax [7])?

Ax-Schanuel is naturally stated (and proved) in the setting of a differential field.
The function j(z) satisfies a certain nonlinear third order algebraic differential
equation, and none of lower order [81]. Specifically (see e.g. [84]),

J(j, j′, j′′, j′′′) = Sj +
j2 − 1968j + 2654208

2j2(j − 1728)2
(j′)2 = 0,

where Sf denotes the Schwarzian derivative Sf = f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

and ′ indicates

differentiation with respect to z. The full solution set is {j(gz) : g ∈ SL2(C)}.

Definition 7.11. Let Q ⊂ C ⊂ K be a tower of fields and {Dµ} a set of commuting
derivations of K with C =

⋂
µ kerDµ. Elements j1, . . . , jn ∈ K are called modular-

independent if no jν ∈ C and no relation ΦN (jν , jµ) = 0 holds with N ≥ 1, ν 6= µ.

We can formulate a conjecture giving a modular analogue of “Ax-Schanuel” in a
differential field setting. It implies WCA for Y (1)n as well as the result of [109]. (A
modular analogue of Schanuel’s conjecture may be deduced from the Grothendieck-
André period conjecture [1], as explicated by Bertolin [12]; see [111].) Condition
(a) below stipulates that j′ν , j

′′
ν , j
′′′
ν are the derivatives of jν with respect to zν

and that jν satisfies the j equation with respect to zν for each ν. The modular
independence (b) implies that the quantities which appear in the denominator in
J are non-zero. A corresponding “modular ZP with derivatives” is framed in [112].
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Conjecture 7.12. With K as above let zν , jν , j
′
ν , j
′′
ν , j
′′′
ν ∈ K×, ν = 1, . . . , n, with

(a) for all ν, µ, Dµjν = j′νDµzν , Dµj
′
ν = j′′νDµzν , Dµj

′′
ν = j′′′ν Dµzν and

J
(
jν , j

′
ν , j
′′
ν , j
′′′
ν

)
= 0;

(b) the jν are modular-independent.

Then

tr. deg.CC(z1, . . . , zn, j1, . . . , jn, j
′
1, . . . , j

′
n, j
′′
1 , . . . , j

′′
n) ≥ 3n+ rank

(
Dµzν

)
.

Freitag and Scanlon [47] have shown that the set defined by the differential
equation satisfied by the j-function in a differentially closed field of characteristic
zero is “strongly minimal” and “geometrically trivial”. This uses the “modular
Ax-Lindemann-Weierstrass with derivatives” result in [109]. For an introduction
to differential fields in a model-theoretic setting, including definitions of the above
terms (and related results on Painlevé transcendents) see Nagloo-Pillay [96]. One
would like to generalise these results appropriately to the uniformising functions
of mixed Shimura varieties.
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