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The Fermi—Pasta—Ulaif-PU) model, which was proposed 50 years ago to examine thermalization

in nonmetallic solids and develop “experimental” techniques for studying nonlinear problems,
continues to yield a wealth of results in the theory and applications of nonlinear Hamiltonian
systems with many degrees of freedom. Inspired by the studies of this seminal model, solitary-wave
dynamics in lattice dynamical systems have proven vitally important in a diverse range of physical
problems—including energy relaxation in solids, denaturation of the DNA double strand, self-
trapping of light in arrays of optical waveguides, and Bose-Einstein conderiB&€s) in optical

lattices. BECs, in particular, due to their widely ranging and easily manipulated dynamical
apparatuses—with one to three spatial dimensions, positive-to-negative tuning of the nonlinearity,
one to multiple components, and numerous experimentally accessible external trapping potentials—
provide one of the most fertile grounds for the analysis of solitary waves and their interactions. In
this paper, we review recent research on BECs in the presence of deep periodic potentials, which
can be reduced to nonlinear chains in appropriate circumstances. These reductions, in turn, exhibit

many of the remarkable nonlinear structuf@scluding solitons, intrinsic localized modes, and
vorticeg that lie at the heart of the nonlinear science research seeded by the FPU paradi§ot ©
American Institute of PhysicfDOI: 10.1063/1.1858114

The Fermi—Pasta—Ulam (FPU) model was formulated in
1954 in an attempt to explain heat conduction in non-
metallic lattices and develop “experimental” (computa-
tional) methods for research on nonlinear dynamical
systems- Further studies of this problem 10 years later
led to the first analytical description of solitons (using the
Korteweg—de Vries equation, which is a continuum ap-
proximation of the discrete FPU system), which have
since become one of the fundamental paradigms of non-
linear science. These nonlinear waves occur ubiquitously
in rather diverse physical situations ranging from water
waves to plasmas, optical fibers, superconductors (long
Josephson junctions), quantum field theories, and more.
Over the past several years, the study of solitons and
coherent structures in Bose—Einstein condensates (BECs)
has come to the forefront of experimental and theoretical
efforts in soft condensed matter physics, drawing the at-
tention of atomic and nonlinear physicists alike. Ob-
served experimentally for the first time in 1995 in vapors
of sodium and rubidium,?* a BEC—a macroscopic cloud

of coherent quantum matter—is attained when(10°—1)
atoms, confined in magnetic traps, are optically and
evaporatively cooled to a fraction of a microkelvin. The
macroscopic behavior of BECs near zero temperature is
modeled very well by the Gross—Pitaevskii equation (a
time-dependent nonlinear Schrédinger equation with an
external potential), which admits a wide range of coher-
ent structure solutions. Especially attractive is that ex-
perimentalists can now engineer a wide variety of exter-
nal trapping potentials (of either magnetic or optical
origin) confining the condensate. As a key example, we
focus on BECs loaded into deep, spatially periodic optical
potentials, effectively splitting the condensate into a chain
of linearly-interacting, intrinsically nonlinear droplets,
the dynamics of which is accurately characterized by
nonlinear lattice models. This paper highlights some of
the quasidiscrete nonlinear dynamical structures in BECs
reminiscent of the discoveries that originated from the
FPU model.

I. INTRODUCTION

One of the most important nonlinear problems, whose
origin dates back to the early 20th century, concerns the con-
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duction of heat in dielectric crystals. As early as 1914, Peter  Since then the study of solitons and more general coher-
Debye suggested that the finite thermal conductivity of suctent structures, has become one of the paradigms of nonlinear
lattices is due to the nonlinear interactions among lattice viscience**®*’Such dynamical behavior occurs in a wide va-
brations(i.e., phonon—phonon scatterbmAgTo understand the riety of physical systems, includingo name just a few ex-
process of thermalization—which refers to how and to wha@mples nonlinear optics, fluid mechanics, plasma physics,
extent energy is transported from coherent modes and magnd quantum field theory. Over the past several years, the
roscopic scales to internal, microscopic okeand to de- impact of solitary-wave dynamics has been especially sig-
velop computational techniques for studying nonlinear dy-hificant in the study of Bose—Einstein condensates
namical systems, Fermi, Pasta, and UIGFPU) posed the ~(BECS.***°In this short review, we focus on this application
following question in 1954: How long does it take for long- &nd, in particular, its description in physically appropriate
wavelength oscillations to transfer their energy into an equi€ases in terms of dynamical lattices.

librium distribution in a one-dimensional string of nonlin-  The rest of this paper is organized as follows: In Sec. II,
early interacting particles? This question has since spawned'4€ define the FPU problem and briefly survey its mathemati-
diverse array of activities attempting to answer it and fo-Cal Properties. In Sec. lll, we provide an introduction to
mented a strong impetus for research in topics such as So|ﬁose—E|r_1$te|n cond_ensates and their soll_tary wave solufuons.
ton theory, discrete lattice dynamics, and KAM theory. Fur-We consider, in particular, BECs loaded into optical lattices

thermore, these fronts remain active research tosﬁ?cs. (OLs), and use a Wannier-function expansion to derive a
dynamical lattice model describing this system. In appropri-

Before the FPU work, it was commonly assumed that te limits. this leads t I itin| di
high-dimensional Hamiltonian systems behave ergodically jrfire Imits, this feads 1o enerally multiple-componentlis-

. - . 0

the sense that a smooth initial energy distribution shoulc?rete non.Imear SchrpdlngeDN!_S) equat|or12. In.Sec. IV.’ :
: oo . . we examine the regime in which a deep, spatially periodic

quickly relax until it is ultimately distributed evenly among OL potential effectively fraaments the BEC into a chain of

all of the system’s mode&hat is, thermalization should oc- P y rag

- . : . weakly interacting droplets. The resulting model, which con-
::utr) 1}0 EXp.“CImI/:;E”fy thlts futn (?jamentaldhypothesw,l zf sta- sists of a Toda lattice with on-site potentials, produces self-
Istical physics, constructed a one-dimensional dynamig, . 5ji;eq modes that may be construed as solitons of the

cal Iattlci, W|thN_|dent|c|aI_ pa:ctlcles which interact according underlying BEC. Section V concludes the paper, discussing a
to an anharmonic repulsive force. number of future directions.

Running numerical simulations on the computers avail-
able in the early fifties, FPU observed that the lattice did not
relax to thermal equilibrium, contrary to everybody’s
expectation$:**%*?An especially striking observation was a !l THE FPU PROBLEM
beating effect, in the form of a near-recurrence of the initial . EpU model consists of a chain of particles con-

long-scale coqflggratlop, Wh,'Ch reappeared after a I""r?:]‘;r‘lected by nonlinear springs. The constitutive law of the
number of oscillations involving short-scale modes. In th'smodel i.e. the relation between the interaction fofcand

manner, more than 97% of the energy returned to the initiajy, distance between adjacent atoms in the chéirith only
mode. Moreover, this finding was robust with respect t0pearest-neighbor interactions postulatedtas taken to be
varlgtlons in the total number of pgrtlgles ar!d part|f:ularF(y):_[y+G(y)]. FPU considered three different functional
choice of the(power-law anharmonicity in the interaction formg of G(y): quadratic, cubic, and piecewise liné&r.
between them. In the case of a cubic force laW,F(y)=—(y+38y3),

Motivated by this study, Zabusky and Kruskal consid-yhere g is an effective anharmonicity coefficient, one may
ered a continuum version of the model, showing that theyrite

dynamics of small-amplitude, long-wavelength perturbations

obeys[on the time scale-(wavelength®] the Korteweg—de

Vries (KdV) equation. They subsequently introduced the yj:XJ”_—Z{ﬂi‘_l{l...ﬁz[(yjﬂ_yj)Zq.(yj_yj_1)2
concept of solitongsolitary waves in terms of the KdV h h

equation**?!3The explanation for the lack of thermalization

is that the energy gets concentrated in robust coherent struc- + (Y =YY - Y01 [ (1)
tures(the soliton$, which interact elastically and thus do not

transfer their energy into linear lattice modesonon waves, which is supplemented with fixed boundary conditiogg,
also referred to as “radiation® The KdV equation thereby =yy=0. FPU (Refs. 10 and 1Rused the initial condition
became the first example in the celebrated class of nonlineat(0)=sin(j=/N) and y;(0)=0. This form (1) of the FPU
partial differential equation$PDES that are integrable by chain is obtained by discretizing the continuous nonlinear
means of the inverse scattering transform. It was later folstring,

lowed by numerous other important PDEs, such as the non-

linear Schrdédinger equation, the sine-Gordon equation, Py (92y[1 . 318((%,)2}

higher dimensional example6ncluding the Kadomtsev— 2 .2 =0 (2

o dim ! e X
Petviashvili and the Davey-Stewartson equafiomsd
multiple-component examplegincluding the Manakov with the following approximations to the continuum deriva-

equation.***° tives:
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Yy _ {X,ﬂ_—yl y,—_y,__l} u(x,t) = 2«? sech[ k(x — 4k’t — Xo)], (12)
X h h with constants« and x,. [Note that a more rigorous deriva-
, (3)  tion of the KdV equation from the FPU chaits a fixed
ay _ Yin~ 2y +Yj-1 point of a renormalization processhas recently been

X2 h2 ' developed]

. . ) . ) . Although the solitary-pulse solutiofi2) has been well-
Here,y; is the displacement of igth particle from its equi- known since the original paper by Korteweg and de Vries, it

Libriumbp;)sition,tEEL/l;l_ s re r;ﬁrm?l?zefi Tpactirr]\(gheu?i.s- was the paper by Zabusky and Kruskathat revealed the
ance between the particles is the string’s length, anl is particle-like behavior of the pulses in numerical simulations.

Fh(ethnqmbtalr Olf gartlclss., Whgh EPL:htOOK to tbef16, 32, or 64(The term “soliton” was coined in that paper to describe
n Ielr calcula Itor(]f[d smg:h ql.:(Pb € tc))lnse 0 t;]es?natnce them) Since then, solitons have become ubiquitous, as their
overiaps was studie ,m N pro erzn In the nrs everStudy has yielded vital insights into numerous physical
application of Chirikov's overlap criteriot: 1]

. . i — problems'>**~"?|n the next section, we discuss their im-
With an appropriate scalingt—ht,y—~hyv3/5), the  o1ance to Bose—Einstein condensafid
FPU chain can also be written It is remarkable that even today, 50 years from the origi-
. . 5 5 nal derivation,’ FPU chains are themselves still studied as a
Yi= 0= Y) = 07 Y-0 + 3l = Y)° = 57 Y-0%]. means of understanding a variety of nonlinear phenomena.
(4) Recent studies focus not only on the model’s solitary-wave
solutions and their stabilit;>?° but also on its thermody-
namic properties and connections with the Fourier law of
1 [ heat conductivit)?, its dynamical systems/invariant manifold
u=-t 4 —f (1+h2A) Y2y, (5) aspect$”®’ and its connections with weak turbulence
2h 2J, theory?®
To conclude this section, we remark that the most natural
discrete model that has been derived from the NaSGP
equation for a soliton train is the Toda latficésee also the
details discussed belgwHowever, the leading-order nonlin-
u,+ 1212u§+ Ugee =0, (6) ear truncation of the latter lattice equation once again yields
the FPU model. Conversely, one can approximate the FPU
which is further reduced to the KdV equation proper via thechain by the NLS equation in the high-frequency lirit®
Miura transformatiort:*>**’ The validity of this approximation varies with time due to
One can also derive the KdV equation directly from anenergy exchange between modes.
FPU chain with a quadratic anharmonicity in the interparticle

interaction'>*%13F(y)=—(y+ ay?). In the latter case, the dis- ||| BOSE_EINSTEIN CONDENSATION
crete FPU model takes the form

Using the continuum field variabfé,

Eq. (2) vyields, to lowest order inh, the modified
Korteweg—de Vries(mKdV) equation (with 7=h3%/24, ¢
=x-ht),

At low temperatures, bosonic particles in a dilute gas can
 Yisi— Y Vi Yis1— Vic1 re'side.in the same quantklgglgosggg state, forming a Bose—
i= 2 l+a h (7)  Einstein condensat®EC).*®1%31*2seventy years after they
were first predicted theoretically, BECs were observed ex-
To study the near-recurrence phenomenon in Ef,  perimentally in 1995 in vapors of rubidium and sodifhin
Zabusky and Kruskaf® derived its continuum limit(th  these experiments, atoms were loaded into magnetic traps

—0,Nh—1), and evaporatively cooled to temperatures on the order of a
fraction of a microkelvin. To record the properties of the
Vit = Vit EYYox + 3N Yseooct O(eh?,h?), (8)  BEC, the confining trap was then switched off, and the ex-

panding gas was optically imagé?jA sharp peak in the
velocity distribution was observed below a critical tempera-
ture, indicating that condensation had occurred.

Under experimental conditions, BECs are inhomoge-
neous, so condensation can be observed in both momentum

wheree =2ah.
Unidirectional asymptotic solutions to E¢) are con-
structed witt?

1
y~ @&, E=x-t 7=t ©  and coordinate space. The number of condensed atgms
where the functionp obeys the equation ranges from several thousafm less to several million(or
more. The magnetic traps confining BECs are usually well-
bt epe+ P+ O(W2,01e™) =0 (100  approximated by harmonic potentials. There are two charac-
£ p2e-t ) L ) teristic length scales. One is the harmonic oscillator length,
for small °=h“"*/12. Finally, withu= ¢,, one obtains the 8= \/_g_ﬁ/(mwho) (which is, typically, on the order of a few

. 23
KdV equation from Eq(10), microng, wherem is the atomic mass an,= (wyw,w,)'’

is the geometric mean of the trapping frequencies. The sec-
+ + =0. . ) il —
Uy Ul + & Ugg =0 (11) ond scale is the mean healing Iengﬂ:,l/\/8gqr|;, wheren
Equation(11) has solitary-wave solutions of the form is the mean density of the atoms, amd the (two-body)
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s-wave scattering length, is determined by collisions between  y(x,t) = R(x)exp(i[ 6(x) — ut]), (15)

atoms*81°%334 |nteractions between atoms are repulsive

whena>0 and attractive whem<0. The length scales in Wherep, the BEC's chemical potential, is determined by the

BECs should be compared to those in condensed media likeumber of atoms in the BEC; it is positive for repulsive

superfluid helium, in which the effects of inhomogeneity oc-BECs and can assume either sign for attractive BECs. Using

cur on a microscopic scale fixed by the interatomicthe relationd6/dx=c/R? (“angular momentum” conserva-

distance™® tion), one derives a parametrically forced Duffing-oscillator
With two-body collisions described in the mean-field ap-€quation for the amplitude functicf "+~

proximation, a dilute Bose—Einstein gas is very accurately

modeled by the cubic nonlinear Schrodinger equatibS) 2

with an external potentia[i.e., by the so-called Gross— R"—@*‘MR—QRLV(X)R:O, (16)

Pitaevskii(GP) equation). An important case is that of cigar-

shaped BECs, which are tightly confined in two transversgyhere R’ = d2R/ dx2.

directions(with the radius on the order of the healing length Equation (16) admits both localized and spatially ex-

. . . . . 3539 -
and quasifree in the longitudinal dimensin® In this re-  tended solutions. Supplemented with appropriate boundary
gime, one employs the 1D limit of the 3D mean-field theory, conditions, it yields both bright and dark solitons, which cor-
generated by averaging in the transverse plaather than  respond, respectively, to localized humps on the zero back-
the 1D mean-field theory per se, which would be appropriatground, and localized dips in a finite-density background.

were the transverse dimensions on the order of the atomighese states are similar to the bright and dark solitons in

size>. nonlinear optics; they are stable, respectively, in attractive
The original GP equation, describing the BEC near zergyng repulsive 10 BECE:"®
19,33,34,40,41 N i L . i

temperature, i When V(x) is spatially periodic, the bright solitons re-

- semble gap solitons, which are supported by Bragg gratings

ihW, = <_ Ll +gOI\If|2+V(r))\P, (13)  in nonlinear optical systems. In BECs, they have been pre-

m dicted in two situations(1) the small-amplitude limit, with
the value ofu close to forbidden zoneSgaps”) of the un-
derlying linear Schrodinger equation with a periodic
potential’®’” and (2) in the tight-binding approximation
(discussed beloyy for which the continuous NLS equation
can be replaced by its discrete counterpart, the so-called dis-
crete nonlinear SchrodingédNLS) equation7.8 Gap solitons
L1 2 corresponding to the first situation have very recently been
9= = 2ot AT+ VIO, (14) created experimentally. In the latter context, the strongly
wherey andV are, respectively, the rescaled 1D wave func-localized solutions are known as intrinsic localized modes
tion (a result of averaging in the transverse directiomsd (ILMs) or discrete breathers. Spatially extended wave func-
external potential. The rescaled self-interaction parangeter tions with periodic or quasiperiodiB(x), which may be ei-
is tunable(even its sigh, because the scattering lengtltan  ther resonant or nonresonant with respect to the periodic po-
be adjusted using magnetic fields in the vicinity of a Feshtential V(x), are known asnodulated amplitude wavemnd
bach resonancg&:* have been shown to be staltfgainst arbitrary small pertur-

bations in some case¥ 627173

where =¥ (r,t) is the condensate wave function normal-
ized to the number of atom¥, V(r) is the external potential,
and the effective interaction constant’ig,=[4m#%a/m][1
+0(2?)], whereZ= | ¥|?al3 is the dilute-gas parameter. The
resulting normalized form of the 1D equatior?g’rs?9

A. BECs in optical lattices and superlattices

BECs can be loaded into optical lattio@s superlattices, g | attice dynamics
which are small-scale lattices subjected to a long-scale peri-
odic modulatiof, which are created experimentally as inter- I the presence of a strong optical lattice, the GP equa-
ference patterns of counter-propagating laser bé4mis. tion (14) can be reduced to the DNLS equatfdi*® To
Over the past several years, a vast research literature histify this approximation, the wave function is expanded in
developed concerning BECs in such potenﬁgﬂg? as they terms of a set of Wannier functions localized near the
are of considerable interest both experimentally and theoretMinima of the potential wells.
cally. Among other phenomena, they have been used to study The eigenvalue problem associated with the linear part
Josephson effecté,squeezed staté&Landau—Zener tunnel- Of Ed. (14) is
ing and Bloch oscillation?®> controllable condensate
splittingyﬁ% and superfluid to Mott-insulator transitiqn at both ~ @ o+ V)P0 = EalK) @ (17)
the classic&l"®® and quantur?¥ levels. Moreover, with each
lattice site occupied by one alkali atom in its ground statewhere¢, , can be expressed in terms of Floquet—Bloch func-
BECs in optical lattices show promise as a register in a quartions, @k,a:eikxuk,a(x), with uy ,(X) =uy ,(x+L). Additionally,

tum computeP.g’70 k is the quasi-momentum, and indexes the energy bands,
With the periodic potentiaV/(x)=V(x+L), one may ex- so Ea(k):Ea(k+(2w/L)).81 The energy is represented using
amine stationary solutions td4) in the form Fourier series,
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o] 1

EuK)= 2 @0 o8N, o= @ona= Opas (18)
n=-o s 0.6
=
where the asterisk denotes complex conjugation and s o
L L ' 0.2
Op o= — f E,(kje"kntdk. (19 °
' 2] . 4 6 8 1; 12 14 16
Although the Floquet-Bloch functions provide a com-
plete orthonormal basis, it is more convenient to utilize Wan-
nier functions(also indexed by), JRLY
x
3

L /L ) 5
W, (X—nL) = 4 /ZTJ gok’a(x)e"”k'-dk, (20 10
-/l

which are centered abowt=nL (ne 7). The Wannier func-
tions constitute a complete orthonormal basis with respect to
bothn anda. One can also guarantee that the Wannier funcF!G. 1. Comparison of the lattice reconstructed solution in the tight-binding

. . . dashed ling and the 3-banddashed-dotted lineapproximation with the
tions are real by approprlately choosmg phases of th(%umerical solution of the GP equati¢h4) (solid line). The comparison is

Floguet-Bloch functions. performed forV(x)=-5 cog2x) and different chemical potentialgt=1.5
Given the orthonormality of the Wannier function basis, (left panel and u=-1.5 (right panel$. The bottom panels show the same
any solution of(14) can be expanded in the form featur_es as the top ones using ;emi-log plotg. Additior_1a||y, in both the left
and right bottom panels, there is a dotted line showing the result of the
_ dynamical evolution(at t=50), of the tight-binding approximation in the
"b(x’t) - nz C“ﬂ(t)wnﬂ(x)’ (21) corresponding cases.e., u=-1.5 for the left panel angh=-1.5 for the
a

right one) In the left panel, the dynamical evolution practically coincides
. . . g : : _ with the exact solution. In the right panel, the tight-binding initial condition
with cpeff|C|er_1ts SatISfymg a DNLS equation with Iong tries to deform itselffrom the dashed to dotted profiléo “approach” the
range Interactions, shape of the exact solutigsolid line).

.dc, R
i— = 2 Chya®n-n,«
dt de,
* i <= a)O Cn,a + a)l a(Cn—l a + Cns+1 a)
,N1,Np,N3 ,a~n, E E ,
’ ga ;a n nzn Cnl’alcnz'azcn?”a3\/\/;*“1'0‘21‘13' dt
1,23 112,113
i in the single-band approximation. Typically, this approxima-
as was shown in Ref. 20. If22), tion is valid if the height of the barrier between potential
o wells is large and if the wells are well-separated. While this
s = f Wi, oW, ;W a,Wng, a,0X- (23 intuition may be generally true, the Wannier function reduc-

tion provides a systematic tool that can establish the validity
Because the Wannier functions are real, the integré?@is  ©f the approximation on a case by case bésysdetermining
symmetric with respect to all permutations of boththe overlap coefficienjs see, e.g., Ref. 20 for specific
(a,al,az,a3) and (n,nl,nz,n3). examples'

Although Eq.(22) is intractable as written, several im- Including next-nearest-neighbor coupling in this regime
portant special cases can be studi®dhe nearest-neighbor allows one to study interactions between intrasite and inter-
coupling approximation is valid whefi; ,|>|a, .| for n site nonlinearities. In such more general situations in which
>1. More generally, one can assume that the Fourier coeffisingle-band descriptions are inadequate due to the nature of
cients in(18) decay rapidly beyond a finite number of har- the interband interactions, one can generalize the tight-
monics. This simplifies the linear term {@2). Additionally, ~ Pinding model of(25) into a multiple-component model. In
becausev, , is localized about its center &nL, it is some-  Particular, using the phase shiff ,(t) =exfiwg .t[C,,(t) and
times reasonable to assume that the coefficients satisfyir@PPropriately applying time-averaging techniques, one
n=n;=n,=ng dominateW}":"2" 'so that the others may be obtains

1,09, 03

neglected. In the nearest-neighbor regime, this implies that &
__an f=a a ! dt’CK = 01,0(Cr1.0+ Crera) + 92 Wa,alrén,a1|26n,a1’
I d£ = wo,acn,a + wl,a(cn—l,a + Cn+l,a) ag
(26)
> Wty a.25%n,0,Cn.aCrag: (24) whereW, , =W, 4, .0, describes the interband interactions.
aq,ap,a3

Equation(26) is a vector DNLS with cross-phase-modulation
WhereW, o, o, o, =Wo'ara,q, IS iNdependent ofi. This leads  nonlinear coupling. An example of the implementation of
to the tight-binding model, this method is illustrated in Fig. 1. More generally, the ad-
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V(X) = Vo SIP(X; K), (27)

whereV, is the strength of the OL. The elliptic modulls
allows one to tune the separation between consecutive wells,
r=&oj+1~ €0 =2K(K), where &, =2jK (k) is the position of

the jth well andK(k) is the complete elliptic integral of the
first kind.

The stability properties of BECs in the optical lattice
potential(27) have been recently studiéd’>"*Here, we are
interested in the case of large separation between the wells
FIG. 2. (Color onling. A quasi-1D condensatsolid line) in a deep periodic ~ (k=1) when the BEC is effectively fragmented into a chain
Optﬁgag'amce EQtemlji'g%aslgsdso':Egn;uehocsendigifggsifsoll‘zf\%(:i%ga?:t'ﬂcof nearly identical solitons with tail-mediated interactions,
\?v?tr;] gn-ziea;ot?:tigliEq.p(31)]. Using the oscri)llating ansat®B2), where eSUbJeCt to the action of an effective on-site potential due to
the jth soliton is forced to oscillate with amplituda;, one can further the OL. For a large set of parameter values, the system can
reduce the dynamics to a second-order recurrence relationship betwedye reduced to a Toda Iattigéas was shown in Refs. 88 and
neighboring amplitudefEq. (33)]. 89. The reduction involves two steps.

First, the effect of thejth well on the jth soliton [at
position &(t)] is approximated, using variational
or methods based on conserved quantﬁ?etg(

lu(x,t))* & V(x)

vantage of the approach of Ref. 20 is that, given the explicifeChnique
form of the potential, the relevant coefficients can be com-

puted and the appropriate redudaihgle-band or multiple- § = = V(& - &) (28)
band model can be derived to the desired level of approxi- offts] =037
mation. which describes a particle in the effective potentig felt

At this stage, one can study the ILMs of Ed&5) or  py the soliton. For well-separated trougtis=1), the effec-
(26) and use the Wannier function expansion to reconstrucgye potential force may be approximatedgﬁ)y

the solution of the original GP equatiéhThis approach has

been successfully used in a variety of applications and for

different localized states present in the lattice, including  Ver(é) = »Vol(a1—a, Vo)¢ +ag £, (29
bright, dark, and discrete-gap solitons, as well as } ] ) .
breather€>’*78820ther phenomena, such as discrete moduhere v is the average amplitudéeight of the soliton,a;
lational instabilities, have also been studf8dvore specifi- ~ =8/15,8=224/1125, anas=-16/63. _ _
cally, one of the most successful implementations of discrete S€cond, one treats the interaction of consecutive solitons
NLS equationgand variants therepfn this context included N the absence of the OL. This interaction is well-studied in
the quantitative prediction that its modulational stability e context of optical solitorfs ~ For identical, well-
analysis determined the threshold of a dynamical instabilipseParated solitongwith the phase differencer between ad-
of the condensatéthe so-called classical superfluid-Mott- Jacent solitonj it is approximated by the Toda-lattice equa-
insulator transition of Ref. 67 These predictions were sub- 0N for the soliton positions,

sequently verified quantitatively by the experimental mea-

surements of Ref. 68. f, =TU(E 06 E0) = 813(eE76-0 — g é:178)) . (30)
Finally, after combining(30) with the on-site potential dy-

IV. SOLITON-SOLITON TAIL-MEDIATED namics(28), we reduce the dynamics of a weakly coupled

INTERACTIONS AND THE TODA LATTICE BEC in the deep OL to the Toda lattice with on-site poten-

tials,
Recent advances in trapping techniques allow the gen-

eration of bright solitons and chains of bright solitons in )

effectively 1D attractive condensat&s®In this section, we & =TL(&-1,& &1 — Vir(& — &0y (31)
consider the collective motion of a chain of bright solitons. h da lati ami i i
We focus, in particular, on the dynamics of attractive BECs 1 he [Toda lattice(30) admits exact traveling-soliton
trapped in a deep optical lattid®L) that renders a 1D at- solutions®’ However, the effective potential i(81) breaks

tractive condensate into a chain of interacting solit(see the lattice’s translatllonal invariance and gives rise to ILMs
Fig. 2. (breathers To describe such localized oscillations, we con-

Consider a BEC loaded into an OL potential produced®ider small vibrations about the equilibrium stéfe=£;):

by the interference pattern of multiple counter-propagating

laser beam$’~>*In principle, it is possible to design various  &(t) = &, + A, cogwt), (32
optical trap profilegessentially at will by appropriately su-

perimposing interference patterns. For the purposes of thiwherew is the common oscillation frequency for all solitons,
exposition, we adopt an OL profile, with a tunable inter-welland thejth soliton vibrates with an amplitudd; about its
separation, given by the Jacobi elliptic-sine function, equilibrium position&y; (see Fig. 2 Substituting the ansatz
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----- generate a localized configuration for the recurrence relation-
T ship (33), as depicted in the top-right panel of Fig. 3. When

this localized configuration is inserted into the original GP
equation(14), one obtains a spatially localized, multi-soliton
state(depicted in the bottom panel of Fig) By shifting each
soliton from its equilibrium position by the prescribed
4 1  amount®®

Ay T It is important to note that generic localized initial con-
figurations do not give rise to long-lived, self-sustained

0.12

0.1
0.08 A
5006

0.04

0.02

T ILMs. Nonetheless, the construction described above is quite
o e efficient in producing approximate initial configurations that
generate robust localized states, such as the one displayed in
Fig. 3. The structural and dynamical stability of these local-
ized states is quite interesting. For example, the structural
stability of the homoclinic tangle of the 2D map guarantees
2000 the existence of the ILM solution in the original mod&#),
/"~ 1950 despite the employment of various approximations in the
B ) 0 o oz W " 1900 former's derivatipn. Olj the other.hand, thg dynamical stabil-
ity of ILMs permits their observation even in the presence of
FIG. 3. (Color onling. Homoclinic connection of the origittop-left panel strong perturbationgsuch as noise Indeed, numerical ex-
giviﬁg.rise to a spaﬁally localized profil&op-right pa%el. pBottopm: th‘e periments ShOW that ”‘MS_ Pr,evall e\_/en m_ the presence of
localized state in the original BEC modéll4) generated by the prescribed large perturbations to the initial configuration or strong nu-
amplitude configuration. The shaded base, depicijog 4t, highlights the ~ merical noise, as discussed in Refs. 88 and 89.
a“lfat_s in &’VhiCh the atomic de”SWth;\ Va”t‘as ‘hgwgg?t-(ibfﬁrve Itht?“ the Finally, it is worth mentioning that the dynamical reduc-
Foluon decays s one moves Sy o e cateD 142 e S919%ion 1o the 2D map(34) can also be used o generate—in
addition to the localized states discussed above—a wide
range of spatiotemporal structures by following the map’s
(32) into Eq.(31) and discarding higher-order modes yields afixed points, periodic orbits, quasiperiodic orbits, and even
recurrence relationship between consecutive amplitudes, chaotic orbits. Further, the techniques described in this sec-
2 tion can also be applied to chains of bright solitons in which
A1 = @+ DAYA -~ Ang, (33 the deep OL is replaced by an array of focused laser beams
wherea=2-w?+4a,d, b=3ayd, d=e""/(161%), r is the sepa- Or impurities that tends to pin the solitons and serve as a
ration between adjacent troughs, amdanda;, are the coef- local effective attractive potentigbee Eq(28)].
ficients from the expansion of the effective potential force
(29). Note that the method just described is applicable to any- CONCLUSIONS
OL profile that reduces the dynamics of a single soliton t©0 | this work, we have surveyed recent research on lattice
that of a particle inside an effective potential given by agynamics of Bose—Einstein condensatBECS in optical
cubic polynomial iné. _ . _ lattice (OL) potentials. We discussed, in particular, the dy-
By defining consecutive oscillation amplitudes ¥$  namics of BECs in a deep OL that naturally discretizes the
= Ay andx,= A, the recurrence relationshii33) can be  original spatially continuous system into a collection of dis-

=

cast as a 2D map, crete interacting nodesvells). The ensuing nonlinear lattice
X = features the trademark localized solutions—solitons and in-

n+1 = Yn» . . . .
(34) trinsic localized modes—that have rendered the Fermi—

Yoe1 = (@+ DYDY, — X, Pasta—Ulam problem one of last century’s most important
nrl nianoon contributions to nonlinear science. Specifically, using
It is crucial to note here that the iteration indaxin (34) Wannier-function expansions, we reduced the dynamics of

corresponds to thepatial lattice-site index for the soliton the Gross—PitaevskiiGP) equation to a discrete nonlinear
chain. Thus, forwardbackward iteration of the 2D map SchrodingefDNLS) equation, which was subsequently used
(34) amounts to a rightleft) shift of the spatial position in to identify localized solutiongas well as a number of other
the soliton chain. As our goal is to find spatially localized interesting dynamical instabilities, such as those discussed in
states of the BEC chaifi.e., ILMs), we are interested in Ref. 80 and reconstruct the nonlinear waves of the original
finding solutions of Eq(33) for whichA,—0 asn— txand GP equation. Treating a BEC trapped in a strong OL as a
Ao>0 (see Fig. 2 That is, (X5,¥,)— (0,00 as n— .  collection of interacting solitons, we then used perturbative
These solutions correspond to homoclinic connections of thand/or variational techniques to reduce the original GP equa-
origin. tion to a Toda-lattice equation with an effective on-site po-
A typical intersection for the stablésolid curve and  tential. This nonlinear lattice supports robust, exponentially
unstable(dashed curyemanifolds of the 2D mag34) is localized oscillations in BEC soliton chains.
depicted in the top-left panel of Fig. 3. The intersection  The crucial ingredient, amenable to the dynamical-
points P; between the stable and unstable manifolds thersystems perspective described in this manuscript, is the GP
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