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Abstract

Stemming from the time-dependent Satlinger equation, it is noted that any Hermitian form representing work done on a
systemyields a bounded expectation of energy. This expectation can be periodic, quasiperiodic or even chaotic. Such boundedne:
is unrealistic because energy may be added to or removed from the system. Thus, a complex non-Hermitian form is introduced
into the Hamiltonian of a system which, when positive represents work being done on the system and gives an increasing energy
expectation, and when negative represents a dissipation of energy from the system and gives a decreasing energy expectatio
Two cases are studied. In the first, the perturbative term is purely time-dependent. In the second, itis also space-dependent. Thi
latter case is applied to the kicked quantum rotor. A number of other applications of this formalism to systems of experimental
and theoretical interest are noted.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In a number of works addressing the kicked quantum rdted], it is implied that for this system, the classical
configuration gives an increasing average energy but the quantum system gives an expectation of energy that returr
eventually to its starting value. In this work, we re-examine this problem and note that any Hermitian work function
gives an oscillating expectation of energy. The paradoxical situation of a system with a bounded expectation of
energy on which work is being done is resolved by the fact that the quantum system is not isolated. Thus, standarc
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conservation laws cannot be applied and, e.g., the system’s energy is not conserved. To correct this situation, a non-
Hermitian component of the Hamiltonian is included that accounts for either energy being absorbed or dissipated.

2. Analysis

To more formally examine this question, consider a simple one-dimensional quantum system whose Hamiltonian
includes a termifix(x, t), corresponding to energy input & 0) or dissipationd < 0). We consider two cases: (a)
a = «t) and (b)a = a(x, 1).

2.1. Casea
For this case consider a system whose Hamiltonian is given by

»
2m

where the indefinite (Lebesgue) integrabdf) exists. The dimension of the real parametés 1/¢. In addition, if
a(r) is odd int, then

H =+ 4+ V() + iha(r), 1)

H*(—1) = H(1), )

andH(t) satisfies time reversibility. The complex work termkbfrendersH non-Hermitian. Furthermoré] is an
explicit function of time, so the expectation Hfis time-dependerib]. The integral ofx(r) is defined to be

/too a()dr = g(r) = In [<1+ 2—?)1/2} : 3)

whereAE = AE(?) is the increment of energy absorbetdlK > 0) or dissipated4A E < 0) by the system at the
timet andEjg is the initial energy of the system. (For energy dissipation we also requirtliat< Eg in order to
guarantee that the argument of the logarithmic term is positive. The In function in (3) was introduced for conciseness
of formulas.) Additionally, the system is defined on a bounded spatial domain. We hence assume that the time-
independent componemt)p, of the HamiltonianH, admits a discrete set of eigenenergies, as is the case in most
circumstances.

Consider the Scldinger equation for this system,

2

—h '
o P T V(x)¢ + iha(t)p = Eg. (4)

Eigenfunctions and eigenvalues of the comporf&gtindependent of(r), satisfy the equation

Hogn = EQpn (5)
Substituting this form into (4) yields

Hogn + iha(t)gn = Engn, (6)
where

E, () = E° + iha(). 7
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It follows thatg, (x) given by (5) are eigenstates idfgiven by (1). Now consider the time-dependent $dimger
equation

o
ih— = HY, (8)
ot
whose solution is given by
: t
w(r) = exp[—i / di H(A)] w(0). 9)
hJ-
With the eigenstates (5), one may write the initial wavefunction as

¥(0) = Zanwna Z |an|2E2 = Eo, (20)
n n

where the expansion coefficients are determined by initial data. Substituting the latter expression into (9) gives
the general solution

w(t) = &0 a0, € Ei/h, (11)
whereg(t) is given by (3). We define the expectation of our non-Hermitian Hamiltoato be
(E)=N(W|HY) = %0 " |a,|PE, (1) = ( 1+ AE(® > lan?EQ = Eo+ AE() (12)
n EO n ! 7

which is the expectation of energy of the system at tiniRecall thatA E > 0 for energy absorption alE < 0
for energy dissipation.

This latter result indicates that an appropriate manner of describing energy absorption or dissipation in a quantum
system is by the addition of a non-Hermitian term in the Hamiltonian. If, e.gi fdetor in the complex form (1) is
replaced by 1, this form is Hermitian as is the Hamiltonian, and the expectation of energy, (12), becomes oscillatory.
This behavior is not representative of a system that is absorbing or dissipating energy. We may conclude in genera
that a Hamiltonian with an imaginary component yields an expectation of energy that grows or decays in time. An
alternative description of phenomena related to explicitly time-dependent Hamiltonians is given by the formalism
of quantum dissipatiofi6,7], which embeds a dissipative system into a larger Hamiltonian system by explicitly
incorporating a heat bath to account for dissipation or absorption. In many situations, this Hamiltonian embedding
entails weak coupling between the system of interest to a heat bath whose thermal equilibrium is not noticeably
altered by the system of interest. Descriptions similar to our own, which incorporate dissipation and absorption
directly by adjusting the Hamiltonian, have been utilized in other disciplines (including optics and laser physics)

[8].
2.2. Caseb

For case (b), we write (for separable forms)
a(x, 1) = Z(x)aa (1), (13)

and apply this formalism to a dissipative quantum kicked rotor, whose Hamiltonian is giérBfy

2 / K2
H= 5—m —IZ(X)ZS:a[s— ?], Z(x) = Tx (14)
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where, consistent with our formalism, a factoi ofas inserted before the perturbative term. The summation in (14)
is over positive integers Additionally, the parametéer represents the kicking period aKds the spring constant
of the rotor. For simplicityZ(x) is averaged employing eigenstates of the harmonic oscillator. We(Zpd) = «.
If the rotor is frictionless, then; is related to energy absorption of the rotor through E8). (6 now appears with
a1(t) replaced as follows:
t

ar(t) — "“;( ) (15a)
Relation (12) requires evaluation of the integyal his is obtained as follows. We write (with the factgi: tacitly
included)

g(t) = /_ too Xs:a |:s - H da. (15b)

Let
A
4‘;: =5 — T, (150)
then
dG;, dG,da dG,
sy = Son 99500 00y 15d
©) dg dr dg di (150)
Thus

() = _TZ/_IOO %dx =136, (s - %) — T (%) : (16a)

whereG,(x) is the step function defined a6;(x) = 1, x > 0, G4(x) = 0, x < 0. The value of the sum in (16a) is
the number obvalues> /T, which we call,®(r/ T). With (3) and (15a) we find that

AE = Ey [exp(—%) — 1} <0 (16b)

for the increment of energy dissipated by the system ldbte in particular that the argument of the exponential
function is dimensionless.

In addition to the dissipative kicked rotor, one may also apply this formalism to quantum billgaxti$] with
either stationary or oscillating boundaries in which particle collisions with walls are inelastic. (Here it is envisioned
that energy loss to the walls is carried away to a temperature bath in which the billiard is adiabatically immersed.)
For example, collisions in experimental billiards can take a finite amount of time, indicating an extended contact
between an enclosed particle with the boundary as opposed to an instantaneous specular reflection. This applicatior
thus pertains to the study of dissipative quantum flii® Other possible applications include spin-lattice relaxation
in nuclear magnetic resonanide] and superconducting quantum interference devices (SQU12§)

3. Conclusions

In conclusion, a formalism has been introduced to describe energy absorption and dissipation in quantum systems,
in terms of which, e.g., work done on a frictionless system gives rise to a monotonic increase of the expectation of
energy of the system. Specific application of the formalism was described in terms of a dissipative kicked quantum
rotor. Possible application of the formalism was mentioned also to quantum billiards (and hence to quantum-well
nanostructures) in which particle collisions with walls are inelastic.
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