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We conduct an experimental investigation of nonlinearity management in optics using femtosecond
pulses and layered Kerr media consisting of glass and air. By examining the propagation properties over
several diffraction lengths, we show that wave collapse can be prevented. We corroborate these
experimental results with numerical simulations of the (2� 1)-dimensional focusing cubic nonlinear
Schrödinger equation with piecewise constant coefficients and a theoretical analysis of this setting using a
moment method.
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Introduction.—In the past decade, techniques for man-
aging dispersion [1] and nonlinearity [2] have attracted
considerable attention in diverse branches of physics, in-
cluding optics, atomic and condensed-matter physics, and
other areas. Dispersion management (DM), originally pro-
posed for optical fibers based on periodically alternating
the group-velocity dispersion with opposite signs, was
found to be a robust method for supporting breathing soli-
tary waves [3]. It was subsequently implemented in atomic
matter waves [4], where the sign of dispersion was con-
trolled via periodic potentials. Nonlinearity management
(NM) was originally proposed in the context of layered
optical media [5], but it has garnered special attention in
the context of ultracold physics [2], where it was reformu-
lated as Feshbach resonance management [6]. In this latter
setting, the Feshbach resonance was proposed as a means
of periodically modifying the scattering length of inter-
atomic interactions (and hence the mean-field nonlinearity)
to avoid collapse in higher-dimensional Bose-Einstein con-
densates [7] and sustain robust breathing coherent struc-
tures of atomic matter waves [8,9]. The idea of NM has
also inspired considerable mathematical research, with a
focus on its averaged and collapse-preventing properties
[10].

However, to the best of our knowledge, there has not yet
been any experiment that addresses the theoretically pro-
posed framework of NM. The present Letter aims to bridge
this gap by offering an experimental investigation of NM in
an optical setting. In particular, we study the propagation
of femtosecond pulses in layered Kerr media. In a non-
linear Kerr medium, the index of refraction can be written
as n � n0 � n2I, where n0 is the linear contribution, n2 is
the Kerr coefficient, and I is the beam intensity. A beam
propagating through such a medium with self-focusing
(i.e., n2 > 0) in two dimensions (2D) will collapse [11]
if the beam power is above a critical threshold, Pc �
��0:61�2�2=�8n0n2�, where � is the light beam’s wave-
length. Our medium has layers of glass and air, which are

both self-focusing but with very different Kerr coefficients
(n�1�2 � 3:2� 10�16 cm2=W for glass [12] and n�2�2 �
3:2� 10�19 cm2=W for air [13]). The aim of our experi-
ment is to showcase what is arguably NM’s most striking
feature—preventing the wave collapse in 2D that would
occur in a homogeneous medium. We illustrate this effect
for powers in the interval (2Pc, 6Pc), where Pc refers to the
critical power in glass, that would otherwise be on the
verge of collapse before the occurrence of more complex
processes, such as the formation of a plasma through
multiphoton absorption [14,15]. The latter offers a defo-
cusing, lossy mechanism that prevents this catastrophic
phenomenon. Optical beams that do not diverge due to
diffraction (filaments or spatial solitons) have been ob-
tained through a variety of physical mechanisms [16]. Self-
guiding and filamentation of femtosecond pulses rely on
nonlinear losses and negative index changes from plasma
formation to stabilize the beam [12–15,17]. Here we dem-
onstrate a new guiding mechanism that does not rely on
plasma formation and can, in principle, be lossless. The
variation of the Kerr coefficient in the layered medium
prevents collapse, sustaining an oscillatory variation of the
beam width for considerable propagation distances (before
eventual dispersion due to weak losses arising at the inter-
faces between air-glass slides). We compare our experi-
mental results to numerical simulations of the nonlinear
Schrödinger (NLS) equation, adapted to the detailed ex-
periment setup, and find good qualitative agreement (and
quantitative agreement within the appropriate propagation
regime) between the two. An additional theoretical under-
standing of the experimental trends is offered by a moment
approach [8].

Experimental setup.—We show a schematic diagram of
the experimental setup in Fig. 1. A titanium:sapphire laser
amplifier system generates pulses with a duration of
160 femtoseconds and an energy of 2 mJ at � � 800 nm.
The beam profile is approximately Gaussian with a mea-
sured diameter (that is, a full-width half-maximum or
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FWHM) of 5 mm. The beam is attenuated using neutral
density filters (ND) and then focused with a 300 mm focal
length lens (L1). The nonlinear medium (NLM) is com-
posed of 1 mm thick glass slides (Corning MicroSlides part
number 2947) separated by 1 mm gaps of air. The input
face of the nonlinear medium is placed 2 mm after the
beam focus (the beam is diverging when it enters the
nonlinear medium). At the input face of the nonlinear
medium, FWHM � 43 �m. After traversing the NLM,
the beam is attenuated and imaged on a CCD camera
(Pulnix TM-7EX) using two lenses (L2 and L3) in a 4-F
configuration, with a magnification of M � 8. We perform
multiple experiments in which we vary the number of glass
slides from one to nine. For each experiment, the beam
profile is captured both at the output face of the NLM and
after further propagation through 1 mm of air. The 4-F
system allows us to image different planes along the
propagation direction by changing the position of the
CCD camera with respect to L3. For comparison, we also
measure the propagation in glass by placing multiple glass
slides together (without air gaps).

Theoretical setup.—The standard model for beam
propagation in optical media, incorporating the dispersive
and Kerr effects, is the NLS equation [11], which we adapt
to our experimental setting. We rescale space by the wave
number, ��; �; �� � k�1��x; y; z� and the electric field enve-
lope with u � �n�1�2 =n

�1�
0 �

1=2E [18]. [The superscript (j)
denotes the medium, with j � 1 for glass and j � 2 for
air.] The physical setting is then described by
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where glass of scaled length ~l alternates with air of scaled
length ~L� ~l. Our numerical simulations consider radially
symmetric solutions of (1), an approximation supported by
the experimental data. We compare the simulation results
directly to the experiments.

To gain analytical insight, we use the moment method
[8] to reduce the radial NLS equation to a set of ordinary
differential equations (ODEs) for its moments. Define
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and is conserved by the dynamics of Eq. (1). The Gaussian
profile u � V0 expf�r2=�2�2�g gives I1 � V2

0��
2. The

remaining quantities are associated with the beamwidth
(I2), momentum (I3), Hamiltonian (I�j�4 ), and nonlinearity
(I5). Assuming arg�u� � I3r2=�4I2�, a good approxima-
tion for � � 0 in our experiments, yields a closed set of
coupled ODEs for the Ii. With the invariants Q�j�1 �

2�I�j�4 � gjI5�I2 � I2
3=4 and Q2 � 2

����
I2

p
I5 [8], we obtain

an Ermakov-Pinney (EP) [19] equation describing the
dynamics of the scaled beamwidth y��� �

�����������
I2���

p
:

 y00 � �Q�j�1 � gjQ2�=y
3 	 �j=y

3: (2)

For the initial Gaussian beam, the invariants are Q�1�1 �

�2	4P2, Q�2�1 � 
�
�1�
0 =�

�2�
0 �Q

�1�
1 � 1:5Q�1�1 , and Q2 �

�2	6P3, where 	 � 1:355 666 5 and P is the beam’s
scaled (by Pc) power. In the kth segment of the medium,
the solution is y � �Ak � Bk�2 � Ck��1=2, with AkBk �
C2
k � 1. The initial value y�� � 0� comes from the experi-

mental setup, and the coefficients Ak, Bk, and Ck can be
obtained from continuity conditions at the interfaces be-
tween the slides. Results using Eq. (2) will also be directly
compared with the experiments.

Results.—We applied our experimental, numerical, and
analytical approaches to a variety of settings. Figure 2
shows the measured beam diameter (FWHM) as a function
of propagation distance in air, the layered medium, and
glass. For the layered medium, the beam propagates
through glass from 0 to 1 mm, through air from 1 mm to
2 mm, then through another layer of glass followed by air,
and so on for nine periods. The pulse power is 5:9Pc. In air,
the effect of the nonlinearity is practically negligible, so
the beam diffracts. In glass, the beam focuses to a mini-
mum diameter of 7:5 �m after a distance of 2 mm, defo-
cuses to 14 �m between 3 mm and 5 mm (the reason is
discussed below), and then starts to diverge. In the layered
medium, the beam initially focuses through the first layer
and then its diameter oscillates over the first three periods
with a mean of about 30 �m. The minimum beam diame-
ter is 20 �m. The oscillations then die down and the beam
starts to diverge, although with a smaller slope than either
propagation in air or in glass.

Comparing the propagation through the layered non-
linear medium with the linear propagation (air), it is clear
that the beam diameter is sustained over several diffraction
lengths. In both the glass and the layered medium, the
beam is self-focused and stabilized. The loss of energy is
what ultimately causes the beam to diverge. Their stabiliz-
ing mechanisms are, however, different. The bottom left
panel of Fig. 2 shows the total energy in the beam as a
function of the number of glass slides the beam has trav-
ersed for both the layered medium and glass. In the former,
we measured a total transmission of 37% for 8 layers (88%
per glass slide), independent of the power (so it is linear

Laser CCD

ND

L1
NLM

L2 L3

ND

FIG. 1. Experimental setup. ND � neutral density filters,
NLM � nonlinear medium, and L1–L3 � lenses.
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loss). This arises mainly from reflections at the air-glass
interfaces and perhaps also absorption/scattering. In glass,
an additional loss appears after 2 mm when the beam
reaches the minimum diameter. It has been demonstrated
for similar propagation parameters that the stabilizing
mechanism for propagation in glass is plasma formation
[12], which occurs through multiphoton absorption that
creates a negative index change and balances the Kerr
self-focusing. The multiphoton absorption thus accounts
for the additional loss measured in glass. The resulting
larger beam diameter (lower intensity) prevents multipho-
ton absorption from becoming significant in the layered
medium. The guiding in the layered medium is done purely
by Kerr self-focusing and diffraction. In glass, plasma
formation starts at about 2 mm, whereas here the beam
propagates through the layered medium for a much longer
distance. We believe the range of stabilization in the

layered medium can be greatly improved by reducing the
reflection losses due to the refractive index mismatch (e.g.,
by using antireflection coating on the glass surfaces). The
experimental results are in good qualitative and quantita-
tive agreement with the PDE simulations of Eq. (1). In
Fig. 2, we show that the beam’s FWHM accurately follows
the propagation in both air and glass. In the layered me-
dium, the PDE also follows the experiment qualitatively
(and even quantitatively at first). (Our simulations include
the losses at each interface.) We also used a beam propa-
gation code to perform a full 3D simulation that includes
dispersion in the temporal domain. The results are similar
to the 2D simulation, but with an improved quantitative
agreement with the experiments (Fig. 2). The effect of
temporal dispersion is to increase the duration of the pulse,
thereby decreasing the power and the strength of the self-
focusing. In the simulation, the pulse broadens by approxi-
mately 15% after 15 mm of propagation, and the shape
changes from a Gaussian to a weakly multipeaked profile.
The numerical results show that temporal effects do not
play a critical role in the stabilization of the beam, as
shown previously for plasma stabilized filaments in glass
[12]. In the rest of the Letter, we thus compare the experi-
mental results with the 2D simulation.

We also studied propagation through the layered me-
dium as a function of pulse power. The top left panel of
Fig. 3 shows the evolution of the beam diameter for P �
5:9; 4:9; 3:9; 2:3Pc. We adjust the power by placing neu-
tral density filters before the focusing lens L1 in Fig. 1.
There is a clear trend to stronger self-focusing with in-
creasing power. In each case, the beam diverges less than
for propagation in air. There are some oscillations in the
beam diameter; they increase with power and eventually
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FIG. 3 (color online). Comparison of NM for different powers.
The top left panel shows the experimental results for P � 2:3Pc
(pluses), P � 3:9Pc (stars), P � 4:9Pc (triangles), and P �
5:9Pc (circles). We plot the FWHM as a function of the propa-
gation distance z. The individual cases of 2:3Pc (top right),
3:9Pc (bottom left), and 4:9Pc (bottom right) are compared
with the PDE diagnostic (see text), shown by the dash-dotted
curves, and the ODE results (thick dashed curves).
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FIG. 2 (color online). Dynamics for power P � 5:9Pc.
(Top) Beam FWHM (in �m) as a function of propagation
distance (in mm) for air, the layered medium, and glass. The
respective experimental results are denoted by �, , and � (the
solid curves are visual guides). The FWHM computed from
Eq. (1) is shown by the thin dash-dotted curve, and simulations
incorporating time propagation are shown by the thick dashed
curve. (Bottom right) Spatial dependence of the field in Eq. (1).
(Bottom left) The (normalized) experimentally measured beam
energy for glass and the layered medium as a function of the
number of glass slides.
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die down after a few periods as the power decreases. The
minimum beam diameter decreases with increasing power,
showing that there is no significant intensity clamping for
these power values. The measured loss was the same
(within experimental errors) for all power levels. The
results for 2:3Pc (top right panel), 3:9Pc (bottom left),
and 4:9Pc (bottom right) are also compared with PDE
and ODE numerical results. The PDE diagnostic (shown
by dash-dotted curves) is based on the definition of the
beam FWHM and correctly follows the experiment’s quali-
tative trends (and even its quantitative ones for short
propagation distances or weaker powers involving quasi-
linear propagation or beam divergence). The ODE approxi-
mation (thick dashed curves) captures the weaker beam
divergence for larger P but is less successful with finer
features (such as oscillations in the beamwidth). This may
be attributable to the sensitive nature of the closure ap-
proximations (especially bearing in mind the loss proper-
ties of the medium). Nevertheless, Eq. (2) provides a fair,
analytically tractable approximation to the observations.

Finally, Fig. 4 shows the effect of changing the period-
icity of the layered structure. The initial power was set to
5:9Pc, and the air gaps were increased from 1 mm to
1.5 mm and then 2 mm. The thickness of the glass layers
was 1 mm in each case. Changing the periodicity effec-
tively changes the divergence of the beam. As the period is
increased, the intensity of the beam is lower when it
reaches the second and subsequent glass layers, resulting
in a weaker self-focusing and a ‘‘faster’’ divergence. The
PDE results for the FWHM once again accurately capture
the relevant trends qualitatively (and also quantitatively at
first).

Conclusions.—In sum, we have offered in the present
work the first experimental realization of nonlinearity
management (NM) in the context of optical physics us-
ing femtosecond pulse propagation in layered (glass-air)
media. We have demonstrated stabilization of the beam
through NM, which can potentially provide a lossless self-
guiding mechanism. We have examined the effects of
different beam powers and different layered-media com-
positions. We also compared these results with uniform
media and (partially) accounted for the relevant loss
mechanisms. The experimental results are accurately cap-
tured qualitatively (and, when appropriate, also quantita-
tively) by an NLS model and some of their key features can
also be seen using a far more drastic but analytically
tractable ODE approximation. Interesting future experi-
mental directions may involve the reduction of losses or
the incorporation of slides of defocusing material that
could lead to a complete stabilization (with stable oscil-
lations of the beam) [7,8].
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FIG. 4 (color online). NM for different layered media.
(Top) Numerical results for P � 5:9Pc with 1 mm glass-1 mm
air slide layers (thinnest dash-dotted curve), with 1 mm glass-
1.5 mm air layers (intermediate thickness dash-dotted curve),
and with 1 mm glass-2 mm air layers (thickest dash-dotted
curve). (Bottom) Corresponding solid curves with increasing
thicknesses and symbol sizes representing the experimental
results for the respective cases.
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