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The Fermi–Pasta–UlamsFPUd model, which was proposed 50 years ago to examine thermalization
in nonmetallic solids and develop “experimental” techniques for studying nonlinear problems,
continues to yield a wealth of results in the theory and applications of nonlinear Hamiltonian
systems with many degrees of freedom. Inspired by the studies of this seminal model, solitary-wave
dynamics in lattice dynamical systems have proven vitally important in a diverse range of physical
problems—including energy relaxation in solids, denaturation of the DNA double strand, self-
trapping of light in arrays of optical waveguides, and Bose–Einstein condensatessBECsd in optical
lattices. BECs, in particular, due to their widely ranging and easily manipulated dynamical
apparatuses—with one to three spatial dimensions, positive-to-negative tuning of the nonlinearity,
one to multiple components, and numerous experimentally accessible external trapping potentials—
provide one of the most fertile grounds for the analysis of solitary waves and their interactions. In
this paper, we review recent research on BECs in the presence of deep periodic potentials, which
can be reduced to nonlinear chains in appropriate circumstances. These reductions, in turn, exhibit
many of the remarkable nonlinear structuressincluding solitons, intrinsic localized modes, and
vorticesd that lie at the heart of the nonlinear science research seeded by the FPU paradigm. ©2005
American Institute of Physics. fDOI: 10.1063/1.1858114g

The Fermi–Pasta–Ulam (FPU) model was formulated in
1954 in an attempt to explain heat conduction in non-
metallic lattices and develop “experimental” (computa-
tional) methods for research on nonlinear dynamical
systems.1 Further studies of this problem 10 years later
led to the first analytical description of solitons (using the
Korteweg–de Vries equation, which is a continuum ap-
proximation of the discrete FPU system), which have
since become one of the fundamental paradigms of non-
linear science. These nonlinear waves occur ubiquitously
in rather diverse physical situations ranging from water
waves to plasmas, optical fibers, superconductors (long
Josephson junctions), quantum field theories, and more.
Over the past several years, the study of solitons and
coherent structures in Bose–Einstein condensates (BECs)
has come to the forefront of experimental and theoretical
efforts in soft condensed matter physics, drawing the at-
tention of atomic and nonlinear physicists alike. Ob-
served experimentally for the first time in 1995 in vapors
of sodium and rubidium,2,3 a BEC—a macroscopic cloud

of coherent quantum matter—is attained when„103–106
…

atoms, confined in magnetic traps, are optically and
evaporatively cooled to a fraction of a microkelvin. The
macroscopic behavior of BECs near zero temperature is
modeled very well by the Gross–Pitaevskii equation (a
time-dependent nonlinear Schrödinger equation with an
external potential), which admits a wide range of coher-
ent structure solutions. Especially attractive is that ex-
perimentalists can now engineer a wide variety of exter-
nal trapping potentials (of either magnetic or optical
origin) confining the condensate. As a key example, we
focus on BECs loaded into deep, spatially periodic optical
potentials, effectively splitting the condensate into a chain
of linearly-interacting, intrinsically nonlinear droplets,
the dynamics of which is accurately characterized by
nonlinear lattice models. This paper highlights some of
the quasidiscrete nonlinear dynamical structures in BECs
reminiscent of the discoveries that originated from the
FPU model.

I. INTRODUCTION

One of the most important nonlinear problems, whose
origin dates back to the early 20th century, concerns the con-
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duction of heat in dielectric crystals. As early as 1914, Peter
Debye suggested that the finite thermal conductivity of such
lattices is due to the nonlinear interactions among lattice vi-
brationssi.e., phonon–phonon scatteringd.4 To understand the
process of thermalization—which refers to how and to what
extent energy is transported from coherent modes and mac-
roscopic scales to internal, microscopic ones5—and to de-
velop computational techniques for studying nonlinear dy-
namical systems, Fermi, Pasta, and UlamsFPUd posed the
following question in 1954: How long does it take for long-
wavelength oscillations to transfer their energy into an equi-
librium distribution in a one-dimensional string of nonlin-
early interacting particles? This question has since spawned a
diverse array of activities attempting to answer it and fo-
mented a strong impetus for research in topics such as soli-
ton theory, discrete lattice dynamics, and KAM theory. Fur-
thermore, these fronts remain active research topics.5–9

Before the FPU work, it was commonly assumed that
high-dimensional Hamiltonian systems behave ergodically in
the sense that a smooth initial energy distribution should
quickly relax until it is ultimately distributed evenly among
all of the system’s modessthat is, thermalization should oc-
curd. To explicitly verify this fundamental hypothesis of sta-
tistical physics, FPU constructed a one-dimensional dynami-
cal lattice, withN identical particles which interact according
to an anharmonic repulsive force.

Running numerical simulations on the computers avail-
able in the early fifties, FPU observed that the lattice did not
relax to thermal equilibrium, contrary to everybody’s
expectations.1,4,10–12An especially striking observation was a
beating effect, in the form of a near-recurrence of the initial
long-scale configuration, which reappeared after a large
number of oscillations involving short-scale modes. In this
manner, more than 97% of the energy returned to the initial
mode. Moreover, this finding was robust with respect to
variations in the total number of particles and particular
choice of thespower-lawd anharmonicity in the interaction
between them.

Motivated by this study, Zabusky and Kruskal consid-
ered a continuum version of the model, showing that the
dynamics of small-amplitude, long-wavelength perturbations
obeysfon the time scale,swavelengthd3g the Korteweg–de
Vries sKdVd equation. They subsequently introduced the
concept of solitonsssolitary wavesd in terms of the KdV
equation.4,12,13The explanation for the lack of thermalization
is that the energy gets concentrated in robust coherent struc-
turessthe solitonsd, which interact elastically and thus do not
transfer their energy into linear lattice modessphonon waves,
also referred to as “radiation”d.5 The KdV equation thereby
became the first example in the celebrated class of nonlinear
partial differential equationssPDEsd that are integrable by
means of the inverse scattering transform. It was later fol-
lowed by numerous other important PDEs, such as the non-
linear Schrödinger equation, the sine-Gordon equation,
higher dimensional examplessincluding the Kadomtsev–
Petviashvili and the Davey–Stewartson equationsd and
multiple-component examplessincluding the Manakov
equationd.14,15

Since then the study of solitons and more general coher-
ent structures, has become one of the paradigms of nonlinear
science.12,16,17Such dynamical behavior occurs in a wide va-
riety of physical systems, includingsto name just a few ex-
amplesd nonlinear optics, fluid mechanics, plasma physics,
and quantum field theory. Over the past several years, the
impact of solitary-wave dynamics has been especially sig-
nificant in the study of Bose–Einstein condensates
sBECsd.18,19In this short review, we focus on this application
and, in particular, its description in physically appropriate
cases in terms of dynamical lattices.

The rest of this paper is organized as follows: In Sec. II,
we define the FPU problem and briefly survey its mathemati-
cal properties. In Sec. III, we provide an introduction to
Bose–Einstein condensates and their solitary wave solutions.
We consider, in particular, BECs loaded into optical lattices
sOLsd, and use a Wannier-function expansion to derive a
dynamical lattice model describing this system. In appropri-
ate limits, this leads to asgenerally multiple-componentd dis-
crete nonlinear SchrödingersDNLSd equation.20 In Sec. IV,
we examine the regime in which a deep, spatially periodic
OL potential effectively fragments the BEC into a chain of
weakly interacting droplets. The resulting model, which con-
sists of a Toda lattice with on-site potentials, produces self-
localized modes that may be construed as solitons of the
underlying BEC. Section V concludes the paper, discussing a
number of future directions.

II. THE FPU PROBLEM

The FPU model consists of a chain of particles con-
nected by nonlinear springs. The constitutive law of the
model, i.e., the relation between the interaction forceF and
the distancey between adjacent atoms in the chainswith only
nearest-neighbor interactions postulatedd, was taken to be
Fsyd=−fy+Gsydg. FPU considered three different functional
forms of Gsyd: quadratic, cubic, and piecewise linear.10

In the case of a cubic force law,11 Fsyd=−sy+3by3d,
whereb is an effective anharmonicity coefficient, one may
write

ÿj =
yj+1 − 2yj + yj−1

h2 H1 +
b

h2fsyj+1 − yjd2 + syj − yj−1d2

+ syj+1 − yjdsyj − yj−1dgJ , s1d

which is supplemented with fixed boundary conditions,y0

=yN=0. FPU sRefs. 10 and 12d used the initial condition
yjs0d=sins jp /Nd and ẏjs0d=0. This form s1d of the FPU
chain is obtained by discretizing the continuous nonlinear
string,

]2y

]t2
−

]2y

]x2F1 + 3bS ]y

]x
D2G = 0 s2d

with the following approximations to the continuum deriva-
tives:
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]y

]x
; H yj+1 − yj

h
,
yj − yj−1

h
J ,

s3d
]2y

]x2 ;
yj+1 − 2yj + yj−1

h2 .

Here,yj is the displacement of thej th particle from its equi-
librium position,h;L /N is the normalized spacingsthe dis-
tance between the particlesd, L is the string’s length, andN is
the number of particles, which FPU took to be 16, 32, or 64
in their calculations.fUsing Eq.s1d, the onset of resonance
overlaps was studied in the FPU problem in the first ever
application of Chirikov’s overlap criterion.11,21g

With an appropriate scalingst→ht,y→hyÎ3/bd, the
FPU chain can also be written

ÿj = syj+1 − yjd − syj − yj−1d + 1
3fsyj+1 − yjd3 − syj − yj−1d3g.

s4d

Using the continuum field variable,22

u ; −
yt

2h
+

1

2
E

0

yx

s1 + h2h2d1/2dh, s5d

Eq. s2d yields, to lowest order in h, the modified
Korteweg–de VriessmKdVd equation swith t;h3t /24, j
;x−htd,

ut + 12u2uj + ujjj = 0, s6d

which is further reduced to the KdV equation proper via the
Miura transformation.4,12,16,17

One can also derive the KdV equation directly from an
FPU chain with a quadratic anharmonicity in the interparticle
interaction,10,12,13Fsyd=−sy+ay2d. In the latter case, the dis-
crete FPU model takes the form

ÿj =
yj+1 − 2yj + yj−1

h2 S1 + a
yj+1 − yj−1

h
D . s7d

To study the near-recurrence phenomenon in Eq.s7d,
Zabusky and Kruskal4,13 derived its continuum limitsh
→0,Nh→1d,

ytt = yxx + «yxyxx + 1
12h

2yxxxx+ Os«h2,h4d, s8d

where«;2ah.
Unidirectional asymptotic solutions to Eq.s8d are con-

structed with12

y , fsj,td, j ; x − t, t ; 1
2«t, s9d

where the functionf obeys the equation

fjt + fjfjj + d2fjjjj + Osh2,h4«−1d = 0 s10d

for smalld2;h2«−1/12. Finally, withu;fj, one obtains the
KdV equation from Eq.s10d,23

ut + uuj + d2ujjj = 0. s11d

Equations11d has solitary-wave solutions of the form

usx,td = 2k2 sech2fksx − 4k2t − x0dg, s12d

with constantsk andx0. fNote that a more rigorous deriva-
tion of the KdV equation from the FPU chainsas a fixed
point of a renormalization processd has recently been
developed.5g

Although the solitary-pulse solutions12d has been well-
known since the original paper by Korteweg and de Vries, it
was the paper by Zabusky and Kruskal13 that revealed the
particle-like behavior of the pulses in numerical simulations.
sThe term “soliton” was coined in that paper to describe
them.d Since then, solitons have become ubiquitous, as their
study has yielded vital insights into numerous physical
problems.12,14–17,24In the next section, we discuss their im-
portance to Bose–Einstein condensation.18,19

It is remarkable that even today, 50 years from the origi-
nal derivation,10 FPU chains are themselves still studied as a
means of understanding a variety of nonlinear phenomena.
Recent studies focus not only on the model’s solitary-wave
solutions and their stability,5–8,25 but also on its thermody-
namic properties and connections with the Fourier law of
heat conductivity,9 its dynamical systems/invariant manifold
aspects,26,27 and its connections with weak turbulence
theory.28

To conclude this section, we remark that the most natural
discrete model that has been derived from the NLSsor GPd
equation for a soliton train is the Toda lattice29 ssee also the
details discussed belowd. However, the leading-order nonlin-
ear truncation of the latter lattice equation once again yields
the FPU model. Conversely, one can approximate the FPU
chain by the NLS equation in the high-frequency limit.11,30

The validity of this approximation varies with time due to
energy exchange between modes.

III. BOSE–EINSTEIN CONDENSATION

At low temperatures, bosonic particles in a dilute gas can
reside in the same quantumsgroundd state, forming a Bose–
Einstein condensatesBECd.18,19,31,32Seventy years after they
were first predicted theoretically, BECs were observed ex-
perimentally in 1995 in vapors of rubidium and sodium.2,3 In
these experiments, atoms were loaded into magnetic traps
and evaporatively cooled to temperatures on the order of a
fraction of a microkelvin. To record the properties of the
BEC, the confining trap was then switched off, and the ex-
panding gas was optically imaged.19 A sharp peak in the
velocity distribution was observed below a critical tempera-
ture, indicating that condensation had occurred.

Under experimental conditions, BECs are inhomoge-
neous, so condensation can be observed in both momentum
and coordinate space. The number of condensed atomsN
ranges from several thousandsor lessd to several millionsor
mored. The magnetic traps confining BECs are usually well-
approximated by harmonic potentials. There are two charac-
teristic length scales. One is the harmonic oscillator length,
aho=Î" / smvhod swhich is, typically, on the order of a few
micronsd, wherem is the atomic mass andvho=svxvyvzd1/3

is the geometric mean of the trapping frequencies. The sec-
ond scale is the mean healing length,x=1/Î8puaun̄, wheren̄
is the mean density of the atoms, anda, the stwo-bodyd
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s-wave scattering length, is determined by collisions between
atoms.18,19,33,34 Interactions between atoms are repulsive
when a.0 and attractive whena,0. The length scales in
BECs should be compared to those in condensed media like
superfluid helium, in which the effects of inhomogeneity oc-
cur on a microscopic scale fixed by the interatomic
distance.19

With two-body collisions described in the mean-field ap-
proximation, a dilute Bose–Einstein gas is very accurately
modeled by the cubic nonlinear Schrödinger equationsNLSd
with an external potentialfi.e., by the so-called Gross–
PitaevskiisGPd equationg. An important case is that of cigar-
shaped BECs, which are tightly confined in two transverse
directionsswith the radius on the order of the healing lengthd
and quasifree in the longitudinal dimension.35–39 In this re-
gime, one employs the 1D limit of the 3D mean-field theory,
generated by averaging in the transverse planesrather than
the 1D mean-field theory per se, which would be appropriate
were the transverse dimensions on the order of the atomic
size35–39d.

The original GP equation, describing the BEC near zero
temperature, is19,33,34,40,41

i"Ct = S−
"2¹2

2m
+ g0uCu2 + Vsr dDC, s13d

whereC=Csr ,td is the condensate wave function normal-
ized to the number of atomsN, Vsr d is the external potential,
and the effective interaction constant is19 g0=f4p"2a/mgf1
+Osz2dg, wherez;ÎuCu2uau3 is the dilute-gas parameter. The
resulting normalized form of the 1D equation is35–39

ict = − 1
2cxx + gucu2c + Vsxdc, s14d

wherec andV are, respectively, the rescaled 1D wave func-
tion sa result of averaging in the transverse directionsd and
external potential. The rescaled self-interaction parameterg
is tunableseven its signd, because the scattering lengtha can
be adjusted using magnetic fields in the vicinity of a Fesh-
bach resonance.42,43

A. BECs in optical lattices and superlattices

BECs can be loaded into optical latticessor superlattices,
which are small-scale lattices subjected to a long-scale peri-
odic modulationd, which are created experimentally as inter-
ference patterns of counter-propagating laser beams.44–51

Over the past several years, a vast research literature has
developed concerning BECs in such potentials,52–65 as they
are of considerable interest both experimentally and theoreti-
cally. Among other phenomena, they have been used to study
Josephson effects,52 squeezed states,66 Landau–Zener tunnel-
ing and Bloch oscillations,55 controllable condensate
splitting,61 and superfluid to Mott-insulator transition at both
the classical67,68 and quantum53 levels. Moreover, with each
lattice site occupied by one alkali atom in its ground state,
BECs in optical lattices show promise as a register in a quan-
tum computer.69,70

With the periodic potentialVsxd=Vsx+Ld, one may ex-
amine stationary solutions tos14d in the form

csx,td = Rsxdexpsifusxd − mtgd, s15d

wherem, the BEC’s chemical potential, is determined by the
number of atoms in the BEC; it is positive for repulsive
BECs and can assume either sign for attractive BECs. Using
the relationdu /dx=c/R2 s“angular momentum” conserva-
tiond, one derives a parametrically forced Duffing-oscillator
equation for the amplitude function,60,62,71–74

R9 −
c2

R3 + mR− gR3 − VsxdR= 0, s16d

whereR9;d2R/dx2.
Equation s16d admits both localized and spatially ex-

tended solutions. Supplemented with appropriate boundary
conditions, it yields both bright and dark solitons, which cor-
respond, respectively, to localized humps on the zero back-
ground, and localized dips in a finite-density background.
These states are similar to the bright and dark solitons in
nonlinear optics; they are stable, respectively, in attractive
and repulsive 1D BECs.74,75

When Vsxd is spatially periodic, the bright solitons re-
semble gap solitons, which are supported by Bragg gratings
in nonlinear optical systems. In BECs, they have been pre-
dicted in two situations:s1d the small-amplitude limit, with
the value ofm close to forbidden zoness“gaps”d of the un-
derlying linear Schrödinger equation with a periodic
potential;76,77 and s2d in the tight-binding approximation
sdiscussed belowd, for which the continuous NLS equation
can be replaced by its discrete counterpart, the so-called dis-
crete nonlinear SchrödingersDNLSd equation.78 Gap solitons
corresponding to the first situation have very recently been
created experimentally.79 In the latter context, the strongly
localized solutions are known as intrinsic localized modes
sILMsd or discrete breathers. Spatially extended wave func-
tions with periodic or quasiperiodicRsxd, which may be ei-
ther resonant or nonresonant with respect to the periodic po-
tential Vsxd, are known asmodulated amplitude wavesand
have been shown to be stablesagainst arbitrary small pertur-
bationsd in some cases.60–62,71–73

B. Lattice dynamics

In the presence of a strong optical lattice, the GP equa-
tion s14d can be reduced to the DNLS equation.20,74,80 To
justify this approximation, the wave function is expanded in
terms of a set of Wannier functions localized near the
minima of the potential wells.

The eigenvalue problem associated with the linear part
of Eq. s14d is

− wk,a9 + Vsxdwk,a = Easkdwk,a, s17d

wherewk,a can be expressed in terms of Floquet–Bloch func-
tions,wk,a=eikxuk,asxd, with uk,asxd=uk,asx+Ld. Additionally,
k is the quasi-momentum, anda indexes the energy bands,
so Easkd=Eask+s2p /Ldd.81 The energy is represented using
Fourier series,
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Easkd = o
n=−`

`

v̂n,aeiknL, v̂n,a = v̂−n,a = v̂n,a
* , s18d

where the asterisk denotes complex conjugation and

v̂n,a =
L

2p
E

−p/L

p/L

Easkde−iknLdk. s19d

Although the Floquet–Bloch functions provide a com-
plete orthonormal basis, it is more convenient to utilize Wan-
nier functionssalso indexed byad,

wasx − nLd =Î L

2p
E

−p/L

p/L

wk,asxde−inkLdk, s20d

which are centered aboutx=nL snPZd. The Wannier func-
tions constitute a complete orthonormal basis with respect to
bothn anda. One can also guarantee that the Wannier func-
tions are real by appropriately choosing phases of the
Floquet–Bloch functions.

Given the orthonormality of the Wannier function basis,
any solution ofs14d can be expanded in the form

csx,td = o
n,a

cn,astdwn,asxd, s21d

with coefficients satisfying a DNLS equation with long-
range interactions,

i
dcn,a

dt
= o

n1

cn1,av̂n−n1,a

+ g o
a1,a2,a3

o
n1,n2,n3

cn1,a1

* cn2,a2
cn3,a3

Wa,a1,a2,a3

n,n1,n2,n3 ,

s22d

as was shown in Ref. 20. Ins22d,

Wa,a1,a2,a3

n,n1,n2,n3 =E
−`

`

wn,awn1,a1
wn2,a2

wn3,a3
dx. s23d

Because the Wannier functions are real, the integral ins23d is
symmetric with respect to all permutations of both
sa ,a1,a2,a3d and sn,n1,n2,n3d.

Although Eq.s22d is intractable as written, several im-
portant special cases can be studied.20 The nearest-neighbor
coupling approximation is valid whenuv̂1,au@ uv̂n,au for n
.1. More generally, one can assume that the Fourier coeffi-
cients ins18d decay rapidly beyond a finite number of har-
monics. This simplifies the linear term ins22d. Additionally,
becausewn,a is localized about its center atx=nL, it is some-
times reasonable to assume that the coefficients satisfying
n=n1=n2=n3 dominateWa,a1,a2,a3

n,n1,n2,n3 , so that the others may be
neglected. In the nearest-neighbor regime, this implies that

i
dcn,a

dt
= v̂0,acn,a + v̂1,ascn−1,a + cn+1,ad

+ g o
a1,a2,a3

Wa,a1,a2,a3
cn,a1

* cn,a2
cn,a3

, s24d

whereWa,a1,a2,a3
;Wa,a1,a2,a3

n,n,n,n is independent ofn. This leads
to the tight-binding model,

i
dcn,a

dt
= v̂0,acn,a + v̂1,ascn−1,a + cn+1,ad

+ gWa,a,a,aucn,au2cn,a, s25d

in the single-band approximation. Typically, this approxima-
tion is valid if the height of the barrier between potential
wells is large and if the wells are well-separated. While this
intuition may be generally true, the Wannier function reduc-
tion provides a systematic tool that can establish the validity
of the approximation on a case by case basissby determining
the overlap coefficientsd; see, e.g., Ref. 20 for specific
examples.

Including next-nearest-neighbor coupling in this regime
allows one to study interactions between intrasite and inter-
site nonlinearities. In such more general situations in which
single-band descriptions are inadequate due to the nature of
the interband interactions, one can generalize the tight-
binding model ofs25d into a multiple-component model. In
particular, using the phase shiftcn,astd=expfiv̂0,atgc̃nastd and
appropriately applying time-averaging techniques, one
obtains

i
dc̃n,a

dt
= v̂1,asc̃n−1,a + c̃n+1,ad + go

a1

Wa,a1
uc̃n,a1

u2c̃n,a1
,

s26d

whereWa,a1
;Wa,a1,a,a1

describes the interband interactions.
Equations26d is a vector DNLS with cross-phase-modulation
nonlinear coupling. An example of the implementation of
this method is illustrated in Fig. 1. More generally, the ad-

FIG. 1. Comparison of the lattice reconstructed solution in the tight-binding
sdashed lined and the 3-bandsdashed–dotted lined approximation with the
numerical solution of the GP equations14d ssolid lined. The comparison is
performed forVsxd=−5 coss2xd and different chemical potentials:m=1.5
sleft panelsd andm=−1.5 sright panelsd. The bottom panels show the same
features as the top ones using semi-log plots. Additionally, in both the left
and right bottom panels, there is a dotted line showing the result of the
dynamical evolutionsat t<50d, of the tight-binding approximation in the
corresponding casessi.e., m=−1.5 for the left panel andm=−1.5 for the
right one.d In the left panel, the dynamical evolution practically coincides
with the exact solution. In the right panel, the tight-binding initial condition
tries to deform itselfsfrom the dashed to dotted profiled to “approach” the
shape of the exact solutionssolid lined.
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vantage of the approach of Ref. 20 is that, given the explicit
form of the potential, the relevant coefficients can be com-
puted and the appropriate reducedssingle-band or multiple-
bandd model can be derived to the desired level of approxi-
mation.

At this stage, one can study the ILMs of Eqs.s25d or
s26d and use the Wannier function expansion to reconstruct
the solution of the original GP equation.20 This approach has
been successfully used in a variety of applications and for
different localized states present in the lattice, including
bright, dark, and discrete-gap solitons, as well as
breathers.65,74,78,82Other phenomena, such as discrete modu-
lational instabilities, have also been studied.80 More specifi-
cally, one of the most successful implementations of discrete
NLS equationssand variants thereofd in this context included
the quantitative prediction that its modulational stability
analysis determined the threshold of a dynamical instability
of the condensatesthe so-called classical superfluid-Mott-
insulator transition of Ref. 67d. These predictions were sub-
sequently verified quantitatively by the experimental mea-
surements of Ref. 68.

IV. SOLITON–SOLITON TAIL-MEDIATED
INTERACTIONS AND THE TODA LATTICE

Recent advances in trapping techniques allow the gen-
eration of bright solitons and chains of bright solitons in
effectively 1D attractive condensates.83–86In this section, we
consider the collective motion of a chain of bright solitons.
We focus, in particular, on the dynamics of attractive BECs
trapped in a deep optical latticesOLd that renders a 1D at-
tractive condensate into a chain of interacting solitonsssee
Fig. 2d.

Consider a BEC loaded into an OL potential produced
by the interference pattern of multiple counter-propagating
laser beams.44–51In principle, it is possible to design various
optical trap profilessessentially at willd by appropriately su-
perimposing interference patterns. For the purposes of this
exposition, we adopt an OL profile, with a tunable inter-well
separation, given by the Jacobi elliptic-sine function,

Vsxd = V0 sn2sx;kd, s27d

whereV0 is the strength of the OL. The elliptic modulusk
allows one to tune the separation between consecutive wells,
r ;j0;j+1−j0;j =2Kskd, wherej0;j =2jKskd is the position of
the j th well andKskd is the complete elliptic integral of the
first kind.

The stability properties of BECs in the optical lattice
potentials27d have been recently studied.62,72,73Here, we are
interested in the case of large separation between the wells
sk.1d when the BEC is effectively fragmented into a chain
of nearly identical solitons with tail-mediated interactions,
subject to the action of an effective on-site potential due to
the OL. For a large set of parameter values, the system can
be reduced to a Toda lattice,87 as was shown in Refs. 88 and
89. The reduction involves two steps.

First, the effect of thej th well on the j th soliton fat
position j jstdg is approximated, using variational
techniques90 or methods based on conserved quantities,89 by

j̈ j = − Veff8 sj j − j0;jd, s28d

which describes a particle in the effective potentialVeff felt
by the soliton. For well-separated troughssk.1d, the effec-
tive potential force may be approximated by89

Veff8 sjd < nV0fsa1 − a2 V0dj + a3 j3g, s29d

wheren is the average amplitudesheightd of the soliton,a1

=8/15,a2=224/1125, anda3=−16/63.
Second, one treats the interaction of consecutive solitons

in the absence of the OL. This interaction is well-studied in
the context of optical solitons.29,90–95 For identical, well-
separated solitonsswith the phase differencep between ad-
jacent solitonsd, it is approximated by the Toda-lattice equa-
tion for the soliton positions,

j̈ j = TLsj j−1,j j,j j+1d ; 8n3se−nsj j−j j−1d − e−nsj j+1−j jdd. s30d

Finally, after combinings30d with the on-site potential dy-
namicss28d, we reduce the dynamics of a weakly coupled
BEC in the deep OL to the Toda lattice with on-site poten-
tials,

j̈ j = TLsj j−1,j j,j j+1d − Veff8 sj j − j0;jd. s31d

The Toda lattices30d admits exact traveling-soliton
solutions.87 However, the effective potential ins31d breaks
the lattice’s translational invariance and gives rise to ILMs
sbreathersd. To describe such localized oscillations, we con-
sider small vibrations about the equilibrium statesj j =j0;jd:

j jstd = j0;j + Aj cossvtd, s32d

wherev is the common oscillation frequency for all solitons,
and the j th soliton vibrates with an amplitudeAj about its
equilibrium positionj0;j ssee Fig. 2d. Substituting the ansatz

FIG. 2. sColor onlined. A quasi-1D condensatessolid lined in a deep periodic
optical-lattice potentialsdashed lined. The condensate is effectively de-
scribed as a chain of coupled solitons whose positions follow a Toda lattice
with on-site potentialsfEq. s31dg. Using the oscillating ansatzs32d, where
the j th soliton is forced to oscillate with amplitudeAj, one can further
reduce the dynamics to a second-order recurrence relationship between
neighboring amplitudesfEq. s33dg.
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s32d into Eq.s31d and discarding higher-order modes yields a
recurrence relationship between consecutive amplitudes,

An+1 = sa + bAn
2dAn − An−1, s33d

wherea=2−v2+4a1d, b=3a3d, d=enr / s16n4d, r is the sepa-
ration between adjacent troughs, anda1 anda3 are the coef-
ficients from the expansion of the effective potential force
s29d. Note that the method just described is applicable to any
OL profile that reduces the dynamics of a single soliton to
that of a particle inside an effective potential given by a
cubic polynomial inj.

By defining consecutive oscillation amplitudes asyn

;An and xn;An−1, the recurrence relationships33d can be
cast as a 2D map,

xn+1 = yn,

s34d
yn+1 = sa + byn

2dyn − xn.

It is crucial to note here that the iteration indexn in s34d
corresponds to thespatial lattice-site index for the soliton
chain. Thus, forwardsbackwardd iteration of the 2D map
s34d amounts to a rightsleftd shift of the spatial position in
the soliton chain. As our goal is to find spatially localized
states of the BEC chainsi.e., ILMsd, we are interested in
finding solutions of Eq.s33d for whichAn→0 asn→ ±` and
A0.0 ssee Fig. 2d. That is, sxn,ynd→ s0,0d as n→ ±`.
These solutions correspond to homoclinic connections of the
origin.

A typical intersection for the stablessolid curved and
unstablesdashed curved manifolds of the 2D maps34d is
depicted in the top-left panel of Fig. 3. The intersection
points Pi between the stable and unstable manifolds then

generate a localized configuration for the recurrence relation-
ship s33d, as depicted in the top-right panel of Fig. 3. When
this localized configuration is inserted into the original GP
equations14d, one obtains a spatially localized, multi-soliton
statesdepicted in the bottom panel of Fig. 3d by shifting each
soliton from its equilibrium position by the prescribed
amount.88,89

It is important to note that generic localized initial con-
figurations do not give rise to long-lived, self-sustained
ILMs. Nonetheless, the construction described above is quite
efficient in producing approximate initial configurations that
generate robust localized states, such as the one displayed in
Fig. 3. The structural and dynamical stability of these local-
ized states is quite interesting. For example, the structural
stability of the homoclinic tangle of the 2D map guarantees
the existence of the ILM solution in the original models14d,
despite the employment of various approximations in the
former’s derivation. On the other hand, the dynamical stabil-
ity of ILMs permits their observation even in the presence of
strong perturbationsssuch as noised. Indeed, numerical ex-
periments show that ILMs prevail even in the presence of
large perturbations to the initial configuration or strong nu-
merical noise, as discussed in Refs. 88 and 89.

Finally, it is worth mentioning that the dynamical reduc-
tion to the 2D maps34d can also be used to generate—in
addition to the localized states discussed above—a wide
range of spatiotemporal structures by following the map’s
fixed points, periodic orbits, quasiperiodic orbits, and even
chaotic orbits. Further, the techniques described in this sec-
tion can also be applied to chains of bright solitons in which
the deep OL is replaced by an array of focused laser beams
or impurities that tends to pin the solitons and serve as a
local effective attractive potentialfsee Eq.s28dg.

V. CONCLUSIONS

In this work, we have surveyed recent research on lattice
dynamics of Bose–Einstein condensatessBECsd in optical
lattice sOLd potentials. We discussed, in particular, the dy-
namics of BECs in a deep OL that naturally discretizes the
original spatially continuous system into a collection of dis-
crete interacting nodesswellsd. The ensuing nonlinear lattice
features the trademark localized solutions—solitons and in-
trinsic localized modes—that have rendered the Fermi–
Pasta–Ulam problem one of last century’s most important
contributions to nonlinear science. Specifically, using
Wannier-function expansions, we reduced the dynamics of
the Gross–PitaevskiisGPd equation to a discrete nonlinear
SchrödingersDNLSd equation, which was subsequently used
to identify localized solutionssas well as a number of other
interesting dynamical instabilities, such as those discussed in
Ref. 80d and reconstruct the nonlinear waves of the original
GP equation. Treating a BEC trapped in a strong OL as a
collection of interacting solitons, we then used perturbative
and/or variational techniques to reduce the original GP equa-
tion to a Toda-lattice equation with an effective on-site po-
tential. This nonlinear lattice supports robust, exponentially
localized oscillations in BEC soliton chains.

The crucial ingredient, amenable to the dynamical-
systems perspective described in this manuscript, is the GP

FIG. 3. sColor onlined. Homoclinic connection of the originstop-left paneld,
giving rise to a spatially localized profilestop-right paneld. Bottom: the
localized state in the original BEC models14d generated by the prescribed
amplitude configuration. The shaded base, depicting]uuu /]t, highlights the
areas in which the atomic densityuusx,tdu varies the most. Observe that the
solution decays as one moves away from the centersx=0d. sAs the solution
is symmetric with respect tox=0, only its right-hand side is shown.d
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equation’s nonlinear self-interaction, which is induced as a
mean-field representation of two-particle collisions and is re-
sponsible for a plethora of intriguing dynamical behaviors
and coherent structures. The most remarkable of these, soli-
tary wavesssolitonsd, lie at the heart of the paradigm that
originated from the seminal work of Fermi, Pasta, and Ulam.

There remain, moreover, a multitude of exciting direc-
tions for future research. For example, the study of nonlinear
lattice models in higher dimensions has yielded a number of
interesting generalizations and more exotic solitary waves
such as multidimensional solitons96 and discrete
vortices.97–99A systematic analysis of their existence proper-
ties, dynamical characteristicssmobility and structural stabil-
ityd, thermodynamic properties, and physical relevance in-
volves a number of interesting and subtle questions that may
keep nonlinear scientists like us busy until we are ready to
celebrate the 100th anniversary of the publication of the FPU
problem.
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