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It is common in the study of networks to investigate intermediate-sized (or “meso-scale”) features to try to gain
an understanding of network structure and function. For example, numerous algorithms have been developed to
try to identify “communities,” which are typically construed as sets of nodes with denser connections internally
than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are
associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ
several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to
investigate community quality as a function of community size. Using several empirical and synthetic networks,
we identify several distinct scenarios for “size-resolved community structure” that can arise in real (and realistic)
networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation
of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best
medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups.
As we discuss in detail, which of these three cases holds for a given network can make an enormous difference
when investigating and making claims about network community structure, and it is important to take this into
account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be
able to successfully identify “good” communities in a given network (and good communities might not even exist
for a given community quality measure), the manner in which different small communities fit together to form
meso-scale network structures can be very different, and processes such as viral propagation and information
diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic
networks, the output of locally biased methods that focus on communities that are centered around a given seed
node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output
of global community-detection methods. They also illustrate structural properties that are important to consider

in the development of better benchmark networks to test methods for community detection.
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I. INTRODUCTION

Many physical, technological, biological, and social sys-
tems can be modeled as networks, which in their simplest
form are represented by graphs. A (static and single-layer)
graph consists of a set of entities (called “vertices” or “nodes”)
and pairwise interactions (called “edges” or “links”) between
those vertices [1-3]. Network representations of data have led
to numerous insights in the natural, social, and information
sciences; and the study of networks has, in turn, borrowed
ideas from all of these areas [4].

In general, networks can be described using a combination
of local, global, and “meso-scale” perspectives. To investi-
gate meso-scale structures—i.e., intermediate-sized structures
that are responsible for “coupling” local properties, such
as whether triangles close, and global properties, such as
graph diameter—a fundamental primitive in many applications
entails partitioning graphs into meaningful and/or useful sets
of nodes [3]. The most popular form of such a partitioning
procedure, in which one attempts to find relatively dense sets
of nodes that are relatively sparsely connected to other sets, is
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known as “community detection” [5—7]. Myriad methods have
been developed to algorithmically detect communities [5,6];
and these efforts have led to insights in applications such as
committee and voting networks in political science [8-10],
friendship networks at universities and other educational
institutions [11-13], protein-protein interaction networks [14],
granular materials [15], amorphous materials [16], brain and
behavioral networks in neuroscience [17-19], collaboration
patterns [20], human communication networks [21,22], human
mobility patterns [23], and so on.

The motivation for the present work is the observation that
it can be very challenging to find meaningful medium-sized
or large communities in large networks [24-26]. Much of the
large body of work on algorithmically identifying communities
in networks has been applied successfully either to find
communities in small networks or to find small communities
in large networks [5,6,25], but it has been much less successful
at finding meaningful medium-sized and large communities in
large networks [27]. There are many reasons that it is difficult
to find “good” large communities in large networks. We discuss
several such reasons in the following paragraphs.
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First, although it is typical to think about communities as
sets of nodes with “denser” interactions among its members
than between its members and the rest of a network, the
literature contains neither a consensus definition of community
nor a consensus on a precise formalization of what constitutes
a “good” community [5,6].

Second, the popular formalizations of a “community”
are computationally intractable, and there is little precise
understanding or theoretical control on how closely popular
heuristics to compute communities approximate the exact
answers in those formulations [28,29]. Indeed, community
structure itself is typically “defined” operationally via the
output of a community-detection algorithm, rather than as the
solution to a precise optimization problem or via some other
mathematically precise notion [5,6].

Third, many large networks are extremely sparse [25]
and thus have complicated structures that pose significant
challenges for the algorithmic detection of communities via
the optimization of objective functions [29]. This is especially
true when attempting to develop algorithms that scale well
enough to be usable in practice on large networks [6,25,30].

Fourth, the fact that it is difficult to visualize large networks
complicates the validation of community-detection methods in
such networks. One possible means of validation is to compare
algorithmically obtained communities with known “ground
truth” communities. However, notions of ground truth can be
weak in large networks [12,25,31], and one rarely possesses
even a weak notion of ground truth for most networks. Indeed,
in many cases, one should not expect a real (or realistic) large
network to possess a single feature that (roughly) dominates
large-scale latent structure in a network. Thus, comparing the
output of community-detection algorithms to ground truth in
practice is most appropriate for obtaining coarse insights into
how a network might be organized into social or functional
groups of nodes [11]. Furthermore, different notions and/or
formalizations of “community” concepts might be appropriate
in different contexts [5,6,32—34], so it is desirable to formulate
flexible methods that can incorporate different perspectives.

Fifth, community-detection algorithms often have subtle
and counterintuitive properties as a function of the sizes of
their inputs and/or outputs. For example, the community-size
“resolution limit” of the popular modularity objective function
is a fundamental consequence of the form (e.g., its additive
nature is a key ingredient) of that objective function, but it
only became obvious to people after it was explicitly pointed
out [35].

Motivated by these observations, we consider the question
of community quality as a function of the size (i.e., number
of nodes) of a purported community. That is, we are con-
cerned with questions such as the following. (1) What is
the relationship between communities of different sizes in
a given network? In particular, for a given network and a
given community-quality diagnostic, are larger communities
“better” or “worse” than smaller communities? (2) What is
an appropriate way to think about medium-sized and large
communities in large networks? In particular, how do smaller
communities “fit together” into medium-sized and larger
communities? (3) More generally, what effect do the answers
to these questions have on downstream tasks that are of primary
concern when modeling data using networks? For example,
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what effect do they have on processes such as viral propagation
or the diffusion of information on networks?

By considering a suite of networks and using several related
notions of community quality, we identify several scenarios
that can arise in realistic networks.

(1) Small communities are better than large communities.
In this scenario, for which there is an upward-sloping network
community profile (NCP; see the discussion below), a network
has small groups of nodes that correspond more closely than
any large groups to intuitive ideas of what constitutes a good
community.

(2) Small and large communities are similarly good or
bad. In this scenario, for which an NCP is roughly flat, the
most communitylike small groups of nodes in a network have
similar community quality scores to the most communitylike
large groups.

(3) Large communities are better than small communities.
In this scenario, for which an NCP is downward sloping, a net-
work has large groups of nodes that are more communitylike
(i.e., “better” in some sense) than any small groups.

Although the third scenario is the one that has an intuitive
isoperimetric interpretation and thus corresponds most closely
with peoples’ intuition when they develop and validate
community-detection algorithms, one of our main conclusions
is that most large realistic networks exhibit the first or second
scenarios. This is consistent with recent results on network
community structure that use related approaches [24-26] as
well as somewhat different approaches [31,36], and it also
helps illustrate the importance of considering community
structures with groups that have large overlaps. For more on
this, see our discussions below.

One of the main tools that we use to justify the above
observations and to interpret the implications of community
structure in a network is a network community profile, which
was originally introduced in Ref. [25]. Given a community
“quality” score—i.e., a formalization of the idea of a “good”
community—an NCP plots the score of the best community
of a given size as a function of community size. The authors
of Refs. [24,25] considered the community-quality notion of
conductance and employed various algorithms to approximate
it. In subsequent work [26], many other notions of community
quality have also been used to compute NCPs.

In the present paper, we compute NCPs using three different
procedures to identify communities.

(1) Diffusion-based dynamics. First, we consider a
diffusion-based dynamics (called the ACLCUT method; see
the discussions in Sec. IIIC and Appendix B) from the
original NCP analysis [25] that has an interpretation that
good communities correspond to bottlenecks in the associated
dynamics.

(2) Spectral-based optimization. Second, we consider a
spectral-based optimization rule (called the MOVCUT method;
see the discussions in Sec. IIIC and Appendix B) that is
a locally biased analog of the usual global spectral graph-
partitioning problem [37].

(3) Geodesic-based dynamics. Finally, we consider a
geodesic-based spreading process (called the EGONET method;
see the discussions in Sec. III C and Appendix B) that has an
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interpretation that nodes in a good community are connected
by short paths that emanate from a seed node [38].

We describe these three procedures in detail in Appendix B.
For now, we note that the first and third procedures have a
natural interpretation as defining communities operationally
as the output of an underlying dynamical process, and the first
and second procedures allow us to compare this operational
approach with an optimization-based approach.

Viewed from this perspective, the computation of network
community structure depends fundamentally on three things:
(1) actual network structure, (2) the dynamical process or
application of interest, and (3) the initial conditions or network
region of interest. The perspective in point (3) contrasts with
the prevalent view of community structure as arising simply
from network structure [5,6], but it is consistent with the notion
of dynamical systems depending fundamentally on their initial
conditions, and it is crucial in many applications (e.g., both
social [39,40] and biological contagions [41-43]).

Facebook’s Data Science Team and its collaborators have
demonstrated that one can view Facebook as a collection of
egocentric networks that have been patched together into a
network whose global structure is very sparse [44,45]. The
above three community-identification methods have the virtue
of combining the prevalent structural perspective with the
idea that one is often interested in structure that is located
“near” (in terms of both network topology and edge weights)
an exogenously specified “seed set” of nodes [46]. The
perspective in point (2) underscores the fact that one should not
expect answers to be “universal.” The differences between the
aforementioned three methods lie in the specific dynamical
processes that underlie them. We also note that, although
we focus on the measure of community quality known as
“conductance” (which is intimately related to the problem of
characterizing the mixing rates of random walks [47]), one can
view other quality functions (e.g., based on nonconservative
dynamics [48-50] or geodesic-based dynamics [38]) as solv-
ing other problems, and they thus can reveal different aspects
of community structure in networks.

The global NCPs that we compute from the three
community-identification procedures are rather similar in
some respects, suggesting that the characteristic features of
NCPs are actual features of networks and not just artifacts of
a particular way of sampling local communities. However,
we observe significant differences in their local behaviors
because they are based on different dynamical processes. In
concert with other recent work (e.g., [34,51,52]), our results
with these three procedures suggest that “local” methods that
focus on finding communities centered around an exogenously
specified seed node (or seed set of nodes) might have better
theoretical grounding and more practical utility than other
methods for community detection.

Our “local” (and “size-resolved”) perspective on com-
munity structure also yields several other interesting in-
sights. By design, it allows us to discern how community
structure depends both on the seed node and on the size
scales and time scales of a dynamical process running on
a network. Similar perspectives were discussed in recent
work on detecting communities in networks using Markov
processes [9,32-34,53-55], and our approach is in the spirit of
research on dynamical systems more generally, as bottlenecks
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to diffusion and other dynamics depend fundamentally on
initial conditions. Local information algorithms are also an
important approach for many other optimization problems
and for practical purposes such as friend recommendation
systems in online social networks [56]. Moreover, taking a
local perspective on community structure is also consistent
with the sociological idea of egocentric networks (and with
real-world experiences of individuals, such as Facebook
users [44,45], who interact with their personal neighborhoods
of a social network). The local community of a given node
should be similarly locally biased, and we demonstrate this
feature quantitatively for several real networks. Using our
perspective, we also demonstrate subtle yet fundamental
differences between different networks: Some networks have
high-quality communities of different sizes (especially small
ones), whereas others do not possess communities of any
size that give bottlenecks to diffusion-based dynamics. This
is consistent with, and helps explain, prior direct observations
of networks in which algorithmically computed communities
seemed to have little or no effect on several dynamical
processes [57]. More generally and importantly, whether small
or large communities are “better” with respect to some measure
of community quality has significant consequences not only
for algorithms that attempt to identify communities but also
for the dynamics of processes such as viral propagation and
information diffusion.

The rest of this paper is organized as follows. Because our
approach to examining network communities is uncommon in
the physics literature, we start in Sec. II with an informal
description of our approach. We then introduce NCPs in
Sec. III. In Sec. IV, we present our main empirical results
on community quality as a function of size, and we provide
a detailed comparison of our three community-identification
procedures when applied to real networks. This illustrates
the three distinct scenarios of community quality versus
community size that we described above. In Sec. V, we
illustrate the behavior of these methods on the well-known
Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks
that are commonly used to evaluate the performance of
community-detection techniques. We find that their NCPs
have a characteristic shape for a wide range of parameter
values and are unable to reproduce the different scenarios that
one observes for real networks. We then conclude in Sec. VI
with a discussion of our results. In Appendix A, we provide
a brief discussion of expander graphs (aka “expanders”). In
Appendix B, we give detailed descriptions of the three specific
procedures that we use to identify communities. Appendices C
and D contain additional empirical results.

II. BACKGROUND AND PRELIMINARIES

In this section, we describe some background and prelim-
inaries that provide the framework that we use to interpret
our results on size-resolved community structure in Secs. IV
and V. We start in Sec. II A by defining the notation that we
use throughout this paper, and we continue in Sec. I B with
a brief discussion of possibilities for what a network might
“look like” if one is interested in its meso-scale or large-scale
structure. To convey the basic idea of our approach, much of
our discussion in this section is informal. In later sections, we
make these ideas more precise.

012821-3



JEUB, BALACHANDRAN, PORTER, MUCHA, AND MAHONEY

A. Definitions and notation

We represent each of the networks that we study as an
undirected graph. We consider both weighted and unweighted
graphs.

Let G = (V,E,w) be a connected and undirected graph
with node set V, edge set E, and set w of weights on the edges.
Let n = |V| denote the number of nodes, and let m = |E|
denote the number of edges. The edge {i,j} has weight
w;;. Let A = Ag € R"™" denote the (weighted) adjacency
matrix of G. Its elements are Ag(i,j) = w;; if {i,j} € E
and Ag(i,j) =0 otherwise. The matrix D = Dg € R"*"
denotes the diagonal degree matrix of G. Its elements are
Dg(i,i) =d; = Zm}eE w;;, where d; is called the “strength”
or “weighted degree” of node i. The combinatorial Laplacian
of G is Lg = Dg — Ag, and the normalized Laplacian of G
is Lo = D;'*LoDg'”.

A path P in G is a sequence of edges P = {{i,jx}}i_,
such that jy = x4+ fork = 1,...,s — 1. The length of path P
is |P| = Z{i,j}eP lij, where [;; is the length of the edge that
connects nodes i and j. For an unweighted network, /;; =1
for all edges. For weighted networks, we use w;; as a measure
of closeness for the tie between nodes i and j, and a common
choice for length is /;; = w% Let P;; be the set of all paths

between i and j. The geodesic distance A;; = minpep,; | P|
between nodes i and j is the length of a shortest path between
i and j. The k-neighborhood Ny(i) = {j € V : A;; < k}ofiis
the set of all nodes that are at most a distance k away from i, and
the k-neighborhood of a set of nodes S is Ni(S) = UieS Ni(i).

The egocentric network (i.e., ego network or ego-ner)
[125] of a node (the ego) is the subgraph induced by the
neighborhood of the ego. That is, the ego-net is the network
that consists of all nodes that are in the ego’s 1-neighborhood
and all edges between those nodes. We use the term k-ego-net
for the subgraph induced by the k-neighborhood of a node.
The traditional definition of an ego-net excludes the ego and
its edges, but we specifically include them.

B. What can networks look like?

Before examining real networks, we start with the following
question: What can a network look like, very roughly, if
one “squints” at it? This question is admittedly vague, but
the answer to it governs how small-scale network structure
“interacts” with large-scale network structure, and it informs
researchers’ intuitions and the design decisions that they make
when analyzing networks (and when developing methods to
analyze networks). As an example of this idea, it should be
intuitively clear that if one squints at the nearest-neighbor 7>
network (i.e., the uniform lattice of pairs of integers on the
Euclidean plane), then they look like the Euclidean plane R?.
Distances are approximately preserved and, up to boundary
conditions and discretization effects, dynamical processes on
one approximate the analogous dynamical processes on the
other. In the fields of geometric group theory and coarse
geometry, this intuitive connection between Z? and R? has
been made precise using the notions of coarse embeddings
and quasi-isometries [58].

Establishing quasi-isometric relationships on networks that
are expander graphs (aka “expanders”; see Appendix A)
is technically brittle [60]. Thus, for the present informal
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discussion, we rely on a simper notion. Suppose that we are
interested in the “best fit” of the adjacency matrix Atoa?2 x 2

block matrix,
A AT
A= i)
<A12 Axn

where A;; = ozijﬁT, where «;; € R* (ie., they are non-
negative) and the “l-vector” 1 is a column vector of the
appropriate dimension that contains a 1 in every entry. Thus,
each block in A has uniform values for all of its elements,
and larger values of «;; correspond to stronger interactions
between nodes. The structure of A is then determined based on
the relative sizes of &1y, 12, and oep5. The various relative sizes
of these three scalars have a strong bearing on the structure of
the network associated with A. We illustrate several examples
in Fig. 1. For the block models that we use for three of its
panels, one block has n; nodes and the second block has n;
nodes, and a node in block i is connected to a node in block j
with probability o;; [61].

(1) Low-dimensional structure. In Fig. 1(a), we illustrate
the case in which ay; ~ azy > ojs. In this case, each half
of the network interacts with itself more densely than it
interacts with the other half of the network. This “hot dog”
or “pancake” structure corresponds to the situation in which
there are two (or any number, in the case of networks more
generally) dense communities of nodes that are reasonably
well balanced in the sense that each community has roughly
the same number of nodes. In this case, the network embeds
relatively well in a one-dimensional, two-dimensional, or

) Low-dimensional structure ) Core-periphery structure

me

(d) Bipartite structure

¢) Expander or complete
graph

FIG. 1. Idealized block models of network adjacency matrices;
darker blocks correspond to denser connections among its component
nodes. Panel (a) illustrates a low-dimensional “hot dog” or “pancake”
structure; panel (b) illustrates a “core-periphery” structure; panel (c)
illustrates an unstructured expander or complete graph; and panel (d)
illustrates a bipartite graph. Our example networks are the Zachary
Karate Club [59] in panel (a) and a realization of a random-graph
block model in panels (b)—(d). For panel (b), we only show the largest
connected component (LCC); the networks in panels (c) and (d)
are connected. The parameters for the block models are as follows:
(b) o1 = 03, Oy = 000], o) = 0005, ny = 50 nodes, and ny =
950 nodes (the LCC has 615 nodes); (¢) o] = oz = o, = 0.01,
and n; + n, = 1000 nodes (this is an Erd6s-Rényi graph); (d) oy =
Oy = 0, o1y = 002, and ny=n;= 500 nodes.
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other low-dimensional space. Spectral clustering or other
clustering methods often find meaningful communities in such
networks, and one can often readily construct meaningful and
interpretable visualizations of network structure.

(2) Core-periphery structure. In Fig. 1(b), we illustrate
the case in which o > a2 > . This is an example
of a network with a density-based “core-periphery” struc-
ture [24,25,62—64]. There is a core set of nodes that are
relatively well connected both among themselves and to a set
of peripheral nodes that interact very little among themselves.

(3) Expander or complete graph. In Fig. 1(c), we illustrate
the case in which o] & «ojp & ay. This corresponds to a
network with little or no discernible structure. For example,
if a1 = oo = app = 1, then the graph is a clique (i.e., the
complete graph). Alternatively, if the graph is a constant-
degree expander, then o) &~ o *® ayp K 1. As discussed
in Appendix A, constant-degree expanders yield the metric
spaces that embed least well in low-dimensional Euclidean
spaces. In terms of the idealized block model in Fig. 1, they
look like complete graphs, and partitioning them would not
yield network structure that one should expect to construe as
meaningful. Informally, they are largely unstructured when
viewed at large size scales.

(4) Bipartite structure. In Fig. 1(d), we illustrate the case
in which a3 > a1 & ay,. This corresponds to a bipartite or
nearly bipartite graph. Such networks arise, e.g., when there
are two different types of nodes, such that one type of node
connects only to (or predominantly to) nodes of the other

type [65].

Most methods for algorithmic detection of communities
have been developed and validated using the intuition that net-
works have some sort of low-dimensional structure [5,25,36].
As an example, consider the infamous Zachary Karate Club
network [59], which we show in Fig. 1(a). This well-known
benchmark graph, which seems to be an almost obligatory
example to include in papers that discuss community structure,
clearly looks like it has a nice low-dimensional structure. For
example, there is a clearly identifiable left half and right half,
and two-dimensional visualizations of the network [such as
that in Fig. 1(a)] highlight that bipartition. Indeed, the Zachary
Karate Club network possesses well-balanced and (quoting
Simon [66]) “nearly decomposable” communities; and the
nodes in each community are more densely connected to nodes
in the same community than they are to nodes in the other
community. Relatedly, appropriately reordering the nodes of
the Zachary Karate Club network yields an adjacency-matrix
representation with an almost block-diagonal structure with
two blocks [as typified by the cartoon in Fig. 1(a)]; and any
reasonable community-detection algorithm should be able to
find (exactly or approximately) the two communities.

Another well-known network that (slightly less obviously)
looks like it has a low-dimensional structure is a so-called
caveman network, which we illustrate later [in Fig. 2(c)].
Arguably, a caveman network has many more communities
than the Zachary Karate Club, so details such as whether
an algorithm “should” split it into two or a somewhat larger
number of reasonably well-balanced communities might be
different than in the Zachary Karate Club network. However,
a caveman network also has a natural well-balanced parti-
tion that respects intuitive community structure. Reasonable
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FIG. 2. (Color online) Illustration of network community pro-
files (NCPs) of conductance versus community size. (a) Stylized
versions of possible shapes for an NCP: downward-sloping (black,
solid curve), upward-sloping (red, dotted curve), and flat (blue,
dashed curve). (b) NCP of a LIVEJOURNAL network that illustrates
the characteristic upward-sloping NCP that is typical for many large
empirical social and information networks [25]. (c) A toy “caveman
network” with 10 cliques of 10 nodes each, where one edge from each
clique has been rewired to create a ring [70]. (d) NCP for a similar
caveman network with 100 cliques of 10 nodes each [the NCP for the
network in panel (c) is identical for communities with fewer than 50
nodes], illustrating the characteristic downward-sloping NCP that is
typical of networks that are embedded in a low-dimensional space.

two-dimensional visualizations of this network [such as the
one that we present in Fig. 2(c)] shed light on that structure;
and any reasonable community-detection algorithm can be
adjusted to find (exactly or approximately) the expected
communities. In this paper, we demonstrate that most realistic
networks do not look like these small examples. Instead,
realistic networks are often poorly approximated by low-
dimensional structures (e.g., with a small number of relatively
well-balanced communities, each of which is more densely
connected internally than it is with the rest of the network).
Realistic networks often include substructures that more
closely resemble core-periphery graphs or expander graphs
[see Figs. 1(b) and 1(c)]; and networks that partition into
nice, nearly decomposable communities tend to be exceptional
rather than typical [24,25,36].

III. NETWORK COMMUNITY PROFILES
AND THEIR INTERPRETATION

Recall from Sec. I that an NCP measures the quality of the
best possible community of a given size as a function of the
size of the purported community [24-26]. In this section, we
provide a brief description of NCPs and how we use them.

A. The basic NCP: Measuring size-resolved community quality

We start with the definition of conductance and the original
conductance-based definition of an NCP from Ref. [25], and
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we then discuss our extensions of such ideas. For more details
on conductance and NCPs, see Refs. [25,37,67,68]. If G =
(V,E,w)1is a graph with weighted adjacency matrix A, then the
“volume” between two sets S| and S, of nodes (i.e., S; C V)
equals the total weight of edges with one end in S; and one
end in S,. That is,

vol(S1.80) = Y ") " Ay Q)

ieS) jes

In this case, the “volume” of a set S C V of nodes is

vol(S) = vol(S,V) = Z Z Aij. (2)
ieS jeVv
In other words, the set volume equals the total weight of
edges that are attached to nodes in the set. The volume
vol(S,S) between a set S and its complement S has a
natural interpretation as the “surface area” of the “boundary”
between S and S. In this study, a set S is a hypothesized
community. Informally, the conductance of a set S of nodes is
the surface area of that hypothesized community divided by
“volume” (i.e., size) of that community. From this perspective,
studying community structure amounts to an exploration of the
isoperimetric structure of G.
Somewhat more formally, the conductance of a set of nodes
SCVis

vol($,5)
min (vol(S),vol(S))

Thus, smaller values of conductance correspond to better
communities. The conductance of a graph G is the minimum
conductance of any subset of nodes:

$(G) = min ¢ (S). *)

¢(S) = 3)

Computing the conductance ¢(G) of an arbitrary graph is
an intractable problem (in the sense that the associated
decision problem is NP-hard [69]), but this quantity can be
approximated by the second-smallest eigenvalue A, of the
normalized Laplacian [67,68].

If the “surface area to volume” (i.e., isoperimetric) inter-
pretation captures the notion of a good community as a set of
nodes that is connected more densely internally than with the
remainder of a network, then computing the solution to Eq. (4)
leads to the “best” (in this sense) community of any size in the
network.

Instead of defining a community quality score in terms
of the best community of any size, it is useful to define a
community quality score in terms of the best community of a
given size k as a function of the size k. To do this, Ref. [25]
introduced the idea of a network community profile (NCP) as
the lower envelope of the conductance values of communities
of a given size:

min
SCV,|S|=k

& (G) = #(S). )
An NCP plots a community quality score (which, as in
Ref. [25], we take to be the set conductance of communities)
of the best possible community of size k as a function of k.
Clearly, it is also intractable to compute the quantity ¢x(G)
in Eq. (5) exactly. Previous work has used spectral-based and
flow-based algorithms to approximate it [24—26].
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To gain insight into how to understand an NCP and what it
reveals about network structure, consider Fig. 2. In Fig. 2(a),
we illustrate three possible ways that an NCP can behave. In
each case, we use conductance as a measure of community
quality. The three cases are the following ones.

(1) Upward-sloping NCP. In this case, small communities
are “better” than large communities.

(2) Flat NCP. In this case, community quality is indepen-
dent of size. (As illustrated in this figure, the quality tends to
be comparably poor for all sizes.)

(3) Downward-sloping NCP. In this case, large communi-
ties are better than small communities.

For ease of visualization and computational considerations,
we only show NCPs for communities up to half of the size of
a network. An NCP for very large communities, which we do
not show in figures as a result of this choice, roughly mirrors
that for small communities, as the complement of a good small
community is a good large community because of the inherent
symmetry in conductance [see Eq. (3)].

In Fig. 2(b), we show an NCP of a LIVEJOURNAL network
from Ref. [25]. It demonstrates an empirical fact about a
large variety of large social and information networks: There
exist good small conductance-based communities, but there
do not exist any good large conductance-based communities
in many such networks. (See Refs. [24-26,37,67,68] for more
empirical evidence that large social and information networks
tend not to have large communities with low conductances.)
On the contrary, Fig. 2(c) illustrates a small toy network—a
so-called “caveman network”—formed from several small
cliques connected by rewiring one edge from each clique to
create aring [70]. As illustrated by the downward-sloping NCP
in Fig. 2(d), this network possesses good conductance-based
communities, and large communities are better than small
ones. One obtains a similar downward-sloping NCP for the
Zachary Karate Club network [59] as well as for many other
networks for which there exist meaningful visualizations [25].
The wide use of networks that have interpretable visualizations
(such as the Zachary Karate Club and planted-partition
models [71] with balanced communities) to help develop
and evaluate methods for community detection and other
procedures can lead to a strong selection bias when evaluating
the quality of those methods.

We now consider the relationship between the phenomena
illustrated in Fig. 2 and the idealized block models of Fig. 1.
As a concrete example, Fig. 3 shows the NCPs for the example
networks in Fig. 1.

First, note that the best partitions consist roughly of
well-balanced communities in the low-dimensional case of
Figs. 1(a) and 3(a), and the “lowest” point on an NCP tends
to be for large community sizes. Thus, an NCP tends to be
downward sloping for low-dimensional examples.

Networks with pronounced core-periphery structure—e.g.,
networks that look like the example in Fig. 1(b)—tend to
have many good small communities but no comparably good
or better large communities. This situation arises in many
large, extremely sparse networks [24-26]. The good small
communities in such networks are sets of connected nodes in
the extremely sparse periphery, and they do not combine to
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FIG. 3. Network community profiles of the idealized example
networks from Fig. 1. (a) NCP for the Zachary Karate Club network.
(b) NCP for an example network generated from a block model with
core-periphery structure. (c) NCP for an Erd6s-Rényi graph. (d) NCP
for an example network generated from a bipartite block model.

form good, large communities, as they are only connected via
a set of core nodes with denser connections than the periphery.
Thus, an NCP of a network with core-periphery structure tends
to be upward sloping, as illustrated in Figs. 1(b) and 3(b).
However, this observation does not apply to all networks
with well-defined density-based core-periphery structure. If
the periphery is sufficiently well connected (though still much
sparser than the core), then one no longer observes good,
small communities. Such networks act like expanders from
the perspective of the behavior of random walkers, so they
have a flat NCP. One can generate examples of such networks
by modifying the parameters of the block model that we used
to generate the example network in Fig. 1(b) [61].

For a complete graph or a degree-homogeneous expander
[see Figs. 1(c) and 3(c)], all communities tend to have poor
quality, so an NCP is roughly flat. (See Appendix A for a
discussion of expander graphs.)

Finally, bipartite structure itself does not have any charac-
teristic influence on an NCP. Instead, an NCP of a bipartite
network reveals other structure present in the network. For
the example network in Fig. 1(d), the two types of nodes are
connected uniformly at random, so its NCP [see Fig. 3(d)] has
the characteristic flat shape of an expander.

B. Robustness and information content of NCPs

It is important to discuss the robustness properties of
NCPs. Such properties are not obvious a priori, as an NCP is
an extremal diagnostic. Importantly, however, the qualitative
property of being downward-sloping, upward-sloping, or
roughly flat is very robust to the removal of nodes and edges,
variations in data generation and preprocessing decisions,
and similar sources of perturbation [24-26]. For example,
upward-sloping NCPs typically have many small communities
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of good quality, so losing some communities via noise or
some other perturbations has little effect on a realistic NCP.
Naturally, whether a particular set of nodes achieves a local
minimum is not robust to such modifications. In addition, one
can easily construct pathological networks whose NCPs are
not robust.

It is also important to consider the robustness of a network’s
NCP with respect to the use of conductance versus other
measures of community quality. (Recall that many other
measures have been proposed to capture the criteria that a
good community should be densely connected internally but
sparsely connected to the rest of a network [5,25].) Indeed,
it has been shown that measures that capture both criteria
of community quality (internal density and external sparsity)
behave in a roughly similar manner to conductance-based
NCPs, whereas measures that capture only one of the two
criteria exhibit qualitatively different behavior (typically for
rather trivial reasons) [26].

Although the basic NCP that we have been discussing
yields numerous insights about both small-scale and large-
scale network structure, it also has important limitations.
For example, an NCP gives no information on the number
or density of communities with different community quality
scores. (This contributes to the robustness properties of NCPs
with respect to perturbations of a network.) Accordingly,
the communities that are revealed by an NCP need not be
representative of the majority of communities in a network.
However, the extremal features that are revealed by an NCP
have important system-level implications for the behavior of
dynamical processes on a network: They are responsible for
the most severe bottlenecks for associated dynamical processes
on networks [72].

Another property that is not revealed by an NCP is the
internal structure of communities. Recall from Eq. (3) that
the conductance of a community measures how well (relative
to its size) it is separated from the remainder of a network,
but it does not consider the internal structure of a community
(except for size and edge density). In an extreme case, a com-
munity with good conductance might even consist of several
disjoint pieces. Recent work has addressed how spectral-based
approximations to optimizing conductance also approximately
optimize measures of internal connectivity [73].

We augment the information from basic NCPs with
some additional computations. To obtain an indication of
a community’s internal structure, we compute the internal
conductance of the communities that form an NCP. The
internal conductance ¢i,(S) of a community S is

Pin(S) = ¢(Gls), (6)

where G|g is the subgraph of G induced by the nodes in
the community S. The internal conductance is equal to the
conductance of the best partition into two communities of the
network G|g viewed as a graph in isolation. Because a good
community should be well separated from the remainder of
a network and also relatively well connected internally, we
expect good communities to have low conductance but high
internal conductance. We thus compute the conductance ratio

P(S)
Pin(S)

d(S) = (7
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to quantify this intuition. A good community should have
a small conductance ratio, and thus we also plot so-called
conductance ratio profiles (CRPs) [25] to illustrate how
conductance ratio depends on community size in networks.

C. Our application and extension of NCPs

In this paper, we examine small-scale, medium-scale,
and large-scale community structure using conductance-based
NCPs and CRPs. We employ three different methods, which
we introduce in detail in Appendix B, for sampling an NCP:
one based on local diffusion dynamics (the ACLCUT method),
one based on a local spectral optimization (the MovCUT
method), and one based on geodesic distance from a seed node
(the EGONET method). In each case, we find communities of
different sizes, and we then plot the conductance of the best
community for each size as a function of size. For each method,
one can start from either a single seed node or a seed set of
nodes. All of the numerical simulations in the present paper
use a single seed node.

An NCP provides a signature of community structure in a
network, and we can thereby compare community structure
across different networks. This helps one to discern which
properties are attributable predominantly to network structure
and which are attributable predominantly to choice of algo-
rithms for community detection. Our approach of comparing
community structures in networks using NCPs and CRPs is
very general: One can, of course, follow a similar procedure
using other community-quality diagnostics on the vertical axis,
other procedures for community generation, and so on.

IV. EMPIRICAL RESULTS ON REAL NETWORKS

In this section, we present the results of our empirical
evaluation of the small-scale, medium-scale, and large-scale
community structure in our example networks.

A. Example network data sets

We examine six empirical networks in depth. They fall into
three classes: coauthorship networks, Facebook networks, and
voting similarity networks. For each class, we consider two
networks of different sizes.

(1) Collaboration graphs. The two (unweighted) coau-
thorship networks were constructed from papers submitted
to the arXiv preprint server in the areas of general relativity
and quantum cosmology (CA-GRQC) and astrophysics (CA-
ASTROPH). In each case, two authors are connected by an edge
if they coauthored at least one paper, so a paper with k authors
appears as a k-clique (i.e., a complete k-node subgraph) in a
network. These data sets are available as part of the Stanford
Network Analysis Package (SNAP), and they were examined
previously in Refs. [24-26].

(2) Facebook graphs. The two (unweighted) Facebook
networks are anonymized data sets that consist of a snapshot
of “friendship” ties on one particular day in September
2005 for two United States (U.S.) universities: Harvard (FB-
HARVARD1) and Johns Hopkins (FB-JOHNSSS5). They form a
subset of the FACEBOOK100 data set from Refs. [11,12]. In
addition to the friendship ties, note that we possess node labels
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for gender and class year as well as numerical identifiers for
student or some other (e.g., faculty) status, major, and high
school.

(3) Congressional voting graphs. The two (weighted)
Congressional voting networks represent similarities in voting
patterns among members of the U.S. House of Representatives
(US-HoUSE) and U.S. Senate (US-SENATE). Our construction
follows prior work [9,74]. In particular, we represent these
two data sets as “multilayer” temporal networks [9,75]. Each
layer corresponds to a single two-year Congress, and an
edge weight within a layer represents the voting similarity
between two legislators during the corresponding Congress. In
layer s, this yields adjacency elements of Af-j.) = % > Yijko
where y;;x =1 if both legislators voted the same way on
the kth bill, y;;x = 0 if they voted in different ways on that
bill, b;;(s) is the number of bills on which both legislators
voted during that Congress, and the sum is over bills. We
identify different instances of the same legislator in different
Congresses by connecting them using interlayer edges with
weight w [9]. (We use w = 1; the effect of changing w has been
investigated previously [74,76].) We represent each multilayer
voting network using a single “supra-adjacency matrix” (see
Refs. [75,77-79]) in which the different Congresses corre-
spond to diagonal blocks and interlayer edges correspond to
off-block-diagonal terms in the matrix. Throughout this paper,
we treat the Congressional voting graphs as supra-adjacency
matrices; we do not use any additional labeling or distin-
guished treatment of interlayer and intralayer edges (cf. [9]).

We chose these three sets of networks because (as we
will see in later sections) they have very different properties
with respect to their large-scale versus small-scale community
structures. We thus emphasize that, with respect to the
topic of this paper, these six networks are representative
of several broad classes of previously studied networks:
CA-GRQC and CA-ASTROPH are representative of the SNAP
networks that were examined previously in Refs. [24-26];
both FB-HARVARDI1 and FB-JOHNSSS (aside from a few very
small communities in FB-HARVARD1) are representative of
the FACEBOOK 100 networks that were examined previously in
Refs. [11,12]; and US-HOUSE and US-SENATE give examples
of networks (that are larger than the Zachary Karate Club
and caveman networks) on which conventional notions of
and algorithms for community detection have been validated
successfully [9,74].

In Table I, we provide summary statistics for each of
the six networks. We give the numbers of nodes and edges
in the largest connected component (LCC), the mean de-
gree/strength ((k;)), the second-smallest eigenvalue (A,) of
the normalized Laplacian matrix, and the mean clustering
coefficient ((C;)). We use the local clustering coefficient
Ci =t (i), where iy = X, which
reduces to the usual expression for local clustering coefficients
in unweighted networks [80-82]. The high values for mean
clustering coefficient in both the U.S. Congress and the coau-
thorship networks are unsurprising, given how those networks
have been constructed. However, the latter is noteworthy, as
the coauthorship networks are much sparser than the Facebook
networks.
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TABLE I. Six medium-sized to large networks. For each network, we show the number of nodes and edges in the LCC, the mean
degree/strength ((k;)), the second-smallest eigenvalue (A,) of the normalized Laplacian matrix, the mean clustering coefficient ((C;)), prior

references that used these networks, and a brief description.

Nodes Edges (ki) Ao (Cy) Refs. Description
CA-GRQC 4158 13 422 6.5 0.0019 0.56 [24-26] Coauthorship network: arXiv general relativity
CA-ASTROPH 17903 196 972 22.0 0.0063 0.63 [24-26] Coauthorship network: arXiv astrophysics
FB-JOHNS55 5157 186 572 72.4 0.1258 0.27 [11,12] Johns Hopkins Facebook network
FB-HARVARD1 15 086 824 595 109.3 0.0094 0.21 [11,12] Harvard Facebook network
US-SENATE 8974 422 335 60.3 0.0013 0.50 [9,74,76] Network of voting patterns in the U.S. Senate
US-HOUSE 36 646 6930 858 240.5 0.0002 0.58 [9,74,76] Network of voting patterns in the U.S. House

Recall that the second-smallest eigenvalue X, of the normal-
ized Laplacian provides a qualitative notion of connectivity
that can be used to bound the mixing time of diffusion-
based dynamics on networks [47] (where larger values of
Ap imply that there are fewer bottlenecks to mixing), and its
associated eigenvector can be used to partition a graph into
communities [3,65,68] (where smaller values of A, correspond
to the existence of better communities). We show the values of
A for our six networks in Table 1. For comparison, we show
in Fig. 4 a scatter plot of A, versus the size of the network (i.e.,
the number of nodes in the network) for these six networks,
the remaining networks from SNAP [83] (black circles) that
were also studied in [24,25], and the remaining 98 networks
from the FACEBOOK 100 data set (red stars) [11,12].

The first point to note about Fig. 4 is that nearly all
of the FACEBOOK100 graphs have a A, value that is much
larger than those for the two collaboration graphs and the
two voting graphs. Figure 4 and previous empirical results
(from Refs. [24,25]) clearly demonstrate that the A, values
for the two collaboration graphs are representative of (and,
in many cases, higher than) those of the other SNAP graphs
studied empirically in Refs. [24,25]. That is, nearly all of
the networks have A, values that are much smaller than
those in the FACEBOOK 100 graphs. This implies, in particular,
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FIG. 4. (Color online) Scatter plot of the second-smallest eigen-
value (,) of the normalized Laplacian versus size of the network for
the networks from the SNAP data [83] that were studied in [24,25],
all 100 networks in the FACEBOOK100 data set [11,12], and the two
US-CONGRESS temporal networks [9,74,76].

that the SNAP graphs contain more substantial bottlenecks
to mixing than the FACEBOOK100 graphs. (Note, however,
that the value of A, says nothing about the size of the set of
nodes that achieves the minimum.) In order to understand these
differences, we study two networks from the FACEBOOK100
data set in detail: one (FB-JOHNSS5) with a typical value of
Ao and another (FB-HARVARDI) that is an “outlier,” in that it
has the lowest value of A, in the entire FACEBOOK100 data
set. (Interestingly, the FB-CALTECH36 network is the smallest
network in the FACEBOOK 100 data set—it has 762 nodes in its
LCC—but it has the largest value of 1,.)

The second point to note about Fig. 4 and Table I is that they
suggest that FB-JOHNS55 (and possibly also FB-HARVARDI)
are better connected than the other four networks, and that the
connectivity properties of the two collaboration graphs and the
two voting graphs (and perhaps also FB-HARVARD1) might be
very similar. As we will see below, however, the situation is
considerably more subtle.

In Fig. 5, we visualize the adjacency matrices of each of
our six networks using a sparsity-pattern (Spy) plot. We draw

(a) CA-GRQC (c) US-SENATE

(d) CA-AsTROPH (e) FB-HARVARD1 (f) US-Houske

FIG. 5. Sparsity-pattern (Spy) plots for the LCC of each of
our six example networks. We arrange the coauthorship networks
(CA-GRQC and CA-ASTROPH) and Facebook networks (FB-JOHNS55
and FB-HARVARDI) according to communities that we obtain using
an implementation [84] of a Louvain-like heuristic for modularity
optimization [30]. For US-CONGRESS, we preserve the temporal order
of the nodes starting with the first Congress in the top left and ending
with the 110th Congress in the bottom right.
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the nonzero entries of the adjacency matrices as black dots.
The grayscale visualization in Fig. 5 is a result of coarsening
the dpi resolution; it illustrates the density of connections in
the corresponding areas of the adjacency matrices. This yields
a visualization comparable to the idealized block models in
Fig. 1. The node order in a Spy plot is arbitrary and, by
permuting the nodes, can sometimes yield visualizations that
are suggestive of structural features in a network. For the
coauthorship and Facebook networks, we use results from
a single run of an implementation [84] of a Louvain-like
heuristic [30] for modularity optimization to partition these
networks into communities. We then sort nodes by community
assignment: We choose the order of communities manually
to suggest potential large-scale structures. For the voting
similarity networks, time provides a natural order for the nodes.
We start with the nodes from the 1st Congress and end with
the nodes from the 110th Congress. The small blocks on the
diagonal are the individual Congresses, which are almost fully
connected internally, and the off-diagonal blocks result from
the interlayer coupling between the same individuals from
different Congresses.

While certainly not definitive, Fig. 5 suggests several hy-
potheses about the relationship between small-scale structure
and the large-scale structure—and, in particular, between small
communities and large communities—in these six networks.
First, from Figs. 5(c) and 5(f), it appears that the large-scale
structure in US-SENATE and US-HOUSE corresponds to that of
a “banded” matrix [85]. This banded structure is a result of
the interlayer edges in these networks. Second, from Figs. 5(a)
and 5(d), it appears that CA-GRQC and CA-ASTROPH both
have many small-scale communities. It appears that they have
a large-scale structure that is roughly banded, but there also
appear to be many “long-range” off-diagonal interactions
between distant nodes in the depicted ordering. Third, from
Figs. 5(b) and 5(e), we observe that both FB-JOHNS55 and
FB-HARVARDI appear to have roughly ten communities that
are both relatively large and relatively good.

From these visuals, it appears that nearly all of these
communities have dense internal connections and sparse
connections to other communities. Given the usual notion
that a community is a set of nodes with denser connections
among its constituent nodes than with the rest of a network,
the visualizations in Fig. 5 appear to suggest that there
might be interesting large-scale structure in FB-JOHNS55 and
FB-HARVARDI but not in the other networks. In particular,
FB-JOHNSS5 and FB-HARVARDI seem to be examples of the
case o] ~ apy > oy that we illustrated in Fig. 1(a).

The focus of the present investigation is to test the level of
correctness of the above hypotheses about the relationship
between small-scale structure and large-scale structure in
these six networks. As we have discussed, intuition like we
have illustrated in Fig. 5 is common in the development
and validation of methods for community detection, so it
is useful to delve into great depth on a set of networks
to explore the connections between small-scale and large-
scale structures in networks. As we see in the next several
sections, the situation is considerably more subtle than these
figures (and commonly employed intuition) might suggest.
For example, with the exception of the small communities
in CA-GRQC/CA-ASTROPH and the large-scale structure (i.e.,
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the one-dimensional temporal ordering) in US-SENATE and
US-HOUSE, these intuitive hypotheses about the relationship
between the local structure and the global structure in these
networks are not unambiguously supported by other evidence.
Similarly, many communities that appear to be “good” based
on the usual intuition and visualizations like that in Fig. 5
often are judged as largely artifactual from the perspective of
quantitative measures of community quality.

B. Network community profiles

We start by presenting our main results from using the
ACLCUT method (see Figs. 6 and 7). We obtain similar insights
about global structure using the MOVCUT (see Appendix C)
and EGONET (see Appendix D) methods, although they can
exhibit rather different local behavior.

In Fig. 6, we show the NCPs and CRPs for the smaller
network from each of the three pairs of networks from Table I.
In Fig. 7, we show the results for the corresponding larger
networks. Note the logarithmic scale for both the vertical and
the horizontal axes in these figures as well as in subsequent
NCP and CRP plots. Observe from Figs. 6(a) and 7(a) that
the NCPs for networks of the same type are qualitatively
similar, whereas NCPs for networks of different types have
qualitatively distinct shapes.

For the coauthorship networks CA-GRQC and CA-
ASTROPH, the NCPs have a mostly upward-sloping shape,
except for the region with fewer than 100 nodes. We conclude
that CA-GRQC and CA-ASTROPH have good small (e.g.,
consisting of tens of nodes) communities, but they do not have
good large (e.g., consisting of hundreds or thousands of nodes)
communities. These results are consistent with the NCPs of
LIVEJOURNAL from Fig. 2(b) and with the results of [24-26].
Additionally, the high values for the CRPs for the coauthorship
networks [see Figs. 6(b) and 7(b)] for communities with
hundreds or thousands of nodes reveals that these large
communities are loosely connected collections of good, small
communities. This feature is also visible in Fig. 6(c), which
shows selected communities and their neighborhoods for the
CA-GRQC network.

For the Facebook networks FB-JOHNS55 and FB-
HARVARDI, all of the communities at every size (except for two
small “communities” with five and ten nodes in FB-HARVARD1
[88]) have very large conductances (greater than 10~!). This in-
dicates that the communities in this network all have very poor
community quality, in sharp contrast with the coauthorship and
voting networks. The essentially flat shape for the NCPs of the
Facebook networks illustrate that these networks have strong
expanderlike properties (see Appendix A) and, relatedly, that
there are no substantial bottlenecks to the rapid mixing of
random walks on these networks. Both Facebook networks
have noticeable dips in their NCPs at larger community sizes
(about 220 and 1100 nodes for FB-JOHNS55 and about 1500
nodes for FB-HARVARDI1), and the sets of nodes associated
with each of these dips correlate strongly with self-reported
demographic information [89].

For the voting networks US-SENATE and US-HOUSE, the
NCP has a predominantly downward-sloping shape. This is
characteristic of “low-dimensional” networks in the sense
that we described informally in Sec. IIB. The informal
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FIG. 6. (Color online) NCP plots [in panel (a)] and conductance ratio profile (CRP) plots [in panel (b)] for CA-GRQC, FB-JOHNSS55, and
US-SENATE (i.e., the smaller network from each of the three pairs of networks from Table I) generated using the ACLCUT method. In panels
(c)—(e), we show modified Kamada-Kawai [86] spring-embedding visualizations that emphasize community structure [87] of corresponding
(color-coded) communities and their neighborhoods (a 2-neighborhood for CA-GRQC, a 1-neighborhood for FB-JOHNS5S5, and all Senates
that have at least one senator in common with those in the communities for US-SENATE). We find good small communities but no good large
communities in CA-GRQC, some weak large-scale structure in FB-JOHNSSS5 that does not create substantial bottlenecks for the random-walk
dynamics, and signatures of low-dimensional structure (i.e., good large communities but no good small communities) for US-SENATE. The
low-dimensional structure in US-SENATE results from the multilayer structure that encapsulates the network’s temporal properties. [The dashed

line in panel (b) indicates a conductance ratio of 1.]

reason for the downward-sloping shape is that US-SENATE and
US-HOUSE each consist of a low-dimensional structure that is
evolving along a one-dimensional scaffolding (i.e., time), upon
which the detailed structure of individual Congresses (i.e., a
good partition that is nearly along party lines) is superimposed.
(One can examine such structures by using smaller values of
the interlayer coupling parameter w; see Ref. [74].) This is
consistent with previous results [90].

These results, which illustrate that community quality
changes very differently with size in each of the three pairs
of networks, also indicate that these three types of networks
have very different properties with respect to large-scale versus
small-scale community structure. Moreover, the qualitative
similarity in behavior between the two networks in each pair
suggests that the coarse behavior of an NCP (downward-
sloping, upward-sloping, or flat) is indicative of large classes
of networks and not an artifact of our particular choice of
example networks. One obtains similar insights about global

structure using the MOVCUT (see Appendix C) and EGONET
(see Appendix D) methods, although they can exhibit rather
different local behavior. We investigate these differences in
local behavior in Sec. IV C.

C. Comparison of results from AcLCut, MOVCUT,
and EGONET

The NCPs generated using either ACLCUT or MoOvVCUT
(see Appendix C), and to a somewhat lesser extent those
generated using EGONET (see Appendix D), have similar
global features—i.e., they exhibit the same general trends
and have dips at small size scales that correspond to nearly
identical communities—indicating that we obtain a broadly
similar picture of the large-scale community structure by using
any of the methods. However, the detailed local behavior of the
three methods can differ considerably. Such behavior depends
sensitively on the choice of seed node, the choice of the
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FIG. 7. (Color online) NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-ASTROPH, FB-HARVARDI, and US-HOUSE (i.e., the
larger network from each of the three pairs of networks from Table I) generated using the ACLCUT method.

parameters in the different methods, and the specific details
of each method. In this section, we discuss the similarities and
differences in the results from these methods. We only show
the results of calculations for the smaller network from each
of the three network pairs in Table I (but we observe similar
results for the larger networks).

All three methods return a vector that can be used to
rank the nodes, and it is this ranking that determines the
community memberships. Both the ACLCUT and the MOVCUT
methods return a variant of a personalized PageRank (PPR)
vector, which we parametrize using a teleportation parameter
«. Additionally, the approximate calculation performed by
the ACLCUT method depends on a truncation parameter €.
The EGONET method returns an EgoRank vector that only
depends on the seed node and does not have any parameters.
We describe the methods and their parameters in detail in
Appendix B.

To compare different methods, we note that any meaningful
difference between the three methods should manifest as a
difference in the rank order of nodes, as this determines the
assignment of nodes to local communities. We quantify rank
differences by computing the Spearman rank correlation [91]
between the (exact for MOVCUT and approximate for ACLCUT)
personalized PageRank (PPR) and EgoRank ranking vectors.
We also restrict all comparisons to the support of the
corresponding approximate PPR vector that we obtain using
the ACLCUT method. This induces an indirect dependency of
the results from MOVCUT and EGONET on « and ¢ (in addition
to the direct dependency of MOVCUT on «).

In Tables II-1V, we show the results of our calculations of
Spearman rank correlations. For each of the three networks,
we select 50 seed nodes by sampling uniformly without
replacement. (Recall that a single run of a method uses a single
seed node.) We then compute PPR vectors for these seed nodes
using the ACLCUT and MOVCUT method for different values
of the truncation parameter € and teleportation parameter «,
and we also compute the EgoRank vector for each of the
seed nodes. As we discuss in Appendix B, smaller values of
a correspond to more local versions of the procedures, but

larger values of € correspond to more local versions of the
procedures.

The ACLCUT and MovCUT methods give very similar
results for most of the 50 seed nodes in our sample, although
(as we discuss below) some seed nodes do yield noticeable
differences. The two methods give the most similar results
for FB-JOHNSS5 (a mean Spearman correlation of 0.92; a
minimum of 0.43), whereas we find larger deviations in both
CA-GRQC (mean 0.85; minimum —0.13) and US-SENATE
(mean 0.86; minimum —0.44). Note that we calculate the
mean, maximum, and minimum over all sampled seed nodes
and parameter values.

Interestingly, the larger deviations between the two methods
for CA-GRQC and US-SENATE occur at different values of
the truncation parameter €. For CA-GRQC (and, to a lesser
extent, for FB-JOHNS55), we obtain the largest deviations for
smaller values (e.g., € = 107%). For US-SENATE, however, we
obtain the largest deviations for € = 10™*. See the bold values
in Tables II-IV. This is consistent with the very different
isoperimetric properties of these three networks, as revealed by
their NCPs, as well as with well-known connections between
conductance and random walks.

There are two potential causes for the differences between
our results for the ACLCUT and MOVCUT methods. First,
there is a truncation effect, governed by the parameter €, in
approximating the PPR vector using the ACLCUT method. As €
becomes smaller, the approximation in ACLCUT becomes more
accurate and this effect diminishes. Second, the two methods
differ in the precise way that they use a seed vector to represent
aseed node. As we discuss in Appendix B, the ACLCUT method
uses an indicator vector § to represent a seed node i; thus, we
uses; = 1 whenever i is a seed node, and we set all other entries
in that vector to 0. In contrast, the MOVCUT method projects
the indicator vector onto the orthogonal complement of the
strength vector to ensure that 5TD1 =0 (see Appendix B).
This effect decreases as @ — 1.

The largest deviations between the two methods occur for
smaller values of € in CA-GRQC and FB-JOHNSS55; for these
values of €, the truncation effect is small, suggesting that
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TABLE II. Pairwise comparison of the three methods using the Spearman rank correlation between the ranking vectors from the ACLCUT
(A), MovCuT (M), and EGONET (E) methods for CA-GRQC. We use a uniform random sample of 50 nodes for each of several values for the
teleportation parameter « and truncation parameter €. We take the maximum, mean, and minimum over the seed nodes. Bold values highlight
the largest deviations between the ACLCUT and MOVCUT methods for a given value of «.

o

0.6 0.7 0.8 0.9 0.99

A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M  A-E M-E A-M A-E M-E

Max 1.00 0.99 0.99 1.00 098 098 1.00 097 097 1.00 095 095 098 0.89 0.86
107> Mean 0.98 0.78 0.77 098 076 0.73 098 0.72  0.68 097 068 0.62 091 0.60 048
Min 092 026 0.23 091 018 0.14 094 021 0.15 0.85 —-0.01 -0.05 074 025 0.06

Max 1.00 097 097 1.00 097 097 1.00 094 094 099 089 0.5 092 0.69 0.53
107 Mean 0.99 0.74 0.72 098 0.73 0.68 097 070 0.64 095 063 054 0.89 051 036
Min 096 0.16 0.10 091 —-0.05 -0.19 0.84 035 -0.02 0.88 043 0.25 0.85 032 0.18

Max 1.00 0.96 0095 097 092 0.87 094 081 0.69 0.89 073 0.55 093 0.75 0.60
105 Mean 091 0.74 0.8 0.89 0.69 051 0.85 0.65 042 078 062 033 084 0.63 0.36
Min 024 021 —-0.20 042 030 -0.10 042 039 -0.13 025 043 -0.10 049 044 0.05

Max 084 085 0.68 079 081 049 070 0.79 0.39 080 081 047 093 0.75 0.60
10 Mean 0.62 0.72 025 057 069 0.17 051 069 0.12 051 072 0.13 0.85 0.63 0.37
Min 0.01 057 —-0.36 007 052 -030 -=0.06 050 -027 =013 057 —-0.32 052 046 0.08

the different way of representing a seed node is partially
responsible for the difference between the results of the
two methods for these networks. For larger values of € (in
particular, fore > 10~*), where the support of the approximate
PPR vector from the ACLCUT method is small, the behavior of
the two methods is very similar. Consequently, the differences
in the choice of seed vector become more important for nodes
that are “far away” from the seed node, in the sense that
they are rarely visited by the PPR dynamics that underlie
these methods. As a result, the “local NCPs” for the two
methods in Figs. 8(a) and 9(a) are largely identical for small
community sizes but differ for large community sizes. (We use
the term local NCP to refer to an NCP that we compute using

only a single seed node without optimizing over the results
from multiple seed choices; see Ref. [37] for details on the
construction of local NCPs.)

For US-SENATE, the two methods behave almost identically
for small € (see Table I1V), so we conclude that the different
ways of representing a seed node have only a small effect
on this network. However, the truncation effect is more
pronounced in this network compared with CA-GRQC or
FB-JOHNSS5. This feature manifests as larger deviations
between ACLCUT and MOVCUT in Table IV for large €
and small o (i.e., where the truncation has the strongest
impact). The discrepancy occurs because the ACLCUT method
initially pushes a large amount of probability to the interlayer

TABLE III. Pairwise comparison of the three methods using the Spearman rank correlation between the ranking vectors from the ACLCUT
(A), MovCut (M), and EGONET (E) methods for FB-JOHNS55. We use a uniform random sample of 50 nodes for each of several values for the
teleportation parameter o and truncation parameter €. We take the maximum, mean, and minimum over the seed nodes. Bold values highlight
the largest deviations between the ACLCUT and MOVCUT methods for a given value of «.

o

0.6 0.7 0.8 0.9 0.99

A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00  1.00  1.00 1.00 1.00 1.00 1.00  1.00 1.00
10 Mean 1.00 0.85 0.84 1.00 0.82 0.81 099 0.79 0.79 098 0.78 0.77 098 0.78 0.75
Min 095 0.61 0.56 094 054 047 0.80 0.55 053 0.80 055 049 0.77 040 0.39

Max 1.00 0.89 0.89 1.00 093 0.93 1.00 091 091 1.00  0.89 0.89 1.00  0.88 0.88
107* Mean 0.98 048 047 097 045 044 096 043 041 095 041 037 094 038 0.33
Min 0.81 0.06 0.05 078 0.05 0.04 0.74 0.07 0.06 0.69 0.07 0.07 0.69 0.07 0.00

Max 1.00 0.85 0.85 1.00 0.86 0.85 1.00  0.84 0.83 099 084 0.82 1.00  0.81 0.78
1075 Mean 098 0.58 0.54 097 059 054 097 0.63 0.57 096 0.61 0.54 095 053 046
Min 090 024 0.18 091 026 0.17 091 023 0.14 0.89 022 0.07 0.88 0.18 0.04

Max 099 0.75 046 097 0.69 046 091 071 039 090 073 047 097 0.69 0.57
10 Mean 0.79 041 020 075 045 0.13 072 0.56 0.20 0.77 0.62 0.32 088 0.59 041
Min 0.57 0.23 -0.07 049 024 -0.06 043 032 —-0.02 049 032 001 0.60 0.26 0.07
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TABLE IV. Pairwise comparison of the three methods using the Spearman rank correlation between the ranking vectors from the ACLCUT
(A), MovCuT (M), and EGONET (E) methods for US-SENATE. We use a uniform random sample of 50 nodes for each of several values for the
teleportation parameter « and truncation parameter €. We take the maximum, mean, and minimum over the seed nodes. Bold values highlight

the largest deviations between the ACLCUT and MOVCUT methods for a given value of «.

o

0.6 0.7 0.8 0.9 0.99
A-M A-E M-E A-M  A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E
Max 1.00  1.00 1.00 1.00  1.00 1.00 1.00  1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00
103 Mean 0.65 0.66 0.40 0.68 0.71 0.30 074 077 046 0.74 085 0.57 080 0.80 056
Min 0.02 0.50 —0.05 038 032 —-024 046 0.53 —0.07 050 0.68 —0.02 051 0.62 —0.00
Max 1.00 093 0.87 1.00 092 0.77 1.00 093 0.82 1.00  0.89 0.75 099 081 0.61
10* Mean 0.75 0.61 0.36 054 059 0.17 0.67 062 034 0.86 0.50 0.34 092 036 023
Min -0.03 -0.16 -0.51 -032 -0.11 —-0.63 -044 0.15 —0.36 0.50 —0.08 —0.26 0.77 —0.20 —0.38

€

Max 1.00 091 090 1.00 0.89 0.87 1.00 0.85 0.83 1.00 0.80 0.78 1.00 0.85 0.84
10> Mean 099 0.58 0.54 099 048 046 099 042 040 096 044 040 095 043 039
Min 086 0.03 0.01 0.88 —0.02 —0.02 0.88 —0.09 —0.13 0.80 —0.17 —0.20 0.80 0.07 0.01
Max 1.00  0.84 0.84 1.00  0.84 0.84 1.00  0.84 0.85 1.00  0.87 0.86 1.00 096 0.96
107 Mean 0.94 0.54 048 098 0.55 0.50 099 062 0.60 1.00  0.69 0.68 099 091 0.89
Min 0.85 030 022 0.89 0.08 0.19 098 025 021 098 030 0.29 096 083 0.73

neighbors of the seed node (i.e., to the same senator in different
Congresses). This probability does not diffuse to other nodes
for sufficiently large values of €.

In Figs. 8-10, we illustrate the results from Tables II-IV.
In these figures, we plot the local NCPs for CA-GRQCcC, FB-
JOHNSS55, and US-SENATE for the seed nodes (from the sample
of 50) that yield the largest and smallest mean Spearman
rank correlation between the ACLCUT and MOVCUT methods.
(That is, one seed node yields the largest mean Spearman
correlation, and the other yields the smallest mean Spearman
correlation.) In these figures, we also include visualizations
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of example communities that we obtain from the ACLCUT
and MovVCUT methods using a Kamada-Kawai-like spring-
embedding visualization [87] of the k-ego-nets of these seed
nodes.

From the visualizations of the local communities, it seems
for CA-GRQC (see Fig. 8) and FB-JOHNS55 (see Fig. 9) that
nodes included in local communities obtained from ACLCUT
tend to be closer in geodesic distance to the seed node than
those obtained from MOVCUT. (To see this, observe that
red nodes tend to be larger than light blue nodes in the
visualization of the k-neighborhoods.) If this observation holds

® AcLCuT and MovCuT
eonly AcLCut

@ only MovCut

O neither

(b) Spring-embedding visualizations

FIG. 8. (Color online) Comparison of methods for CA-GRQC. (a) Local NCPs for the seed nodes (of the 50 nodes that we sample) with
the highest and lowest mean Spearman correlation over the sampled parameter values. These NCPs highlight the difference in behavior of
the ACLCUT and MOVCUT methods for large communities. (b) Kamada-Kawai-like spring-embedding visualization [87] of (bottom right) the
9-neighborhood of the seed node with the smallest difference between the two methods and (top left) the 6-neighborhood of the seed node with
the largest difference. In these two visualizations, the node size decreases as a function of geodesic distance from the seed node. We color the
nodes according to whether they belong to the local community that we obtain using the ACLCUT method, the one that we obtain using the
MovCUT method, the intersection of the two communities, or neither community.
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(b) Spring-embedding visualizations

FIG. 9. (Color online) Comparison of methods for FB-JOHNSSS. (a) Local NCPs for the seed nodes (of the 50 nodes that we sample) with
the highest and lowest mean Spearman correlation over the sampled parameter values. These NCPs highlight the difference in behavior of the
ACLCUT and MOVCUT methods for large communities. (b) Kamada-Kawai-like spring-embedding visualization [87] of the 2-neighborhoods
of both seed nodes. The one with the smallest difference is on the bottom right, and the one with the largest difference is on the top left. In
these two visualizations, the node size decreases as a function of geodesic distance from the seed node. The smallest nodes are more than two
steps away from the seed node, but they appear in at least one of the local communities. We color the nodes according to whether they belong
to the local community that we obtain using the ACLCUT method, the one that we obtain using the MOVCUT method, the intersection of the
two communities, or neither community.

more generally and is not just an artifact of the particular
communities that we show in Figs. 8 and 9, then we should
obtain higher Spearman rank correlations between ACLCUT
and EGONET than between MOVCUT and EGONET. Indeed,
Tables II-IV consistently show this feature for almost all
choices of € and o and for all three networks. Note that
this feature is also present in US-SENATE, though it is less

prominent in its k-neighborhood visualization than is the case
for the other two networks.

Figures 8-10 also reveal that the three networks look
very different from a local perspective. For FB-JOHNS5S5 (see
Fig. 9), the two seed nodes (of the sample of 50) that we
explore in detail allow us to reach a large fraction of all nodes
after just two steps. This is consistent with known properties of

100
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@only MovCuTt
Oneither
8 10—1,
]
5]
s
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8 N MovCuT, most similar
R = Py AcLCUT, least similar
ol A MovCurT, least similar
O EGONET, most similar
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FIG. 10. (Color online) Comparison of methods for US-SENATE. (a) Local NCP for the seed nodes (of the 50 nodes that we sample) with
the highest and lowest mean Spearman correlation over the sampled parameter values. These NCPs highlight the difference in behavior of the
ACLCUT and MOVCUT methods for large communities. (b) Kamada-Kawai-like spring-embedding visualization [87] of the 3-neighborhoods
of both seed nodes. The one with the smallest difference is on the bottom right, and the one with the largest difference is on the top left. In these
two visualizations, the node size decreases as a function of geodesic distance from the seed node. We color the nodes according to whether they
belong to the local community that we obtain using the ACLCUT method, the one that we obtain using the MOVCUT method, the intersection
of the two communities, or neither community.
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the full Facebook graph (circa 2012) of individuals connected
by reciprocal “friendships.” For example, the mean geodesic
distance between pairs of nodes of the Facebook graph is
very small: It was recently estimated by Facebook’s Data
Science Team and their collaborators to be about 4.74 [92].
Additionally, one can view Facebook as a collection of ego
networks that have been patched together into a network
whose global structure is sparse [44] (and such structure
is an important motivation for the locally biased notion of
community structure that we advocate in this paper).

For CA-GRQC, we obtain very different neighborhoods
starting from our two different seed nodes. The node in the
sample that results in the largest difference in behavior between
the ACLCUT and the MOVCUT methods appears to be better
connected in the network in the sense that the k-neighborhood
(for any k until saturation occurs) is much larger than that of
the node that results in the smallest difference. (That is, it is
more in the “core” than in the “periphery” of the nested core-
periphery structure of Refs. [24,25].) We observe a similar
phenomenon for FB-JOHNS55 and US-SENATE. Furthermore,
its 1-ego-net and 2-ego-net are highly clustered, in the sense
that they contain many closed triangles. For the seed node
that results in the smallest difference between the ACLCUT
and MoOvVCUT methods, we need to consider the 6-ego-net
(which has 20 nodes) to obtain a network of similar size to
the 2-ego-net (which has 15 nodes) for the seed node with
the largest difference. In the case of the seed node in our
sample that results in the smallest difference between the two
methods, even the 6-ego-net appears rather treelike; it contains
few closed triangles and no larger cliques.

For US-SENATE, the I-neighborhood of any seed node
contains only the node itself and those corresponding to the
same senator in different Congresses [93]. As one begins
to consider nodes that are further away, one first reaches
corresponding senators in other Congresses before reaching
other senators with similar voting patterns from the same
Congress. This behavior of the EGONET method contrasts with
the (PageRank-based) ACLCUT and MOVCUT methods, which
tend to initially select all senators from one Congress before
reaching senators from other Congresses.

D. Meso-scale structure

From the perspective of the locally biased community-
detection methods that we use in this paper, one can view
intermediate-sized (i.e., meso-scale) structures in networks as
arising from collections of local features—e.g., via overlaps
of local communities that one obtains algorithmically using
locally biased dynamics such as those that we consider. Such
local features depend not only on the network adjacency
matrix but also on the dynamical process under study, the
initial seed(s) from which one is viewing a network, and
the locality parameters of the method (which corresponds
to the dynamical process) that determine how locally one
is viewing the network. Although a full discussion of
the relationship between local, meso-scale, and global struc-
tures is beyond the scope of this paper, we provide a few
examples of such results.

To try to visualize the meso-scale and global network
structures that we obtain from the local communities that we

PHYSICAL REVIEW E 91, 012821 (2015)

identify, we define an n x n association matrix A (where n
is again the number of nodes in a network), which encodes
pairwise relations between nodes based on a sample of local
communities. For a given sample S of local communities
(obtained, e.g., by running a given method with many seed
nodes and values of a locality parameter), the entries of the
association matrix are given by the number of times that a pair
of nodes appear together in a local community, normalized by
the number of times that either of them appears. That is, the
elements of the association matrix are

~ |{SeS:ieSandj €S}
YT SeS:ieSorjeS)

Our procedure for extracting global network structure from
a sampled set of communities is similar in spirit to computing
association (or “coclassification”) matrices that have been con-
structed from sampling a landscape of the modularity objective
function [94], and one can, in principle, analyze these matrices
further using the same methods. The additional normalization
in our definition of association matrices is necessary to correct
for the oversampling of large communities relative to small
communities (which results from sampling nodes uniformly
at random). At first glance, association matrices computed
by sampling a modularity landscape appear to reveal much
clearer community structure in these networks than we obtain
by sampling local communities. However, this is largely an
artifact of the well-known resolution limit of modularity
optimization [35]. One can mitigate this effect by using one
of the multiresolution generalizations of modularity [95,96] to
sample the modularity landscape across different values of the
resolution parameter. This yields association matrices that are
similar in appearance to the ones that we obtain by sampling
local communities.

To visualize the association matrices in a way that reveals
global network structure, it is important to find a good node
order. We found the sorting method suggested in Ref. [94] to be
impractically slow for the networks that we study. Instead, we
sort the nodes based on the optimal leaf ordering [97] for the
average-linkage hierarchical clustering tree of the association
matrix. (For US-SENATE, we do this procedure within a given
Congress, and we then use the natural temporal ordering to
define the inter-Congressional ordering.)

In addition, to see small-scale structure using samples
obtained from MoOVCUT, we use a community-size parameter
c that limits the volume of the resulting community based
on the desired correlation with the seed vector. For the
association matrices in panels (d) and (e) of Fig. 11, we sample
communities using ¢ € {10 : i =1, ...,5}. See Ref. [37] for
details. We summarize our results in Figs. 11-14.

In Fig. 11, we show the result of applying this proce-
dure with communities that we sample using the ACLCUT,
MovCuT, and EGONET methods. In each case, we keep only
the best conductance community for each sampled ranking
vector. The most obvious feature of the visualizations in
Fig. 11 is that—except for US-SENATE, for which there is
a natural large-scale global structure defined by the one-
dimensional temporal ordering—the visualizations are much
more complicated than any of the idealized structures in
Fig. 1 (which suggests that the visualizations in Fig. 1 might
be revealing at least as much about the inner workings

®)
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FIG. 11. (Color online) Visualizations of association matrices for CA-GRQC, FB-JOHNS55, and US-SENATE illustrate how meso-scale and
global structures emerge from the superposition (and overlap) of many local communities. See the main text for a description of how we
construct the association matrices. For each of the three networks, we generate the subfigures using the same three sampling procedures that
we use to generate the NCPs: We use ACLCUT for panels (a)—(c), we use MOVCUT for panels (d)-(e), and we use EGONET for panels (g)—(i).
(We color the plots according to the strength of association.)

of the visualization algorithm as about the networks being
visualized). The structures in Fig. 1 are trivially interpretable,
whereas those in real networks (e.g., as illustrated in Fig. 11)
are extremely messy and very difficult to interpret. In the
paragraphs below, we discuss the structural features in Fig. 11

in more detail.

For CA-GRQC (see Figs. 11 and 12), we observe many
small communities that are composed of about 10—100 nodes.
These communities, which correspond to the dark red blocks
along the diagonal [see the inset in Fig. 11(a)], are responsible
for the dips in the NCPs [see Figs. 6(a), 16(a), and 18(a)]

for this network. However, these small communities do not
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(d) e= i0’5

(c) e=10"*

FIG. 12. (Color online) Visualization of global structure in CA-
GRQC. We construct the network layout by weighting each edge using
the corresponding entry of the association matrix for the ACLCUT
method [see Fig. 11(a)]. We then apply the Kamada-Kawai spring-
embedding visualization algorithm [86,87] to the resulting weighted
network. For ease of visualization, we only plot edges whose weight is
larger than the mean edge weight. Colored nodes correspond to local
communities for three different seed nodes. We draw nodes that are
members of more than one community using a mixed color (e.g., blue
and yellow become green; and blue, yellow, and red become blackish).
As we decrease the truncation (i.e., locality bias) parameter €, the
different communities first explore local structure before merging. In
panel (d), observe that each community covers most of the network.

combine to form large communities, which would result in
large diagonal blocks in the association matrices. Instead, the
small communities appear to amalgamate into a single large
block (or “core”). In Fig. 12, we aim to make this observation
more intuitive by showing how the local communities for three
different seed nodes spread through the network as we change
the locality bias parameter €. We construct the weighted
network G = (V,E,w) shown in Fig. 12 from the unweighted
CA-GRQC network G = (V,E) using the association matrix
for the ACLCUT method [see Fig. 11(a)]. We assign each
edge {i,j} € E a weight based on the corresponding entry
of the association matrix. That is, ﬁ,-j =A; if {i,jleE
and w;; = 0 otherwise. Based on our earlier results with
the slowly increasing NCP, as well as previous results in
Refs. [24-26], we interpret these features in Fig. 12 in terms
of a nested core-periphery structure, in which the network
periphery consists of relatively good communities and the core
consists of relatively densely connected nodes.

For FB-JOHNSS55 (see Figs. 11 and 13), we observe two rel-
atively large communities, which correspond to the two large
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FIG. 13. (Color online) Visualization of global structure in FB-
JOHNSS55. We construct the network layout by weighting each edge us-
ing the corresponding entry of the association matrix for the ACLCUT
method [see Fig. 11(b)] and then applying the same procedure as in
Fig. 12. Colored nodes correspond to local communities for three
different seed nodes. Note the difference in behavior for the red
community versus the blue and yellow communities. The blue and
yellow communities gradually spread as we decrease €, and they
eventually merge to cover a large part of the network. However, the
red community initially spreads as we decrease €, and it then remains
roughly the same as we decrease € further.

diagonal blocks in Figs. 11(b) and 11(e) and which underlie
the dips in the NCPs in Figs. 6(a) and 16(a). Note, however,
from the scale of the vertical axis in Figs. 6(a) and 16(a) that
the community quality of these communities is very low, so
one should actually construe the visualization in Figs. 11(b)
and 11(e) as highlighting a low-quality community that is
only marginally better than the other low-quality communities
that are present in FB-JOHNS55. Based on this visualization
as well as our earlier results, the remainder of FB-JOHNS55
does not appear to have much community structure (at least
based on using the conductance diagnostic to measure internal
versus external connectivity). However, there do appear to
be some remnants of highly overlapping communities that
one could potentially identify using other methods (e.g., the
one in Ref. [36]). The EGONET method [see Fig. 11(h)] is
unable to resolve not only these small communities but also the
larger low-quality communities. Figure 13 shows how the local
communities for two seed nodes that do not belong to one of
the two large communities slowly spread and eventually merge
(blue and yellow nodes), whereas the red community (which
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FIG. 14. (Color online) Visualization of global structure in US-
SENATE. We construct the network layout by reweighting each
edge using the corresponding entry of the association matrix for
the ACLCUT method [see Fig. 11(c)] and then applying the same
procedure as in Figs. 12 and 13. Colored nodes correspond to local
communities for three different seed nodes. The spreading behavior of
the different local communities largely follows the temporal structure
of the network.

corresponds to the smaller of the two communities) is quickly
identified and remains separate from the other communities.

For US-SENATE (see Figs. 11 and 14), we clearly observe
the signature of temporal-based community structure at a large
size scale. See Figs. 11(c), 11(f), and 11(i). Using ACLCUT and
MOovCUT, we also obtain partitions at the scale of individual
Congresses [see the insets in Figs. 11(c) and 11(f)], which
sometimes split into two or occasionally three individual
communities. These latter partitions have been discussed
previously in terms of polarization between parties [9,90,98].
Because we fix the temporal order of Congresses for US-
SENATE and only sort senators within the same Congress, this
visualization reveals communities within each Senate as well
as more temporally disparate communities. Figure 14 clearly
shows that the temporal structure dominates the behavior of
local communities for individual seed nodes.

An important point from these visualizations is that, for
both CA-GRQC and FB-JOHNSSS5, the meso-scale and large-
scale structures that result from the superposition of local
communities do not correspond particularly well to intuitive
good-conductance communities. Relatedly, they also do not
correspond particularly well to an intuitive low-dimensional
structure or a nearly decomposable block-diagonal matrix of
community assignments [see our illustration in Fig. 1(a)],
one or both of which are often assumed (typically implic-
itly) by many global methods for algorithmically detecting
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communities in networks [5,6,37,99,100]. Of the networks
that we investigate, only the temporal structure in US-SENATE
(as well as in US-HOUSE, which is a related temporally
dominant network) closely resembles such an idealization.
This is reflected clearly in its downward-sloping NCP [see
Figs. 6(a), 16(a), and 18(a)] and in the visualizations in Fig. 11.

Instead, in other (e.g., collaboration, Facebook, and many
otherreal [24,25]) networks, community structure as a function
of size is much more subtle and complicated. Our locally
biased perspective provides one means to try to resolve such
intricacy. By averaging over results from different seed nodes,
a local approach like ours leads naturally to the presence of
strongly overlapping communities. Overlapping community
structure has now been studied for several years [101-103],
and recent observations continue to shed new light on the
ubiquity of community overlap [36]. Overlap of communities
in networks is a pervasive phenomenon [36,104]; and our
expectation is that most large realistic networks have com-
munities with significant overlap, rather than merely a small
amount of overlap that would amount to a small perturbation of
the idealized, nearly decomposable communities in Fig. 1(a).
Additionally, such overlaps imply that larger communities tend
to have lower quality in terms of their internal versus external
connectivity (i.e., in terms of how much they resemble the
intuitive communities that many researchers know and love)
than smaller communities—in agreement with our empirical
results on both the collaboration networks and Facebook
networks, but in strong disagreement with popular intuition.
Recent work fit several real networks with upward-sloping
NCPs to hierarchical Kronecker graphs and obtained param-
eters that are consistent with the core-periphery structure that
we illustrated in Fig. 1(b) [105].

V. EMPIRICAL RESULTS ON SYNTHETIC BENCHMARKS

Synthetic benchmark networks with a known, planted
community structure can be helpful for validating and gaining
a better understanding of the behavior of community-detection
algorithms. For such an approach to be optimally useful,
it is desirable for the synthetic benchmarks to reproduce
relevant features of real networks with community structure;
and it is challenging to develop good benchmarks that
reproduce community structure and other structural properties
of medium-sized and larger realistic networks. An extremely
popular and useful family of benchmark networks that aims to
reproduce some features of real networks are the so-called LFR
networks [106]. By design, LFR networks have power-law
degree distributions as well as power-law community-size
distributions. Additionally, they are unweighted and they have
nonoverlapping planted communities. One can use a similar
method to construct weighted networks and networks with
overlapping planted communities [108]. Motivated by our
empirical results on networks constructed from real data, we
also apply our methods to LFR networks to test the extent
to which they are able to reproduce the three classes of NCP
behavior (upward-sloping, flat, and downward-sloping) that
we have observed with real networks.

To parametrize the family of LFR networks, we specify
a network’s power-law degree distribution using its exponent
71, mean degree (k), and maximum degree k,x. Similarly, we
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FIG. 15. (Color online) NCPs of LFR synthetic benchmark networks [106] with n = 10 000 nodes. Colors correspond to different values of
the mixing parameter p. Our choices for the mean degree (k), maximum degree k., exponent t; of the degree distribution, exponent 7, of the
community-size distribution, minimum community size ¢, and maximum community Size ¢y, correspond to the ones used in Refs. [28,107]

to benchmark community-detection algorithms.

specify its power-law community-size distribution using its
exponent T, minimum community Size Cpin, and maximum
community size cmax, With the additional constraint that the
sum of community sizes should equal the size n of the
network. Furthermore, we specify the strength of community
memberships using a mixing parameter p, where each node
shares a fraction 1 — p of its edges with nodes in its own
community. A simple calculation shows that this definition
of the mixing parameter implies that each community in the
planted partition has conductance p (up to rounding effects).

To construct a network with these parameters, we sample
n degrees from the degree distribution and sample community
sizes from the community-size distribution. We then assign
nodes to communities uniformly at random, with the constraint
that a node cannot be assigned to a community that is too
small for the node to have the correct mixing-parameter value.
We then construct intercommunity and intracommunity edges
separately by connecting the corresponding stubs (i.e., ends of
edges) uniformly at random. We use the implementation by
Lancichinetti [109] to generate LFR networks.

In Fig. 15, we show representative NCPs for LFR networks
for three choices of parameters for the degree distribution and
community-size distribution that have been used previously
to benchmark community-detection algorithms [28,106,107].
(We generated the results presented in Fig. 15 using the
ACLCUT method, but we obtain nearly identical NCPs using
the MOVCUT method.) The three subfigures demonstrate that
all three parameter choices yield networks with similar NCPs.
In particular, we observe that—above a certain critical size—
the best communities have comparable quality as a function of
size. Depending on the particular parameter values, this can be
of similar quality to or somewhat better than that which would
be obtained by, e.g., a vanilla (not extremely sparse) Erd6s-
Rényi (ER) random graph at large size scales. That is, above
the critical size, the NCP is approximately flat. Increasing the
topological mixing parameter u in the LFR network generative
mechanism at first shifts the entire NCP upwards because
the number of intercommunity edges increases. For u ~ 1,
it levels off to the characteristic flat shape for an NCP of a
network generated from the configuration model of random
graphs.

Importantly, the behavior for the LFR benchmark networks
from Ref. [106] that we illustrate in Fig. 15 does not resemble
the NCPs for any of the real-world networks in either the
present paper or in Ref. [24,25]. In addition, we have been
unable to find parameter values for which the qualitative prop-
erties of realistic NCPs—in particular, a relatively gradually
upward-sloping NCP—are reproduced, which suggests that
the community structure generated by the LFR benchmarks is
not realistic in terms of its size-resolved properties.

To verify that this behavior is not an artifact of the particular
choices of parameters in Fig. 15, we sample sets of parameters
uniformly at random with »n € {1000,10000,50000},
7,72 € {—1,-2,..., =5}, (ky € {10,11,...,100},
kmax € {(k),(k) +1,...,250}, cmin € {10,11,...,250}, and
Cmax € {Max(cmin,kmax), - - - 250} and compute the NCPs of
the resulting LFR benchmark networks. The aggregate trends
of these NCPs are similar to the results that we show in Fig. 15.
Hence, although the LFR benchmark networks are useful as
tests for community-detection techniques, our calculations
suggest that they are unable to reproduce a fundamental
feature of many real networks with respect to variation in
community quality (and, in particular, worsening community
quality) as a function of increasing community size.

Based on our empirical observations, our locally biased per-
spective on community detection suggests a natural approach
to determine whether synthetic benchmarks possess small-
scale, medium-scale, and large-scale community structure that
resembles that of large realistic networks: Namely, a family
of synthetic benchmark networks ought to include parameter
values that generate networks with (robust) upward-sloping,
flat, and downward-sloping NCPs [as observed in Figs. 2(a)
and 6(a)].

VI. CONCLUSIONS AND DISCUSSION

In this paper, we conducted a thorough investigation of
community quality as a function of community size in a suite
of realistic networks, and we reached several conclusions
with important implications for the investigation of realistic
medium-sized to large networks. Our results build on previous
work on using NCPs to study large networks [24-26]. In this
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paper, we employed a wider class of community-identification
procedures, and we discovered a wider class of communitylike
behaviors (as a function of community size), in realistic
networks than what had been reported previously in the
literature [110]. In addition, we discovered using NCPs that
the popular LFR synthetic benchmark networks, which are
often used to validate community-detection algorithms—and
which are advocated as realistic synthetic benchmark networks
for testing methods for community detection [111]—exhibit
behavior that is markedly different from many real networks.
Our result thus underscores the importance of developing
realistic benchmark graphs whose NCPs are qualitatively
similar to those of real networks. Taken together, our em-
pirical results yield a much better understanding of realistic
community structure in large realistic networks than was
previously available, and they provide promising directions
for future work. More generally, because our approach for
comparing community structures in networks (using NCPs
and CRPs) is very general—e.g., one can follow an anal-
ogous procedure with other community-quality diagnostics,
other procedures for community generation, etc.—our locally
biased and size-resolved methodology is an effective way
to investigate meso-scale network structures much more
generally.

The main conclusion of our work is that community
structure in real networks is much more intricate than is
suggested by the block-diagonal assumption that is (either
implicitly or explicitly) made by most community-detection
methods (including ones that allow overlapping communi-
ties [101]) and when using the synthetic benchmark networks
that have been developed to test those methods. Community
structure interplays with other meso-scale features, such as
core-periphery structure [36,62,64], and investigating only
community structure without consideration of other structures
can lead to misleading results. A local perspective on com-
munity detection, like the one that we have advocated in the
present paper, allows pervasive community overlap in a natural
way. This is an important feature to capture when considering
real social networks. Additionally, the large-scale consensus
community structure that one obtains subsequently by “pasting
together” local communities is not constrained to resemble a
global block-diagonal structure. This is a key consideration in
the study of meso-scale structures in real networks.

Although most algorithmic methods for community detec-
tion take a different approach from ours, the observation that
network community structure depends not only on network
structure per se but also on the dynamical processes that take
place on a network and the initial conditions (i.e., seed node or
nodes) for those processes is rather traditional in many ways.
Recall, for example, Granovetter’s observation that a node with
many weak ties is ideally suited to initialize a successful social
contagion process [112]. Our perspective also meshes better
than global ones with real-life experience in our own networks.
Both of these observations underscore our point that whether
particular network structures form bottlenecks for a dynamical
process depends not only on the process itself but also on the
initial conditions of that process.

More generally, one might hope that our size-resolved
and locally biased perspective on community detection can
be used to help develop new diagnostics that complement
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widely used and intuitive concepts such as closeness central-
ity, betweenness centrality, and many other existing global
notions. These will be of particular interest for investigating
large networks—or even medium-sized networks such as
those that we have considered—where traditional algorithmic
and visualization methods have serious difficulties. Because
the study of meso-scale structure in networks is important
for understanding how local and small-scale properties of a
network interact with global and large-scale properties, we
expect that taking a locally biased perspective on community
detection and related problems will yield numerous interesting
and novel insights.
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APPENDIX A: EXPANDER GRAPHS

In this section, we provide a brief introduction to the concept
of an expander graph (or, more simply, an expander) [113].
Essentially, expanders are graphs that are very well connected
and thus do not have any good communities (when measured
with respect to diagnostics such as conductance). Because
our empirical results indicate that many large social and
information networks are expanders—at least when viewed at
large size scales—it is useful to review basic properties about
expander graphs. Most of the technical aspects of expander
graphs are beyond the scope of this paper, but Ref. [114]
provides an excellent overview of this topic.

Let G = (V, E) be a graph, which we assume for simplicity
is undirected and unweighted. For the moment, we assume
that all nodes have the same degree d (i.e., G is d-regular). For
S1,8, C V, the set of edges between S; and S, is

E(S1.8) ={{i,j} i € S1,j € $2,{i,j} € E}. (AL)

In this case, the number |S| of nodes in S is a natural measure
of the size of S. Additionally, the quantity |E(S,S)|, which
indicates the number of edges that cross between S and S,isa
natural measure of the size of the boundary between S and S.
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We also define the edge expansion of a set of nodes
S CVas

|E(S.S)

h(S) = ———.
(S S|

(A2)

The edge expansion of a graph G is the minimum edge
expansion of any subset (of size no greater than n/2) of nodes:

h(G) = s min . h(S). (A3)

VIS

A sequence of d-regular graphs {G,},cNn is a family of
expander graphs if there exists an € > 0 such that h(G;) > €
for all # € N. Informally, a given graph G is an expander if its
edge expansion is large.

As reviewed in Ref. [114], one can view expanders from
several complementary viewpoints. From a combinatorial
perspective, expanders are graphs that are highly connected
in the sense that one has to sever many edges to disconnect a
large part of an expander graph. From a geometric perspective,
this disconnection difficulty implies that every set of nodes has
a very large boundary relative to its size. From a probabilistic
perspective, expanders are graphs for which the natural
random-walk process converges to its limiting distribution as
rapidly as possible. Finally, from an algebraic perspective,
expanders are graphs in which the first nontrivial eigenvalue
of the Laplacian operator is bounded away from 0. (Because
we are discussing d-regular graphs, note that this statement
holds for both the combinatorial Laplacian and the normalized
Laplacian.) In addition, constant-degree (i.e., d-regular, for
some fixed value of d) expanders are the metric spaces that
(in a very precise and strong sense [114]) embed least well in
low-dimensional spaces (such as those discussed informally in
Sec. I1 B). All of these interpretations imply that smaller values
of expansion correspond more closely to the intuitive notion
of better communities (whereas larger values of expansion
correspond, by definition, to better expanders).

Note the similarities between Eq. (A2) and Eq. (A3), which
define expansion, and Eq. (3) and Eq. (4), which define
conductance. These equations make it clear that the difference
between expansion and conductance simply amounts to a
different notion of the size (or volume) of sets of nodes and the
size of the boundary (or surface area) between a set of nodes
and its complement. This difference is inconsequential for
d-regular graphs. However, because of the deep connections
between expansion and rapidly mixing random walks, the latter
notion (i.e., conductance) is much more natural for graphs with
a substantial degree of heterogeneity. The interpretation of
failing to embed well in low-dimensional spaces (like lines or
planes) is not extremal in the case of conductance and degree-
heterogeneous graphs (as it is in the case of expansion and
degree-homogeneous graphs). However, the interpretations
of many other properties, such as being well-connected and
failing to provide bottlenecks to random walks, also hold
for conductance and degree-heterogeneous graphs (such as
those that we consider in the main text of the present paper).
Accordingly, it is insightful to interpret our empirical results
on small-scale versus large-scale structures in networks in the
light of known facts about expander (and expanderlike) graphs.
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APPENDIX B: COMMUNITY QUALITY, DYNAMICS
ON GRAPHS, AND BOTTLENECKS TO DYNAMICS

In this section, we describe in more detail how we algo-
rithmically identify possible communities in graphs. Because
we are interested in local properties and how they relate
to meso-scale and global properties, we take an operational
approach and view communities as the output of various
dynamical processes (e.g., diffusions or geodesic hops), and
we discuss the relationship between the output of such pro-
cedures and well-defined optimization problems. The idea of
using dynamics on a network has been exploited successfully
by many methods for finding “traditional” communities (of
densely connected nodes) [9,32,53,115-118] as well as for
finding sets of nodes that are related to each other in other
ways [48,54,115,119,120].

In this paper, we build on the idea that random walks and
related diffusion-based dynamics, as well as other types of
local dynamics (e.g., ones, like geodesic hops, that depend on
ideas based on egocentric networks), should get “trapped” in
good communities. We examine three dynamical methods for
community identification.

1. Dynamics type 1: Local diffusions (the “ACLCUT” method)

In this procedure, we consider a random walk that starts at a
given seed node s and runs for some small number of steps. We
take advantage of the idea that if a random walk starts inside a
good community and takes only a small number of steps, then
it should become trapped inside that community. To do this,
we use the locally biased PPR procedure of Refs. [121,122].
Recall that a PPR vector is defined implicitly as the solution
pr(e,5) of the equation

pr(,5) = D' A pr(e,5) + (1 — )5, (B1)
where 1 — « is a “teleportation” probability and s is a seed
vector. From the perspective of random walks, evolution occurs
either by the walker moving to a neighbor of the current node or
by the walker “teleporting” to a random node (e.g., determined
uniformly at random as in the usual PageRank procedure, or to
arandom node that is biased towards s in the PPR procedure).
The PPR vector pr(c,5) represents the stationary distribution
of this random walk. In general, teleportation results in a bias
to the random walk, and one usually tries to minimize such a
bias when detecting communities. (See Ref. [123] for clever
ways to choose 5 with this goal in mind.)

The algorithm of Refs. [121,122] deliberately exploits the
bias from teleportation to achieve localized results. It computes
an approximation to the solution of Eq. (B1) (i.e., it computes
an approximate PPR vector) by strategically “pushing” mass
between the iteratively updated approximate solution vector
and a residual vector in such a way that most of the nodes
in the original network are not reached. Consequently, this
algorithm is typically much faster for moderately large to
very large graphs than is the naive algorithm to compute a
solution to Eq. (B1). The algorithm is parametrized in terms of
a “truncation” parameter €, where larger values of € correspond
to more locally biased solutions. We refer to this procedure as
the ACLCUT method.

012821-22



THINK LOCALLY, ACT LOCALLY: DETECTION OF ...

2. Dynamics type 2: Local spectral partitioning
(the “MovCuUT” method)

In this procedure, we formalize the idea of a locally biased
version of the leading nontrivial eigenvector of the normalized
Laplacian £. One can use such an eigenvector for a locally
biased version of traditional spectral graph partitioning.

Following Ref. [37], consider the optimization problem

minimize X' £X
X

subjectto XX =1, B2)

DV =,
()—C'TDI/ZE)Z 2 K,

where k is a locality parameter and § is a vector, which satisfies
the constraints 57 D5 = 1 and 57 D1 = 0 and which represents
a seed set of nodes. That is, in the norm associated with the
diagonal matrix D, the seed vector i has unit length and
is exactly orthogonal to the 1-vector 1. This locally biased
version of standard spectral graph partitioning [which becomes
the usual global spectral-partitioning problem if the locality
constraint (X7 D'/25)? > k isremoved] was introduced in [37],
where it was shown that the solution vector X* inherits many
of the nice properties of the solution to the usual global
spectral-partitioning problem. The solution x* is of the form

¥ =a(Lg — yDg) DGs, (B3)

where the parameter y € (—o00,A2(G)) is related to the
teleportation parameter « via the relation y = ‘)‘a;' (see [37])
and a € [0,00] is a normalization constant.

As one can see from Eq. (B3), the solution X* of Eq. (B2) is
an exact PPR vector with personalized teleportation vector
5. Consequently, it can be computed as the solution to a
system of linear equations. In addition, if one performs a
sweep cut (see the discussion below) of this solution vector to
obtain a locally biased network partition, then one obtains
Cheeger-like guarantees on approximation quality for the
associated network community. Moreover, if the seed vector s
corresponds to the indicator vector of a single node i, then
this is a relaxation of the following locally biased graph-
partitioning problem: Given as input a graph G = (V,E,w),
a node i, and a positive integer k, find a set of nodes S C V
that achieves the minimum conductance among all sets of
nodes that contain the input node i and have volume no larger
than k [37]. We refer to this procedure (with a seed vector
corresponding to a single seed node) as the MOVCUT method.

3. Dynamics type 3: Local geodesic spreading
(the “EGONET”’ method)

In this procedure, we perform a geodesic-based (i.e., ego-
network-based) dynamics that is analogous to the local random
walks that we described above. This method is similar to the
technique for finding local communities that was introduced in
Ref. [38] and which was generalized to weighted networks in
Ref. [124]. Starting with a seed node s and a distance parameter
k, this method construes all nodes i whose geodesic distance
from s is at most k—i.e., all nodes i such that A;; <k—as a
local community. The local communities that we obtain using
this method are simply the k-ego-nets of the seed node. For
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consistency with the other two methods, it is useful to think of
this method as inducing a ranking of the nodes,

EgoRank;(s) = , (B4)

1+ A
where i is some node in a network. Given the ranking
interpretation in Eq. (B4), we recover local geodesic-based
communities from the EgoRank vector by using the sweep cut
procedure that we describe below. The underlying dynamics
for this method is analogous to the extreme case of a
susceptible-infected (SI) spreading process [43,126], in which
an infected node infects all of its neighbors with probability 1
at the time step following the one in which it is infected. One
can then interpret the EgoRank of node i for a seed node s as
the inverse of the time that it takes for node i to first become
infected when only the seed node s is infected initially. We
refer to this procedure as the EGONET method.

4. Sampling procedures and parameter choices

To obtain an accurate picture of local community structure
at different size scales throughout a network, we run each of
the above community-identification procedures many times,
starting at different seed nodes and running for different
numbers of steps, and we then examine which nodes get visited
as the dynamical processes unfold. For each seed node and
value of the parameters, each of the ACLCUT, MOVCUT, and
EGONET methods returns a vector that can be used to “rank”
the nodes of a network (in a locally biased and size-resolved
manner): ACLCUT and MOVCUT return a variant of the PPR
vector, and EGONET returns the EgoRank vector in Eq. (B4).
Given a ranking vector p, the so-called “sweep sets” are given
by S; = {i € V : p; > t}. Thus, there are at mostn + 1 distinct
sweep sets (where we recall that n is the number of nodes in a
graph). A corresponding “sweep cut” is the network partition
obtained from a sweep set that has minimal conductance
among all of the n + 1 possible sweep sets. By computing
the conductance for each of the sweep sets, one obtains a
locally biased estimate (which is centered around a seed node)
for an NCP. One can then estimate a global NCP by taking the
lower envelope over local NCPs for different seed nodes and
parameter values. Our MATLAB code that implements these
methods is available at [127].

To obtain a good estimate of a global NCP, we need to
sample good communities for all possible size scales of a
network. In the next several paragraphs, we discuss how we
choose the parameter values and how to sample seed nodes in
our three community-detection methods. Recall that ACLCUT
has two parameters (the teleportation parameter « and the
truncation parameter €), but that MOVCUT only has a single
parameter (a teleportation parameter).

For ACLCUT, theoretical results [121] suggest that the
method should find good communities of volume roughly
€', where we have ignored constants and logarithmic factors.
Furthermore, for a seed node i with strength k;, ACLCUT
returns empty communities for € < k.~ ! This suggests that
sampling using € € [k, ,vol(G)~'] gives good coverage of
different size scales in practice. In this paper, we use 20
logarithmically spaced points in [k L ,vol(G)~'] (including

the end points) to generate Figs. 6, 7, and 15. In addition,
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we use @ = 0.001, where & is the teleportation parameter of
the “lazy random walk” defined in [121]. The (conventional)
teleportation parameter that we use satisfies ¢ = 1 — ﬁ—&&, S0
o ~ 0.998 in Eq. (B1). In our computations, we observe that
increasing « leads to more accurate NCPs at the cost of longer
computation times.

For MovCuUT, we use 20 equally spaced values of « in the
interval [0.7,(1 — )~ — 10719] (including the end points),
where (1 — A,)~! is the theoretical maximum for « (see [37]).
To sample seed nodes, we modify the strategy described in
Ref. [25] to be applicable to the MOVCUT method as well as
the ACLCUT method. For each choice of parameter values, we
sample nodes uniformly at random without replacement and
stop the sampling process either when all nodes are sampled
or when the sampled local communities sufficiently cover the
entire network. To determine sufficient coverage, we track how
many times each node is included in the best local community
that we obtain from the sweep sets and stop the procedure
once each node is included at least ten times. This procedure
ensures that good communities are sampled consistently.

The EGONET method does not have any size-scale param-
eters. For the network sizes that we consider, it is feasible to
use all nodes rather than sampling them. We use this approach
for our calculations using this method.

Finally, for readability, we only plot the NCPs for com-
munities that contain at most half of the nodes in a network.
The symmetry in the definition of conductance [see Eq. (3)]
implies that the complement of a good small community is
necessarily a good large community and vice versa. Hence,
a sampled NCP is roughly symmetric, though this is hard to
see on a logarithmic scale, and an NCP without sampling is
necessarily symmetric.

APPENDIX C: DETAILED RESULTS
FOR THE MovCutr METHOD

The MovCUT method provides an alternative to ACLCUT
for sampling local community profiles to construct an NCP.
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Unlike ACLCUT, which uses only local information to obtain
good communities, MOVCUT also incorporates some global
information about a network to construct local communities
around a seed node. In particular, this implies that there can be
sweep sets and thus communities that consist of disconnected
components of a network. Such communities have infinitely
large conductance ratios. We observe this phenomenon often
for the coauthorship and Facebook networks, but it almost
never occurs for the Congressional voting networks. These
sweep sets consist of several small sets of peripheral nodes,
each of which has moderate to very low conductance, but
which are otherwise unrelated. Although one would not
usually think of such a set of nodes as a single good com-
munity, optimization-based algorithms often clump several
unrelated communities into a single community for networks
with a global core-periphery structure. For completeness and
comparison, we include our results both when we keep the
disconnected sweep sets and when we restrict our attention
to connected communities. As we discuss below, the NCP
does not change substantially, although there are some small
differences.

The resulting NCPs for the MoOVCUT method [see
Figs. 16(a) and 17(a)] are similar to those that we obtain for
the ACLCUT method [see Figs. 6(a) and 7(a)], although there
are a few differences worth discussing. The CRP plots are
also very similar [compare Figs. 16(b) and 17(b) to Figs. 6(b)
and 7(b)]. For the coauthorship networks (CA-GRQC and
CA-ASTROPH), as well as FB-HARVARD1, both MOvVCUT and
ACLCUT identify the same good small communities that are
responsible for the spikes in the NCP plots. In addition,
the communities that yield the dips in the NCPs for FB-
JOHNSS55 near 220 and 1100 nodes and for FB-HARVARDI
near 1500 nodes all share more than 98% of their nodes.
This indicates that both methods are able to find roughly the
same communitylike structures. However, the result from
the MovCuUT NCP for CA-GRQC is higher and less choppy
than the one that we computed using ACLCUT because the
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FIG. 16. (Color online) NCP plots [in panel (a)] and CRP plots [in panel (b)] for FB-JOHNS55, CA-GRQC, and US-SENATE (i.e., the smaller
network from each of the three pairs of networks from Table I) generated using the MOVCUT method. The thin curves are the NCPs that we

obtain when we also consider disconnected sweep sets.
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FIG. 17. (Color online) NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-ASTROPH, FB-HARVARDI, and US-HOUSE (i.e., the
larger network from each of the three pairs of networks from Table I) generated using the MOVCUT method. The thin curves are the NCPs that

we obtain when we also consider disconnected sweep sets.

truncation employed by ACLCUT performs a form of implicit
sparsity-based regularization that is absent from MoOVCUT.
See Refs. [99,100,128] for a discussion and precise char-
acterization of this regularization. For the coauthorship and
Facebook networks, we also note that there are regions of the
computed NCPs, when using the MOVCUT method, in which
one finds disconnected sweep sets (see the thin curves) with
lower conductance than those for the best connected sets of the
same size. At other sizes, we see some differences between the
NCPs from MovCUT and ACLCUT. This illustrates that the two
methods can have somewhat different local behavior, although
both methods produce similar insights about the large-scale
structure in these networks.
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APPENDIX D: DETAILED RESULTS
FOR THE EGONET METHOD

The EGONET method was not originally developed to opti-
mize conductance, although there is some recent evidence that
k-neighborhoods can be good conductance communities [ 129].
The assumption that underlies the EGONET method is that
nodes in the same community should be connected by short
paths. However, unlike the spectral-based methods (ACLCUT
and MovCuT), the EGONET method does not take into account
the number of paths between nodes. In contrast to Ref. [129],
which considered only 1-neighborhoods, we also examine
k-neighborhoods with k > 1. We can then use the EGONET
method to approximate an NCP for a network.
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FIG. 18. (Color online) NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-GRQC, FB-JOHNSS5S5, and US-SENATE (i.e., the smaller
network from each of the three pairs of networks from Table I) using the EGONET method. We find qualitatively similar behavior as with
the other two methods, although the NCPs are shifted upwards and some of the large-scale structure is no longer present (especially in the

Facebook network).
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FIG. 19. (Color online) NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-ASTROPH, FB-HARVARD1, and US-HOUSE (i.e., the
larger networks from each of the three pairs of networks from Table I) using the EGONET method. We find qualitatively similar behavior as
with the other two methods, although the NCPs are shifted upwards and some of the large-scale structure is no longer present (especially in the

Facebook network).

Despite its simplicity, and in agreement with Ref. [129], the
EGONET method produces NCPs that are qualitatively similar
to those from both the ACLCUT and MoOVCUT methods for
all of the networks that we consider (see Figs. 18 and 19).
The NCPs for the EGONET method are shifted upwards
compared to those for the ACLCUT and MOVCUT methods,
and this is particularly noticeable at larger community sizes.
This is unsurprising, because the latter two methods more

aggressively optimize the conductance objective. However,
for all six of our networks, EGONET conveys an NCP’s
small-scale structure as well as the global tendency to be
upward-sloping, flat, or downward-sloping. This provides
further evidence that the qualitative features of an NCP
provide a signature of community structure in a network
and are not just an artifact of a particular way to sample
communities.
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