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Energy absorption and dissipation in quantum systems
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Abstract

Stemming from the time-dependent Schrödinger equation, it is noted that any Hermitian form representing work done on a
system yields a bounded expectation of energy. This expectation can be periodic, quasiperiodic or even chaotic. Such boundedness
is unrealistic because energy may be added to or removed from the system. Thus, a complex non-Hermitian form is introduced
into the Hamiltonian of a system which, when positive represents work being done on the system and gives an increasing energy
expectation, and when negative represents a dissipation of energy from the system and gives a decreasing energy expectation.
Two cases are studied. In the first, the perturbative term is purely time-dependent. In the second, it is also space-dependent. This
latter case is applied to the kicked quantum rotor. A number of other applications of this formalism to systems of experimental
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tion of
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and theoretical interest are noted.
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1. Introduction

In a number of works addressing the kicked quantum rotor[1–4], it is implied that for this system, the classica
configuration gives an increasing average energy but the quantum system gives an expectation of energy tha
eventually to its starting value. In this work, we re-examine this problem and note that any Hermitian work fun
gives an oscillating expectation of energy. The paradoxical situation of a system with a bounded expecta
energy on which work is being done is resolved by the fact that the quantum system is not isolated. Thus, st
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conservation laws cannot be applied and, e.g., the system’s energy is not conserved. To correct this situation, a non-
Hermitian component of the Hamiltonian is included that accounts for either energy being absorbed or dissipated.

2. Analysis

To more formally examine this question, consider a simple one-dimensional quantum system whose Hamiltonian
includes a term,i�α(x, t), corresponding to energy input (α > 0) or dissipation (α < 0). We consider two cases: (a)
α = α(t) and (b)α = α(x, t).

2.1. Case a

For this case consider a system whose Hamiltonian is given by

H = p2

2m
+ V (x) + i�α(t), (1)

where the indefinite (Lebesgue) integral ofα(t) exists. The dimension of the real parameterα is 1/t. In addition, if
α(t) is odd int, then

H∗(−t) = H(t), (2)

andH(t) satisfies time reversibility. The complex work term ofH rendersH non-Hermitian. Furthermore,H is an
explicit function of time, so the expectation ofH is time-dependent[5]. The integral ofα(t) is defined to be

∫ t

−∞
α(λ) dλ ≡ g(t) ≡ ln

[(
1 + �E

E0

)1/2
]

, (3)

where�E = �E(t) is the increment of energy absorbed (�E > 0) or dissipated (�E < 0) by the system at the
time t andE0 is the initial energy of the system. (For energy dissipation we also require that|�E| < E0 in order to
g ciseness
o the time-
i most
c

E

S

w

uarantee that the argument of the logarithmic term is positive. The ln function in (3) was introduced for con
f formulas.) Additionally, the system is defined on a bounded spatial domain. We hence assume that

ndependent component,H0, of the Hamiltonian,H, admits a discrete set of eigenenergies, as is the case in
ircumstances.

Consider the Schrödinger equation for this system,

−�
2

2m
ϕxx + V (x)ϕ + i�α(t)ϕ = Eϕ. (4)

igenfunctions and eigenvalues of the componentH0, independent ofα(t), satisfy the equation

H0ϕn = E0
nϕn (5)

ubstituting this form into (4) yields

H0ϕn + i�α(t)ϕn = Enϕn, (6)

here

En(t) = E0
n + i�α(t). (7)
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It follows thatϕn(x) given by (5) are eigenstates ofH given by (1). Now consider the time-dependent Schrödinger
equation

i�
∂Ψ

∂t
= HΨ, (8)

whose solution is given by

Ψ (t) = exp

[
− i

�

∫ t

−∞
dλ H(λ)

]
Ψ (0). (9)

With the eigenstates (5), one may write the initial wavefunction as

Ψ (0) =
∑
n

anϕn,
∑
n

|an|2E0
n = E0, (10)

where the expansion coefficientsan are determined by initial data. Substituting the latter expression into (9) gives
the general solution

Ψ (t) = eg(t)
∑
n

anϕn(t) e−iE0
n t/�, (11)

whereg(t) is given by (3). We define the expectation of our non-Hermitian Hamiltonian,H, to be

〈E〉≡
〈Ψ |HΨ 〉 = 
 e2g(t)
∑
n

|an|2En(t) =
(

1 + �E(t)

E0

) ∑
n

|an|2E0
n = E0 + �E(t), (12)

which is the expectation of energy of the system at timet. Recall that�E > 0 for energy absorption and�E < 0
for energy dissipation.

This latter result indicates that an appropriate manner of describing energy absorption or dissipation in a quantum
system is by the addition of a non-Hermitian term in the Hamiltonian. If, e.g., thei factor in the complex form (1) is
replaced by 1, this form is Hermitian as is the Hamiltonian, and the expectation of energy, (12), becomes oscillatory.
This behavior is not representative of a system that is absorbing or dissipating energy. We may conclude in general
t time. An
a rmalism
o licitly
i bedding
e oticeably
a sorption
d hysics)
[

2

a

hat a Hamiltonian with an imaginary component yields an expectation of energy that grows or decays in
lternative description of phenomena related to explicitly time-dependent Hamiltonians is given by the fo
f quantum dissipation[6,7], which embeds a dissipative system into a larger Hamiltonian system by exp

ncorporating a heat bath to account for dissipation or absorption. In many situations, this Hamiltonian em
ntails weak coupling between the system of interest to a heat bath whose thermal equilibrium is not n
ltered by the system of interest. Descriptions similar to our own, which incorporate dissipation and ab
irectly by adjusting the Hamiltonian, have been utilized in other disciplines (including optics and laser p

8].

.2. Case b

For case (b), we write (for separable forms)

α(x, t) = Z(x)α1(t), (13)

nd apply this formalism to a dissipative quantum kicked rotor, whose Hamiltonian is given by[1,3]:

H = p2

2m
− iZ(x)

∑
s

δ
[
s − t

T

]
, Z(x) ≡ Kx2

2
, (14)
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where, consistent with our formalism, a factor ofi was inserted before the perturbative term. The summation in (14)
is over positive integerss. Additionally, the parameterT represents the kicking period andK is the spring constant
of the rotor. For simplicity,Z(x) is averaged employing eigenstates of the harmonic oscillator. We label〈Z(x)〉 ≡ κ.
If the rotor is frictionless, thenα1 is related to energy absorption of the rotor through (3).Eq. (6) now appears with
α1(t) replaced as follows:

α1(t) → κα1(t)

�
. (15a)

Relation (12) requires evaluation of the integralg. This is obtained as follows. We write (with the factorκ/� tacitly
included)

g(t) =
∫ t

−∞

∑
s

δ

[
s − λ

T̄

]
dλ. (15b)

Let

ξ ≡ s − λ

T
, (15c)

then

δ(ξ) = dGs

dξ
= dGs

dλ

dλ

dξ
= −T

dGs

dλ
. (15d)

Thus

g(t) = −T
∑

s

∫ t

−∞
dGs

dλ
dλ = −T

∑
s

Gs

(
s − t

T

)
= −TΦ

( t

T

)
, (16a)

whereGs(x) is the step function defined as:Gs(x) = 1, x ≥ 0, Gs(x) = 0, x < 0. The value of the sum in (16a) is
the number ofsvalues≥ t/T , which we call,Φ(t/T ). With (3) and (15a) we find that

�E = E0

[
exp

(
−2κTΦ

�

)
− 1

]
≤ 0 (16b)

f ntial
f

e isioned
t ersed.)
F contact
b application
t tion
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systems,
i tation of
e quantum
r tum-well
n

or the increment of energy dissipated by the system att. Note in particular that the argument of the expone
unction is dimensionless.

In addition to the dissipative kicked rotor, one may also apply this formalism to quantum billiards[9–11] with
ither stationary or oscillating boundaries in which particle collisions with walls are inelastic. (Here it is env

hat energy loss to the walls is carried away to a temperature bath in which the billiard is adiabatically imm
or example, collisions in experimental billiards can take a finite amount of time, indicating an extended
etween an enclosed particle with the boundary as opposed to an instantaneous specular reflection. This

hus pertains to the study of dissipative quantum dots[12]. Other possible applications include spin-lattice relaxa
n nuclear magnetic resonance[13] and superconducting quantum interference devices (SQUIDs)[14].

. Conclusions

In conclusion, a formalism has been introduced to describe energy absorption and dissipation in quantum
n terms of which, e.g., work done on a frictionless system gives rise to a monotonic increase of the expec
nergy of the system. Specific application of the formalism was described in terms of a dissipative kicked
otor. Possible application of the formalism was mentioned also to quantum billiards (and hence to quan
anostructures) in which particle collisions with walls are inelastic.
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