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Abstract

Knowledge of protein sequences has exploded, but knowledge of protein function is

needed to make use of sequence information, and this lags behind. A protein’s function

must be understood in context and part of this is the network of interactions between

proteins. What are the relationships between protein function and the structure of

the interaction network? In the first part of my thesis, I investigate the functional

relevance of clusters, or communities, of proteins in the yeast protein interaction

network. Communities are candidates for biological modules. The work I present is

the first to systematically investigate this structure at multiple scales in such networks.

I develop novel tests to assess whether communities are functionally homogeneous,

and demonstrate that almost every protein is found in a functionally homogeneous

community at some scale.

The evolution of protein sequences is well-studied, but comparatively little is

known about the evolution of protein function. Such knowledge is needed to un-

derstand when it is appropriate to annotate newly sequenced proteins by transferring

functional information from homologs–i.e. evolutionarily related proteins. In the sec-

ond part of my thesis, I assess the success of transferring protein-protein interactions

across species and use this to estimate the rate at which interactions are lost in evolu-

tion. At levels of sequence similarity associated with functional annotation transfer,

I demonstrate that protein-protein interaction transfer is unreliable.

The relevance of community structure for understanding protein function and the

low conservation of individual interactions, suggests a possible role for communities

in the evolution of cellular function. I discuss this possibility in my conclusions.
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thetic network with strong community structure . . . . . . . . . . . . 69

3.3 Robustness of community detection algorithm . . . . . . . . . . . . . 71

3.4 Examples of communities found . . . . . . . . . . . . . . . . . . . . . 73

3.5 Literature standard test for functional enrichment of communities . . 77

3.6 Functional homogeneity of communities found . . . . . . . . . . . . . 79

3.7 Correlation of similarity measures . . . . . . . . . . . . . . . . . . . . 81

3.8 Correlation of normalised and un-normalised GO similarity measures 82

3.9 Functional homogeneity of communities found: chains . . . . . . . . . 86

3.10 Correlation of similarity measures: chains . . . . . . . . . . . . . . . . 87

3.11 Correlation of similarity measures: chains-based test compared to interactors-

based test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Using topological properties to pick out functionally homogeneous com-

munities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



3.13 Tracing the community membership of a particular protein: example 94

3.14 Tracing the community membership of a particular protein: further

examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.15 GO slim and interacting proteins . . . . . . . . . . . . . . . . . . . . 99

3.16 The distribution of four GO slim terms throughout communities . . . 101

3.17 The fraction of interactions connecting proteins of different types found

within communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.18 Fraction of proteins of particular types in functionally homogeneous

communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Relationships between sequence-similarity measures . . . . . . . . . . 116

4.2 Histogram of the E-values for reciprocal-best-hit homologs . . . . . . 118

4.3 Evidence for conservation of interactions across species . . . . . . . . 120

4.4 Number of inferences to each inferred interaction . . . . . . . . . . . 125

4.5 Bias for homologous proteins to be investigated . . . . . . . . . . . . 129

4.6 False positives in the source-species interactome . . . . . . . . . . . . 131

4.7 Coverage of the source-species interactome . . . . . . . . . . . . . . . 134

4.8 Estimated fraction of conserved interactions . . . . . . . . . . . . . . 138

4.9 Estimated fraction of correct inferences between M. musculus and H.

sapiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Estimates of the probability that a duplicated interaction is lost per

million years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.11 Effect of excluding large protein families from inferences . . . . . . . 145

4.12 Selecting correct inferences: AUCs for individual properties . . . . . . 150

4.13 ROC curves for predicting conserved interactions using three models

of increasing complexity . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.14 Evidence for conservation of interactions within species: one-same and

both-different inferences . . . . . . . . . . . . . . . . . . . . . . . . . 155

vii



A.1 Several interaction-prediction methods . . . . . . . . . . . . . . . . . 166

D.1 Evidence for conservation of interactions across species, differing scales 208

D.2 Evidence for conservation of interactions across species: percentage

sequence identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

D.3 Evidence for conservation of interactions across species: geometric

mean of E-values, JE . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D.4 Evidence for conservation of interactions within species: percentage

sequence identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D.5 Evidence for conservation of interactions within species: geometric

mean of E-values, JE . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

viii



Chapter 1

Introduction

1.1 Overview

1.1.1 Systems biology and protein-protein interactions

Systems biologists seek to supplement the successes of molecular biology with a more

systems level approach [166]. Molecular biology has tended to focus on in depth

investigations of individual molecules, whereas the systems biology approach is to

study how individual components interact together in order to bring about system-

level properties. One example is how cardiac cells interact to produce the beat of the

heart [237]. Another example is how macro-molecules in the cell, such as proteins,

interact to bring about cellular function [20].

Systems biology aims to be a post-genomic science: it is, in part, a response

to the realisation that the gap between sequencing DNA and identifying genes, and

understanding what function the products of those genes have, is a very large one.

In particular, the vast amount of sequence data collected across the tree of life has

allowed a fairly good understanding of the many ways in which sequence can change,

but this does not straightforwardly translate to insight into how the functions of gene

products can change and develop [66, 343]. The interactions of gene products – in
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particular of proteins – are at an interesting position in the hierarchy of biological

organisation from genotype to phenotype, in that they are both of functional relevance

and have a close link to sequence: genetic sequence determines protein sequence,

which determines protein structure, which is thought to largely determine protein-

protein interactions [40, 348].

Studies of protein-protein interactions can give insight both into how complex

cellular behaviour arises from the behaviour of individual macro-molecules and into

how this complex cellular behaviour evolved. It is therefore hardly surprising that

over the last few years considerable effort has been made to determine experimentally

protein-protein interactions, and that large data sets incorporating tens of thousands

of interactions are now available. In this chapter, I review the study of protein-protein

interactions. In Chapter 2, I introduce some of the mathematical tools relevant to

subsequent chapters.

1.1.2 Communities

The set of protein-protein interactions within a species can be considered as a network

(a Protein-protein Interaction Network or PIN), with proteins as nodes and known

interactions between them as edges. The patterns of interaction between proteins

are anticipated to be highly structured, possibly at many different scales: one can

investigate not only the properties of an individual component (a protein and its

interacting partners) and the properties of the whole (the entire PIN), but also mid-

level structure. Consider the analogy of the friendship network between pupils in a

school: one might expect class groups and, at a larger scale, year groups to appear

as dense regions in the network. Densely connected regions in a network are often

called communities [91] and, as the school example illustrates, they potentially exist

at multiple scales. Are there communities in PINs that have functional significance,

and if so at what scales? What, if anything, can a study of their structure tell us

2



about the functional organisation of the cell? One hypothesis is that a community of

proteins is a module: it carries out a particular cellular task, in comparative isolation

from the rest of the system. These questions are the starting point for Chapter 3.

1.1.3 Homology

Homology, which means similarity through common descent, occurs on many scales,

from genetic sequence to anatomy. The high degree of observed protein sequence

similarity between proteins in different species gives a strong expectation that dis-

coveries about protein function made in one species will provide understanding in

another [66]. Are protein-protein interactions conserved through evolution? There

now exist considerable data for a few species, which enables comparative studies.

If protein-protein interactions are well-conserved through evolution, then we can be

more confident that knowledge of protein function gained in one species can be ‘trans-

ferred’ to other species. If they are not, then this goes some way to explaining the

large amount of phenotypic divergence that exists despite the very high degree of

sequence conservation. This is the topic of Chapter 4.

1.1.4 Communities and homology of protein-protein interac-

tions

It is often assumed that functional modules are also evolutionary modules [125] – that

evolution tinkers with the connections between modules rather than with modules

themselves. But is it the case that nature instead tinkers with interactions within

modules, as the effects of these are fairly isolated and hence less likely to result in

disruption? In this thesis, I do not examine the role of communities in evolution,

but the work presented does suggest some lines of enquiry that would explore these

questions. I discuss this in Chapter 5.
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1.2 Protein-protein interaction data

1.2.1 Proteins

Proteins are large macro-molecules composed of at least one polypeptide (i.e. a chain

of amino acids held together by peptide bonds). The word ‘protein’ comes from the

Greek meaning ‘primary’, a fitting name as proteins are of primary importance to

cellular life, carrying out most of the cellular tasks. For example, major classes of

proteins include enzymes, ion channels, antibodies, transcription factors, hormones,

chaperones, and cytoskeletal constituents.

In the simplest case, a sequence of DNA is transcribed into RNA, which is trans-

lated via the genetic code into a polypeptide. We now know that the connection

between DNA sequence and polypeptide chain can be significantly more complicated

than this. The human genome is estimated to have about 20, 000 − 25, 000 protein

coding genes [308], though the number of proteins is much larger because of multiple

splice variants.

Polypeptides encoding proteins typically fold into a unique three dimensional

structure, which is thought to be determined primarily by the amino-acid sequence

[29]. There are two common structural motifs within proteins, alpha-helices and

beta-sheets, which are referred to as secondary structure.

Proteins come in many different shapes and sizes, and this diversity is matched

by the functions in which proteins participate. Proteins can be classified based on

their amino-acid sequence, their three-dimensional structure, the molecular func-

tion(s) they perform, the biological process(es) in which they partake, etc. Such

classifications are obviously not independent of one another.

Proteins do not carry out their functions in isolation but rather act in concert

with other cellular constituents, including other proteins.

4



1.2.2 What is a protein-protein interaction?

Protein-protein interactions are of diverse types. For example, some proteins are

never found except when interacting with each other [e.g. 294] (such interactions are

termed obligate), while other interactions are transient [e.g. 294]. Examples of ob-

ligate interactions include multi-subunit enzymes; examples of transient interactions

include hormone-receptor and enzyme-inhibitor interactions. The distinction between

obligate and transient is not black and white, as many intermediate strengths and

durations of interaction are possible [220]. Protein-protein interactions likely depend

on conditions or life-cycle-stage. In the case of multi-cellular organisms they are also

likely dependent on cell-type. Some protein-protein interactions may only occur when

the proteins have particular post-translational modifications [178].

What, then, counts as a protein-protein interaction? The literature has rather

side-stepped the issue of delineating what a protein-protein interaction is and is not

(e.g. does it have to be specific? If so, how specific?). Instead, the outputs from

various experimental protocols, suitably filtered for obvious false-positives (i.e. in-

teractions reported but not truly there), are taken as definitions of protein-protein

interactions. In this way, a protein-protein interaction is largely synonymous with ‘a

true positive from one of the main methodologies’.

In the next subsection, I outline the main experimental protocols and discuss

the currently available data sets. To supplement experimentally derived data, tools

for computationally predicting protein-protein interactions have been developed (see

Appendix A).
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1.2.3 Experimental protocols

1.2.3.1 Yeast-two-hybrid screens

The yeast-two-hybrid (y2h) technique was first proposed by Fields and Song [85], and

studies using this technique and its variants are amongst the largest contributors to

currently available data sets. A good review of the technique is found in Brückner

et al. [43]. Prior to Fields and Song [85], almost all reports of protein-protein in-

teractions relied on biochemical techniques. Yeast-two-hybrid allowed the report of

interactions in living cells. The method takes advantage of the fact that some tran-

scription factors (i.e. proteins that are involved in the control of transcription of

DNA) are composed of two separate domains, a binding domain and an activating

domain, which need to be in close proximity before transcription can occur. In y2h,

one protein (the ‘bait’) is expressed as a fusion with the binding domain, and another

protein (the ‘prey’) is expressed as a fusion with the activating domain. It is only if

the two proteins physically interact that the binding domain and the activating do-

main can activate transcription of some reporter gene(s) [85]. The expression of the

reporter gene, which can for example allow growth on a specific medium or express a

fluorescent protein [43], is then a signal that the bait and prey interact.

High-throughput studies have been performed in Saccharomyces cerevisiae [145,

326, 360], D. melanogaster [90, 107], C. elegans [185], and Homo sapiens [279, 327].

These studies have not tested for the existence of all possible interactions, and several

sources of false-positive and false-negative errors are known.

False positives in y2h screens include the fact that the proteins are over-expressed

in a non-native cellular localisation: such detected interactions might be real in the

sense that the proteins bind specifically to each other, but never happen under normal

cellular conditions [334]. More recent two-hybrid approaches allow the screen to be

performed in mammalian cells [317], where this should be less of an issue. As the
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method relies on fusion proteins, misfolding of the bait or prey is possible, leading to

increased affinity for certain targets [196].

False negatives can arise if the signal from the reporting genes is insufficiently

strong, perhaps due to low protein abundance. The fusion proteins might misfold,

blocking relevant interaction sites. Non-yeast proteins might not receive the correct

post-translational modifications in yeast [43]. Self-interacting proteins can be hard

to identify, as the baits interact with each other and the preys interact with each

other, resulting in reduced concentrations of bait/prey interactions [104]. Classical

y2h requires the expression of proteins in the nucleus, which does not happen for e.g.

membrane proteins, so interactions involving membrane proteins are missed. Variants

such as the split ubiquitin y2h [43] have been applied on a large scale to S. cerevisiae

membrane proteins [217]. Some bait proteins can themselves be activators, meaning

that an interaction with the prey-activating domain fusion protein is not needed for

reporter gene transcription [85]. Such proteins are called ‘auto-activators’, and in

classical y2h they must be excluded from screening for interactions. Various variants

of the classical screen have been suggested that allow auto-activators to be included

[43] and are incorporated in more recent studies [e.g. 360].

1.2.3.2 Purification and identification of complexes

Associations between proteins are also identified using biochemical purification of

complexes followed by some method for identifying the members of the complex (for

example, by mass spectrometry). The dominant low-throughput assay for purifying

proteins in a complex is co-immunoprecipitation [29]. A high throughput purification

technique known as tandem affinity purification (TAP) was introduced in 2001 by

Puig et al. [260].

In co-immunoprecipitation assays an antibody that targets a known protein that

is believed to be part of a larger complex is identified, and it is used to precipitate out
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that protein and any others that may associate with it. Often more than one antibody

is required, as the part of the protein to which the antibody binds, the epitope, may

be covered under cellular conditions (for example by the proteins that associate with

the protein of interest). Co-immunoprecipitation assays can be based on endogenous

proteins. In such cases, it is perceived as a ‘gold standard’ of association studies,

though not suitable for high-throughput screens as some prior knowledge of the bait

protein is needed.

TAP permits the high-throughput purification of complexes under cellular condi-

tions. A TAP tag is fused to a bait protein, and the fusion is introduced into cells on

a plasmid. Prey proteins then associate with the bait. The TAP tag allows the fusion

protein and associated preys to be selected and purified using an affinity column.

Those prey proteins that bind tightly enough to the bait to survive the purification

can then be identified, typically by mass spectroscopy [260]. The TAP method is

reviewed in e.g. Collins and Choudhary [60]. It has been applied on a large scale to

S. cerevisiae [100, 101, 131, 170] and to E. Coli [9, 99]. A study focused on disease

associated genes in H. sapiens cell lines has also been published [82].

In contrast to y2h screens that report binary physical interactions, the purification

of complexes reveals only biochemical association. In converting a set of bait-prey

associations into binary interactions, a choice has to be made about whether to report

all bait-prey pairs only (the ‘spoke model’), to additionally report all prey-prey pairs

(the ‘matrix’ model), or to report some intermediate number [14, 73].

False positives can be generated from contaminants, which can bind to the column

matrices used for affinity purification or form non-specific interactions with the bait

protein [260]. Non-specific interactions are made more likely if the fusion of the tag

to the bait alters its fold, exposing hydrophobic surfaces that are prone to interact

non-specifically [196].

False negatives arise if the epitope tag does not end up on the surface of the
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bait protein or if it causes the protein to misfold [260]. In general the proteins must

be abundant enough and the complexes must be sufficiently stable to withstand the

purification procedure [260], though some have suggested modified protocols that are

able to detect less stable interactions [e.g. 225, 341]. Self-interactions are often either

removed [82] or not reported due to the lack of untagged baits [104]. In addition to

the bias towards abundant proteins, there is a bias against membrane proteins, which

are hard to purify [334]. An additional source of false-negatives is from failure to

identify proteins by mass spectrometry.

1.2.3.3 Other methods

There are several other low-throughput technologies. Examples include crystallised

complexes found in the protein data bank [294], fluorescence resonance energy trans-

fer microscopy [158], and a technique called protein-fragment complementation assay

(PCA) which relies on two proteins of interest being fused to complementary frag-

ments of a reporter fragment [314].

1.2.3.4 Literature curation of small-scale experiments

The results of many small-scale experiments have been assembled into datasets by

the manual curation of reports of interactions in the literature. For example in the

‘LC’ data set of Reguly et al. [269], over 9, 000 papers were curated, and 11, 334

S. cerevisiae protein-protein interactions were reported. The Human Protein Refer-

ence Database (HPRD, [161]), aims to manually curate protein-protein interactions

in H. sapiens, including from small-scale experiments [161]. Such data sets clearly

have biases towards proteins that have been extensively studied before, for example

disease related proteins in H. sapiens and essential proteins in S. cerevisiae [119].

In Sambourg and Thierry-Mieg [287] a very strong correlation is demonstrated be-

tween how well-studied a protein is and how many interacting partners it has. This
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is true not only for the literature curated binary physical interactions from the Bi-

oGRID database [307], but also for the union of three high-throughput y2h studies

[145, 326, 360].

1.2.3.5 Databases

Many protein-protein interaction databases have been set up to collate published

data. The main extant databases are IntAct [7], MINT (the Molecular Interactions

database [48]) and BioGRID [307]. The H. sapiens-specific HPRD [161] also collates

many interactions. There are several other databases [15, 147, 194, 285].

The amount of protein-protein interaction data has grown steadily over the past

decade. Figure 1.1 illustrates the growth in the protein-protein interaction data cu-

rated in the IntAct database (and is reproduced from Supplementary Figure 2 from

the latest paper published by the IntAct group [7]). It is clear from this figure that

the data remains concentrated in a few model species.

The different databases have different criteria for collation, and these can change

with time. For example in BioGRID the matrix model is generally used for co-

complex type data (see Section 1.2.3.2) [307], whereas in IntAct and MINT, the spoke

model is now used [7, 48] with spoke-expanded co-complex interactions available for

separate download. To give an example of the difference curation protocols can make,

at the time of writing (October 25th 2011), the IntAct database contains 287, 648

interactions, of which 183, 355 are binary interactions and an additional 104, 293

are ‘spoke expanded co-complexes’ – i.e. the difference between the matrix model

and spoke model for TAP type data. A comparison of these numbers to Figure

1.1 demonstrates that at least some spoke-expanded co-complex data was present in

IntAct, as the total number of interactions reported in 2009 is larger than the total

number of non-spoke expanded co-complexes reported on the IntAct website at the

time of writing. Although this is not clear from their website nor published papers, it
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appears that recently a clear separation of spoke and spoke-expanded data has been

made, whereas before (including the data I used in Chapter 3, downloaded in January

2010) a mixture of the two types was present dependent on the study being curated.

For example, there are currently 104, 990 interactions reported for S. cerevisiae, of

which 49, 682 are spoke-expanded interactions. The figure of roughly 65, 000 visible

in Figure 1.1 must include some but not all of the spoke-expanded data.

Structured ontologies have now been developed for depositing interactions in

databases [160], though these have not been adopted uniformly [307].

1.2.4 Choice of data set

Researchers have numerous choices for constructing protein-protein interaction data

sets to be used in a study. One very important choice is whether to include only

interactions detected more than once to try and filter out false-positive interactions.

The significance of this choice was made clear by Hakes et al. [119], where it is shown

that keeping multiply observed interactions may lead to a more reliable data set but

not a representative data set. As discussed below in Section 1.3.2, they show that

results can depend on whether or not this filtering step is applied.

A second choice is whether to use data sets that combine physical association data

(largely reported via y2h screens) and association data (largely reported via TAP type

data). Owing to the very different protocols, one might expect these data sets to be

complementary to each other. Yu et al. [360] demonstrated that the two data types

are indeed complementary: interactions detected by y2h data are more likely to be

transient signalling and inter-complex interactions.

Something a researcher has little control over, but which can have profound effects

on results, is the data-handling protocols used by the authors of high-throughput

studies [e.g. 282]. In the case of the two large S. cerevisiae TAP studies [101, 170], it

has been shown that the striking differences in the results can be attributed largely to
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Figure 1.1: The size of the IntAct database, as reproduced from Supplemen-
tary Figure 2 of Aranda et al. [7]. (This figure is reproduced under the
terms of the Creative Commons Attribution Non-Commercial License).
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different data handling protocols [351]. This issue is compounded by the unavailability

of the raw data for high-throughput studies in many cases [119].

1.2.5 Estimates of error rates

In Section 1.2.3 I outlined some of the potential sources of error and bias in protein-

protein interaction detection methods. Here I review ways of estimating the magni-

tude of these errors in individual and combined data sets.

Initial error rates for high-throughput data sets relied heavily on gold standard

sets of interactions. These were used either to define what should be expected of

truly interacting proteins in terms of e.g. co-expression of the proteins [16, 70, 72] or

topological patterns in the PIN [51], or used straightforwardly in intersection assays

[e.g. 73, 78, 334], reviewed in Hart et al. [124]. These initial rates of false-positives

were about 50% or even higher [73, 305]. An issue with gold-standard data sets is

their reliability and representativeness. The most common choice of gold-standard

data set for error analysis was the MIPS complex data [213]. Given that y2h screens

were designed to detect transient interactions, interpreting their low overlap with co-

complex data as evidence of very high false-positive rates may be unfair [136, 360]. In

von Mering et al. [334], the authors found for the MIPS complex data that interacting

proteins had a high tendency to be of the same functional type, and they used this

to conclude that interactions between proteins of different functional types in high-

throughput studies consist mostly of false-positives. This neglects the possibility that

the MIPS data is itself biased – including the possibility that functional annotations

may be based on interaction data, reinforcing this bias.

An alternative method to using gold-standard sets of interactions assumes that

certain sets of interactions are more likely to be true positives. Examples of properties

include functional similarity of the two proteins [51], the same cellular components

annotated to both proteins [305], or the existence of homologous proteins from other
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species interacting [70, 283]. Such studies, based on assumptions as to the properties

interacting proteins might be expected to have, risk those assumptions being wrong

(for example, it does not appear that proteins that have similar expression profiles

are more likely to interact [32]).

More recently, the estimates of false-positive rates in high-throughput studies –

which were originally very high [73, 305] – have been revised down by methodology

that pays closer attention to the data generating process. In Huang et al. [137], the

analysis of ‘interaction sequence tag’ counts suggested false-positive rates of about

25% in S. cerevisiae and between 40% and 45% in D. melanogaster [137]. However,

this methodology relies on raw data that is not always available. An ‘empirical

framework’ for assessing error [332, 360] estimated the false-positive rates of y2h

screens to be between 0% − 26%, with 26% the value for the Ito-full data set [145],

which was previously estimated to have the highest false-positive rate [73, 305]. This

empirical framework relies on performing additional experiments and having access

to many experimental protocol details, so is not generalisable.

In contrast to the case of high-throughput y2h studies, low-throughput literature-

curated interactions are considered to have had negligible false-positive rates [63] –

indeed, they were often used as gold-standard data sets. Cusick et al. [63] argued,

based on a ‘re-curation’ exercise, that the error rate in curation is as high as 45%. In

this exercise, they counted it against an interaction that it was reported only once.

However, a paper in response argued that the re-curation error rate was actually

2 − 9% [286]. Cusick et al. [63] also demonstrated that there is a small overlap of

interactions in literature-curated data sets due to a lack of overlap of publications

examined. This suggests that false-negative rates are the largest concern, and that

combining different databases will be necessary if one is aiming for as comprehensive

a data set as possible.

A simple method to estimate the total false-negative rates, and hence the total
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Table 1.1: Estimates of the total number of protein-protein interactions
in several species, in thousands of interactions. When a range of numbers is
given, this corresponds to ranges given in the original papers. It does not have a
uniform interpretation across the different studies. The study of Huang et al. [137]
first estimates the number of interactions per protein, and then estimates the total
number of interactions from both the mean and median of this estimate.

S. cerevisiae C. elegans D. melanogaster H. sapiens

Stumpf et al. [313] 14 – 38 220 – 266 72 – 78 589 – 723
Sambourg and Thierry-Mieg [287] 32 – 43 - - -
Huang et al. [137], from mean 30 610 325 -
Huang et al. [137], from median 137 1250 613
Venkatesan et al. [332] - - - 74 – 200

number of interactions, extrapolates existing data sets to unstudied proteins [313].

The most common method relies on having two data sets assumed to be sampled

independently of each other. In conjunction with estimated false-positive rates of the

two data sets, the total number of interactions can be estimated via the hypergeomet-

ric distribution [73, 113, 124, 287]. Sambourg and Thierry-Mieg [287] illustrated that

literature-curated and high-throughput studies are not in fact independent samplings

from the true set of S. cerevisiae interactions, and they correct for this by restricting

the literature-curated data set to very well studied proteins. They estimated the total

number of binary S. cerevisiae interactions (i.e. excluding association type data) to

be 37, 600, which is larger than earlier estimates (e.g. Sprinzak et al. [305] estimated

10, 000 − 20, 000 interactions). In Table 1.1 I give a summary of estimates for the

total number of interactions given in some of the papers mentioned in this section.

1.2.6 Considered as a network

We can represent a PIN by an adjacency matrix A, where Aij = 1 if proteins i and j

interact, and Aij = 0 otherwise. Considering sets of interactions as a network is useful

for two main reasons. First, visual representation of a network can enable patterns

to be spotted (this is mostly applicable to subsets of the PIN). Second, structural

patterns in the PIN can be explored using the tools developed in graph theory and

15



network science.

A few points are worth noting concerning the representation of protein-protein

interactions as networks in practice:

• Although both y2h and TAP detect directed relationships (i.e. the bait-prey

relationship is asymmetrical), the resulting PINs are almost always treated as

undirected, i.e. symmetrical.

• Most analyses of PINs treat interactions as either present or absent. There are

of course various ways one could consider weighting the edges – for example, by

the probability that the interaction is indeed truly there [335].

• Despite the very different nature of the binary physical relationships reported

by y2h screens and the co-association evidence that TAP experiments provide

(see Section 1.2.3), these data types are frequently combined.

• Existing interaction data is not complete, and coverage of it is biased (see

Section 1.2.3).

As tools for understanding the cell, PINs are clearly limited. Some of their most

obvious shortcomings are that they do not incorporate any temporal or spatial in-

formation and many of the critical molecules of life are not proteins. In addition,

current publicly available data is not available for different cell types or different cell

states.

Protein interaction networks have been extensively studied since the availability

of large-scale data sets. To give an idea of the scale of this endeavour, several studies

of PINs have received over a thousand citations (e.g. [149, 202]). The structure of a

PIN, often in conjunction with other types of biological data, has been used to make

grand claims about cellular function and about the evolution of cellular complexity

(epitomised and summarised in [20]).
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In this thesis I use the term PIN when I am explicitly interested in the network

structure of protein-protein interactions. I use the term interactome to mean simply

the total set of protein-protein interactions under consideration.

1.3 Protein-protein interactions and function

There have been numerous attempts to connect PIN structure with biological func-

tion. Here I discuss the most prominent examples.

1.3.1 Predicting protein function

We expect the study of biological networks to reveal aspects of functional organisation,

through seeing how proteins interact with each other to bring about particular cellular

tasks. At the lowest level of structural organisation, we therefore anticipate that

proteins that interact are involved in similar processes. One practical benefit of this

is that for poorly-characterised proteins, we can predict their function based on the

function of their interacting partners (reviewed in Sharan et al. [293] and Wang and

Marcotte [340]).

There are many aspects of ‘biological function’. Principally, these include the

cellular tasks in which the protein is involved (e.g. molecular transport, transcription,

metabolism) and which phenotypes result on disruption of the protein (e.g. disease,

reviewed in Ideker and Sharan [142]). Function is itself not a clearly defined concept,

and there is certainly no one way to correctly quantify ‘similarity of function’. The

most comprehensive attempt at cataloguing the function of gene products is the Gene

Ontology, GO [12], which maintains a set of terms and the relationships between them

(see Section 2.4), which third parties (for example, model organism databases) then

annotate to gene products. The simplest use of protein-protein interactions to predict

function is to assign to a protein the functional term(s) of its interacting partners [309].
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This procedure, termed ‘guilt-by-association’, has many variants and has proven very

hard to beat [293]. An alternative or extension of guilt-by-association methods is to

incorporate indirect connections [e.g. 54] or execute some sort of label propagation

method [e.g. 224], though it has recently been argued that these methods simply

recapitulate information that was lost when the raw data sets were thresholded prior

to analysis [106].

1.3.2 Degree distribution

The degree of a node is defined as the number of interacting partners it has (i.e.

the number of edges connected to it). Many real-world networks were found to have

degree distributions with heavy tails – i.e. the majority of nodes in a given network

have few connections, but a small number of nodes (called ‘hubs’) have a very large

number of interactions [235]. Under a simple model of a random network, known as

the Erdős-Rényi graph, where each node has some probability p of being connected

to every other, the distribution of node connectivities (the ‘degree distribution’) is

binomial. This is very different to the heavy-tailed degree distributions often observed

in real networks, and this was construed as an exciting finding that revealed deep

truths about complex systems [19]. A particular form of heavy tailed distribution

is a power-law distribution (often called ‘scale-free’ in the literature [19]), whose

characteristic feature is that it is a straight line when plotted on a log-log plot.

Power laws appear in physics in diverse places, particularly in the study of critical

phenomena in statistical physics [357]. Scholars started to report power laws in

numerous real-world networks [57]. The demonstration that a simple model – that of

network growth with preferential attachment of new nodes to nodes which already had

many connections – produced a power-law degree distribution added to the excitement

[19].

It has since been shown that power laws are not the best statistical fit for many of
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the degree distributions [57], including those of PINs, where log-normal or stretched

exponential distributions (depending on species) give a better statistical fit [310]. It

has also been demonstrated that sub-networks of networks with power-law degree dis-

tributions need not have power-law degree distributions [311], particularly pertinent

for the case of PINs where data is known to be far from complete. It has also been

shown that many network models (random, exponential, power law, truncated nor-

mal), when sampled by first randomly selecting nodes and then selecting interactors

of those nodes (a not unrealistic model of sampling for protein-protein interactions),

give power-law degree distributions [121]. A thorough critique of the ubiquity of

networks with power-law degree distributions is found in Fox Keller [94].

What is the biological relevance of heavy-tailed degree distributions? They have

been used as a basis for strong claims about the evolution of cellular complexity,

and I review these in Section 1.4.4. Here I focus on the connections between degree

distributions and biological function.

It was found that hubs in the S. cerevisiae PIN were more likely to be essential

proteins. (In this study, an ‘essential protein’ is defined as one that produces a lethal

phenotype when the gene encoding it is engineered to not be transcribed [149]). This

finding is referred to as the ‘centrality-lethality’ rule, and it has been reproduced

in other data sets [e.g. 116]. A subsequent analysis (using a different definition of

how important a protein is: the extent to which it is evolutionarily constrained)

found that this effect is very small, though statistically significant, and is restricted

to genes involved in the cell cycle and transcription [117]. In H. sapiens, the equiv-

alent centrality-lethality rule might be that disease genes have a larger number of

interactions. Proteins involved in cancer have been reported to be more likely to be

hubs [150], whereas proteins involved in disease (including cancer!) have been found

not to show this trend [110].

Maslov and Sneppen [202] reported that hub-hub interactions are under-represented
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(they conjectured that this could have arisen because such structure minimises un-

favourable cross-talk between densely interconnected regions of the network centered

on the hubs), but it has been show that the presence of this effect depends on how

the PIN dataset is constructed [23, 119].

Proteins are expressed at different times within the cell, and this information can

be overlaid onto a PIN in an attempt to investigate dynamic organisation in cells.

This was performed using mRNA co-expression as a proxy for protein-coexpression

for S. cerevisiae in Han et al. [120], where it was claimed that two distinct types of hub

were identifiable: ‘party’ hubs, which tend to be co-expressed with their interacting

partners, and ‘date’ hubs, which are not. Party hubs were proposed to function

locally, coordinating particular biological processes. Date hubs were proposed to

operate more globally, by connecting disparate biological processes. There have been

several subsequent papers that claim to refute or attempt to restate the findings, with

the balance of evidence suggesting that the initial findings, which were reported on a

small data set, were both dubious and particular to that data set [1, 23, 24, 31, 347].

1.3.3 Motifs

Network motifs, first introduced in Milo et al. [218], are small patterns of connected

nodes. Some motifs were found to be over-represented (compared to random) in par-

ticular networks, and these were hypothesised to have some functional significance

[218], though this putative significance has been questioned [e.g. 143]. An analysis of

the biological significance of motifs in the S. cerevisiae PIN appeared in [355], where

it was found that constituents of motifs, particularly highly interconnected motifs,

were more likely to be evolutionary conserved. Turanalp and Can [325] investigated

recurring functional interaction patterns in S. cerevisiae PIN motifs. Motifs are par-

ticularly susceptible to noise in interaction data [68], and there is also controversy

about judging whether motifs are over-represented [10, 219].
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1.3.4 Communities

Considerable recent attention has been given to the modularity of the cell’s functional

organisation [120, 125, 268]. A module is often construed as a group of components

that carry out a functional task fairly independently from the rest of the system. It

is thought that such modules yield robust and adaptable systems [3]. There is also

much suggestive evidence that modules within the cell are themselves the building

blocks of a higher level of structural organisation [e.g. 13, 276, 358].

Within the networks literature, a great many algorithms have been proposed that

locate dense regions in a network, often called communities (see Section 2.1, and

reviewed in e.g. Porter et al. [259] and Fortunato [91]). A community is loosely

defined as a group of nodes that are more closely linked with themselves than with

the rest of the network.

Communities are potentially good candidates for functional modules, and many

studies report running one of the myriad algorithms for detecting community struc-

ture on PINs [e.g. 44, 50, 75, 184, 191, 199, 210, 253]. If communities are good

candidates for biological modules, their functional relevance is potentially twofold:

gathering evidence for the modular organisation of the cell, and helping predict the

function of proteins about which little is known.

Whether or not communities are good candidates for biological modules is typi-

cally assessed through ascertaining whether proteins in communities are in some way

functionally homogeneous. This can be done by searching for terms in a structured

vocabulary – usually the Gene Ontology (GO, [12]) or Munich Information Centre for

Protein Sequences categories (MIPS, [211]) – that are significantly over-represented

within communities. Almost all studies assess this over-representation using a hy-

pergeometric test (an exception is [253], which defines a measure of redundancy of

annotation). If such terms exist, the identified communities are said to be ‘enriched’

for biological function. In all the studies of which I am aware, the great majority of
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communities detected are found to be enriched.

However, as argued in Chapter 3, the literature-standard test of functional homo-

geneity is not sufficiently strict, as it does accommodate the fact that communities

consist of many pairs of interacting proteins, and hence does not ascertain whether

communities ‘add value’ beyond these pairwise relationships (Lewis et al. [181]). In

Chapter 3 I undertake a closer investigation of the functional relevance of community

structure in PINs.

The relevance of communities for protein function prediction is still an open ques-

tion: many studies refer to the relevance of community structure in predicting protein

function, but very few actually use communities in this way. The most direct way of

doing this, annotating uncharacterised proteins with terms that are over-represented

in communities, has been shown to be less effective than guilt by association [303]

(where a protein is annotated with the terms of its interacting partners, discussed

in Section 1.3.1). Our research into the distribution of particular protein functional

classes in communities hints at some ways in which community membership could

best be used in a protein function prediction algorithm (Section 3.10).

1.4 Protein-protein interactions and evolution

For a review of protein evolution in more general contexts, see Pál et al. [244]; for a

review of the evolution of protein-protein interactions see Levy and Pereira-Leal [179].

The majority of this section, with the exception of 1.4.5.1, is very similar to content I

wrote for a paper published jointly with Ramazan Saeed and Charlotte Deane [182].

1.4.1 Evolutionary claims in the literature

Some bold claims have been made about the origins of cellular complexity based on

observations of biological network structure. For example, on the implications of a
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‘scale-free’ degree distribution in metabolic networks: ‘Therefore, the evolutionary

selection of a robust and error-tolerant architecture may characterize all cellular net-

works, for which scale-free topology with a conserved network diameter appears to

provide an optimal structural organization.’ [148]. In Barabási and Albert [19], the

authors state that the success of their proposed preferential-attachment model ‘in-

dicates that the development of large networks is governed by robust self-organising

phenomena that go beyond the particulars of the individual systems.’

It is, however, not at all clear that such grandiose claims are appropriate. Words

such as ‘optimality’ are connected with the selection of particular attributes by nat-

ural selection. Claims for direct selection have to be backed by a demonstration

that the attribute in question could not have evolved without direct selection, via

genetic drift, mutation and recombination. For example, Lynch [192] argued that

biologically realistic null hypotheses need to be considered to make any claims about

selected complexity. Indeed, in the case of network structural motifs, whether or

not the network growth process would itself lead to observed motif counts needs to

be addressed [reviewed in 302]. It is also possible that complex protein-interaction

architectures could be a by-product of selection for something else: Fernandez and

Lynch [84] argued that this is indeed the case, and that the accumulation of mildly

deleterious mutations produces – as a side effect – selection for protein-protein inter-

actions.

1.4.2 Interactions effecting rate of evolution

Many models of evolution assume that sequences will change more slowly if they

are under more constraints [87, 241]. Specifically in the context of protein evolution,

Zuckerkandl [365] proposed the notion of ‘fitness density’: the rate of evolution should

be inversely proportional to the fraction of amino-acid residues engaged in specific

functions. One might therefore expect that (a) proteins with more interactions would
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evolve more slowly and (b) residues at interaction interfaces should evolve more slowly

than other surface residues.

Initial work appeared to confirm (a) [95], however, since then, this claim has been

challenged because it is sensitive to biases in interaction data [35] and confounding

independent variables (notably expression rate [2]); is not particular to number of

interactions but to other network features [116]; and does not stand up to the data

[25, 117, 151, 282]. A review of employed methodologies concluded that the number

of translation events (which is well indicated by expression level, protein abundance,

and codon adaptation index), rather than the number or patterns of protein-protein

interactions, was the key determinant of evolutionary rate [74].

Work based on structures of proteins crystallised together has been more con-

clusive with regard to (b): interface residues are more evolutionarily conserved than

other surface residues [46, 328], although this effect is moderate. In an individual

interface, some residues, known as hot spots, are thought to dominate the interaction

binding energy [55, 221], and these are found to be even more conserved than other

interface residues [162]. Proteins involved in obligate interactions are more conserved

evolutionarily than those involved in transient interactions, which are in turn more

evolutionarily conserved than those not known to be involved in any interactions

[318].

1.4.3 Co-evolution of interacting proteins

In a recent review of co-evolution Pazos and Valencia [251] stressed the necessity of

distinguishing between co-evolution, the existence of mutual selective pressure inferred

from similarity of evolutionary histories, and co-adaptation, the molecular mechanisms

that would explain co-evolutionary changes. Evidence of co-adaptation would be

needed to infer direct physical interactions. Not all cases of co-evolution will be

from co-adaptation, due to confounding factors such as similar expression patterns or

24



common function.

The genomes of different organisms can be compared to give information about

likely functional association between proteins. If the same genes tend to occur as

neighbours in multiple organisms, then one can infer functional association between

them [e.g. 65]: if two proteins cannot perform their cellular function without each

other, then when one is lost, there will be no evolutionary advantage to keeping the

other, so they will be lost from the genome as a pair. Patterns of presence and absence

of genes in different organisms, termed phylogenetic profiles, are the simplest clue of

protein co-evolution. Similarly, profiles encoding the presence and absence of protein

domains can be used to detect functional associations [243]. Additional patterns in

phylogenetic profiles, such as anti-correlation [222] and correlations between triplets

of proteins [37], can also give information about functional associations.

Interacting proteins are often transcribed as a single unit (operon) in bacteria. In

Huynen et al. [141] it is shown that the products of 63 − 75% of co-regulated genes

tend to interact physically, which suggests that the regulation of proteins co-evolves

with the proteins and their interactions.

It is also possible to compare the phylogenetic trees of proteins, i.e. the estimated

evolutionary relationships of families of proteins. The motivation for such an approach

is that the phylogenetic trees of, for example, ligands and their receptors are more

similar than would be expected under standard models for the rate of sequence change,

which indicates some degree of co-evolution [250]. This relationship is even more

striking when the phylogenetic trees are built from the sequence of the interacting

interfaces rather than the whole protein [220]. The same study shows that residues at

the interface of obligate complexes tend to evolve slowly, allowing co-evolution of the

partner interface, whereas transient interfaces tend to have an increased rate of residue

substitution, leaving little evidence of correlated mutations across the interface [220].

It is also possible to concentrate on the domains within proteins, and this can be
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used to infer which domains are responsible for a given interaction [152]. As these

approaches rely on generating reliable phylogenetic trees, they are well placed to take

advantage of the growing amount of available sequence information. A generalisation

of this approach comes from the acknowledgement that, because proteins can interact

with many different partners, considering only pairwise interactions will never give a

complete picture of protein co-evolution. Rather, co-evolution depends on all of the

different interactions in which a protein may be engaged, so comparing proteins not

only pairwise, but against all other proteins can give a better idea of the co-evolution

of a given pair [153].

Other generalisations come from investigating the similarities of protein struc-

tures, rather than just sequences. Williams and Lovell [348] offered an integrated

view of sequence and structural divergence, claiming that both co-evolution following

sequence changes and structural accommodation of non-compensated substitutions

can be accommodated in the same framework. The majority of the methods dis-

cussed above assess similarity based on nucleotide or amino-acid substitutions, but

there is some evidence that the role of insertions and deletions of short stretches of

nucleotide (indels) is important. Indels are particularly common on the surfaces of

proteins [see 28] and are thus suspected to play a large role in ‘rewiring’ PINs. The

importance of indels has been highlighted by a study finding that proteins from fam-

ilies which are thought to possess recent indel mutations tend to score higher on a

range of measures designed to assess how central a protein is within the PIN [133].

The circumstances under which one can infer direct physical interactions from

the observation of protein co-evolution are not clear [251]. Hakes et al. [118] argued

that there is no evidence that co-evolution is due to co-adaptation, arguing for the

importance of common evolutionary forces (notably expression levels) as responsible

for co-evolution. However, Kann et al. [155] argued that there is some evidence for

co-adaptation alongside more general evolutionary forces. A better understanding of
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the molecular mechanisms underpinning compensatory changes will help distinguish

these correlations and perhaps the conditions under which co-adaptation can be in-

ferred. A better understanding of how other protein features can influence functional

association will also be vital.

1.4.4 Models for protein-protein interaction network evolu-

tion

Many models have been proposed for the growth of protein interaction networks

(reviewed in Stumpf et al. [312]). The literature follows a clear pattern: a model for

network growth is proposed; it is shown to match some aspect of the data; this is used

to make a claim about how cellular complexity arose. This is followed by new studies

that point out some lack of fit between a pre-existing model and the data, and a new

or modified model is proposed. In this section, I review some of the most influential

models, though as discussed in Section 1.4.1, developing a model that fits the data

is not the same as discovering how cellular complexity arose. In addition to possibly

providing explanations of the ways in which networks evolve, such generative models

have a role to play in the generation of ensembles of networks used for assessment of

the statistical significance of observed patterns.

The field of modelling network growth was re-vitalised in 1999 with the proposal

of the preferential attachment model of Barabási and Albert [19], which picked up on

ideas dating back to the 1950s [69, 296]. It was observed that, if new nodes attached

themselves to old nodes with a probability proportional to the number of interactions

of the old nodes, a power law distribution of node degree would result in the limit

as network size goes to infinity. Such distributions were, at the time, being reported

in many different types of network [231], including PINs [79]. This would fit the

observation that older proteins have more interactions [354]. The problem with the

model of growth by linear preferential attachment as a model of PIN growth is that
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Figure 1.2: PIN evolution models. a) Duplication-Divergence. A node is chosen
to be copied. The new node is given edges to the same set of nodes as the chosen
node (duplication). Some fraction of edges are then lost (divergence). b) Asymmetric
gain and loss of interactions. Three move types are possible. i) Addition of a link. A
link is made between one node chosen at random and another chosen proportional to
node degree. ii) Removal of link. A protein is chosen uniformly at random, and one
of its edges is chosen uniformly at random to be removed. iii) A new node is added
with zero edges. The probabilities of these three moves are chosen such that the
mean node degree stays the same and the network grows at some empirically inferred
rate. c) Crystal Growth Model. After an initial seeding phase, either i) Modules are
computed, one is chosen, and a new node is added to this chosen module or ii) A
new node is put into its own module, and connects to other modules which have few
edges (anti-preferential attachment rule).
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it does not correspond to any clear biological mechanism, with the possible exception

of horizontal gene transfer in prokaryotes.

What are the likely factors underlying PIN evolution? Errors in replication can

result in a change in copy number of proteins – from individual genes being duplicated

or lost [reviewed in e.g. 363] to the whole genome being duplicated [reviewed in e.g.

157, 289]. After a gene duplication event, divergence of function is possible. There are

two main competing models for such divergence: sub-functionalisation (partitioning

of ancestral function between gene duplicates) and neo-functionalisation (the de novo

acquisition of function by one duplicate) [363]. Gene duplication was hypothesised

to be disadvantageous in complexes in particular, and evidence for fewer single-gene

duplication events in gene families encoding complexes has been found in support of

this [248].

Many PIN evolution models have been based on this idea of duplication followed by

divergence [144, 331] (see Figure 1.2a). There are many different variants, but all share

in common that a node is selected to be copied (duplication), some fraction of the

nodes edges are replicated in the duplicated node, and some more added (divergence).

Models that allow for whole genome duplication events have also been proposed [81].

Both preferential-attachment and duplication-divergence models produce the heavy-

tailed degree distributions found in PINs, and also both match the data that suggest

that proteins of high degree tend to connect to proteins of low degree (node disas-

sortativity) [165]. Duplication-divergence models generate some level of hierarchical

modularity (whereby small densely connection groups of proteins, termed modules,

are nested into larger modules, which are in turn nested into larger modules, etc),

though not as much as suggested in the data [165]. The duplication-divergence model

has been argued to not account for hubs that have multiple interaction interfaces [164]

and not produce enough triangles in the network unless heritable interaction sites are

modelled [105].
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Despite the successes of duplication-divergence models in capturing many aspects

of the empirical PIN, it has been claimed that gene duplication and divergence may

in fact have played only a limited role in the evolution of PINs, as the dynamics of

the gain and loss of individual interactions is thought to happen at a much shorter

time-scale [25, 336]. Berg et al. [30] proposed a model based on the addition and loss

of individual edges. They found that the rate of addition and loss of edges depends

asymmetrically on the number of connections of both interacting partners, which is

to be expected because when a new link is formed, typically only one node under-

goes a mutation with the other remaining unchanged (see Figure 1.2 b). By building

a stochastic model based on these observations, they matched the degree distribu-

tion and node disassortativity found in data. Beltrao and Serrano [25] investigated

factors that determine interaction turnover and show that the less specific an inter-

action is (judged on the diversity of structures of the interacting partners) the faster

the interactions change. They suggest that power-law degree distributions can be

explained partially by the cell’s need for a diversity of specificity of interaction types

(i.e. some proteins are highly non-specific binders and hence have very large numbers

of interacting partners).

In a separate critique of the popular models discussed above, Kim and Marcotte

[165] investigated the age-dependent evolution of proteins and claimed this cannot be

accounted for by duplication-divergence or preferential attachment models. Instead,

they propose a crystal growth model based on a) interaction probability increasing

with availability of unoccupied interaction surface, b) tightly connected groups of

proteins developing as the network grows, c) once a protein is committed to such a

group, further connections tend to be made with other members of that group (see

Figure 1.2c). In this model, proteins are more likely to link to proteins of a similar

age, as observed in real PINs. The model uses modules in networks as a key idea in

PIN evolution, an idea that is not that well explored elsewhere (though see Li and
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Maini [183] for an abstract model of network growth based on modules).

It is not clear how best to assess different models of network evolution and growth,

though these have matured somewhat beyond matching degree distributions [165, 215,

266, 350].

1.4.5 Between-species comparisons

Protein-protein interactions can be compared between species in order to investigate

how they have evolved and to help understand differences and similarities between

species. Insights gleaned can then be used to predict interactions in species for which

there exists little data [e.g. 338].

Between-species comparisons are made possible by the identification of the ‘same’

protein in multiple species: protein sequences are compared, and attempts at identi-

fying orthologs can be made. Orthologs are proteins that share a common ancestor

protein but were split by a speciation event. The high degree of observed protein

sequence homology gives a strong expectation that discoveries about protein function

made in one species will provide understanding in another [316]. The extent of homol-

ogy of protein function is of both practical and theoretical importance, as it underlies

the reliance on a few model organisms and provides insight into the maintenance and

diversification of protein function through evolution [66, 343].

1.4.5.1 Interologs

To what extent are protein-protein interactions conserved through evolution? A high

degree of conservation makes it viable to transfer interactions across species well

separated on the tree of life. This is particularly pertinent given the cost of gathering

experimental data and the concentration of that data in few species. If, however,

there is a low degree of conservation of protein-protein interactions, then – given

the very high degree of conservation of protein sequences – this would suggest that
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interactions can be lost and gained rapidly with little sequence change. This in turn

could help explain how small changes in protein sequence, on occasion, bring about

large phenotypic changes.

The homology of protein-protein interactions can be investigated by seeking ev-

idence of interologs. Interologs are pairs of interacting proteins: A interacting with

B in one species and A′ interacting with B′ in another, where A′ is an ortholog of A

and B′ is an ortholog of B (see Figure 1.3). As illustrated in Figure 1.3, one can seek

evidence for interologs by inferring interactions across species (when the source and

target species are different) or within species.

Across-species interologs were first introduced in Walhout et al. [338]. Since then,

many studies have used inferred interactions on the basis of homology to make inter-

action predictions [e.g. 41, 42, 77, 97, 102, 138, 139, 150, 177, 185, 255, 346, 356].

Despite the prevalent use of such inferences, relatively little published work has

investigated the reliability of transferring interactions across species. Published suc-

cess rates for transferring interactions vary from less than 5% [98] to 100% [262], and

many values in between have also been reported [169, 204, 216, 267, 359]. As I discuss

below, these differences can be explained in part by methodological choices.

Matthews et al [204] used S. cerevisiae as a source species for inferring interactions

in Caenorhabditis elegans. Testing their predictions (and re-checking the S. cerevisiae

interactions), they found that between 16% and 31% of the inferences were correct.

They also found no detectable correlations between the extent of sequence-similarity

and the likelihood of an interaction being conserved. Using only one-to-one ortholog

matching (i.e. allowing each protein in one species to be judged a homolog of at most

one protein in the other) and taking into account errors in their data, a conservation

rate of between 34% and 64% was reported between H. sapiens and mouse transcrip-

tion factor-transcription factor interactions [267] (the study did not investigate the

extent of sequence homology). A recent study comparing two yeasts, S. cerevisiae
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Figure 1.3: Interactions can be predicted (red dashes) from known interac-
tions (green) and homology relationships (orange dashes). Interactions can
be inferred both across species and within species. Across species: The interaction
between proteins A and B in the source species (the interaction network is in green)
is used to infer interactions between any homologs of A and any homologs of B in
the target species – in this case, interactions between A′ − B′ and A′ − B′′. These
predicted interactions can then be compared to the interactions in the target species
(the blue network). The homologous interactions A − B and A′ − B′ are called in-
terologs. Within species: The interaction A−B is used to infer interactions between
the homologs of A and of B – in this case, A − B′, A′ − B, and A′ − B′. We call
the inferences from A − B′ and A′ − B ‘one-same’ inferences and the inference from
A′ − B′ a ‘both-different’ inference.

and Kluyveromyces waltii, excluded duplicated genes, and found that 43 of 43 tested

interactions were conserved [262].

These experimental investigations should be compared to larger-scale investiga-

tions performed on pre-existing data. Yu et al. [359] performed two relevant experi-

ments. In the first, they transferred binary interactions from C. elegans to co-complex

data in S. cerevisiae and found less than a 10% conservation rate when the joint E-
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value, JE , was between 10−100 and 10−50, where JE is the geometric mean of the two

E-values, JE =
√

(Eval(A, A′)Eval(B, B′)), and the E-value (Eval), or Expect-value,

gives a measure of how often one would expect to see a query-hit pair by chance. The

conservation was higher at more stringent E-values and lower at less stringent values.

In the second, they transferred interactions from C. elegans, Drosophila melanogaster,

and H. Pylori binary data – along with S. cerevisiae co-complex data – to S. cere-

visiae co-complex data and found that the conservation rate was just over 50% when

JE < 10−70. It is unclear how large a contribution was made by using S. cerevisiae as

both the target and source species. A direct comparison of binary data to binary data

was performed in [98], where an overlap of 63 of a possible 1405 interactions (a conser-

vation rate of 4.5%) was found between large-scale H. sapiens and D. melanogaster

data sets. A study of the binary data available in 2006 by Mika and Rost [216]

found a low level of conservation of interactions across species: accuracy never ex-

ceeded 20%, even for the most sequence-similar homologs. This study also reported

that within-species interactions were more conserved than across-species interactions.

Similar results were also reported in [169]. These results were surprising in light of the

long-standing belief that proteins arising from gene-duplication events must diverge

in function in order to be conserved, whereas proteins that arise from a speciation

event have evolutionary pressure to maintain the function of the ancestral protein

[193].

Errors in the interaction data can have a substantial impact on results. Most

obviously, false negatives in the target species’ interaction data set will cause some

transferred interactions to be judged as non-conserved when the data in the target

species is simply missing. However, except for Ref. [267], which examines one type

of protein (transcription factors) in one pair of species (mouse and human), none of

these studies investigated the role of errors in the data when assessing conservation. In

Chapter 4, we consider this problem, and we thereby arrive at more reliable estimates
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of protein-protein interaction conservation rates [180].

1.4.5.2 PIN alignment

In addition to comparing pairs of interacting proteins, there is a large body of litera-

ture that attempts to align PINs – i.e. to find sets of interactions that are conserved

in one or more species. This can be done in either a local fashion, in which small

groups of proteins in one species are aligned with small groups in another one or

more species and a given protein can appear in more than one locally aligned region

[76, 88, 186, 205, 277], or globally, in which each protein in one species is matched to

some number (zero, one, or more) of proteins in another species [88, 187, 297, 362].

The idea behind local network alignment is that those sets of interactions that are

co-conserved likely have some biological significance. Indeed, the methods tend to

be tested as to how well locally aligned sets of proteins correspond to known protein

complexes [e.g. 76]. A review is found in Sharan and Ideker [292].

Some of the proposed algorithms for alignment model the evolution of interactions

directly by using a model for PIN growth and/or a phylogenetic reconstruction of the

protein family relationships to infer the PIN of the ancestral species [76, 130, 205].

1.5 Protein-protein interactions, function, and evo-

lution

It is hoped that the study of protein-protein interactions can give insight both into

how proteins co-ordinate to bring about biological function and into how and why

these patterns of co-ordination evolved (though, as discussed in Section 1.4.1, great

care must be taken in making claims concerning the direct selection of particular

traits). As an off-shoot of this investigation, methods that predict protein function

and protein-protein interactions have been developed. In the above two sections,
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I have tried to separate these functional and evolutionary aspects, but they are of

course intertwined. Here I discuss a few cross-over points.

Much of the evolutionary study of protein-protein interactions relies on first iden-

tifying evolutionary relationships between proteins. However, there is no simple way

to establish which proteins are indeed orthologs. Indeed, one could say that it is im-

portant to incorporate functional information into models of orthology. For example,

Bandyopadhyay et al. [18] used protein-protein interactions to help identify orthologs.

Modules are expected to be evolutionarily cohesive (where that term has no pre-

cise meaning in the literature), as the functional task associated with a given module

presumably needs many of the same proteins in different organisms. However, this has

been questioned by Snel and Huynen [299], who found that there is not that much ev-

idence for the evolutionary cohesiveness of some candidates for modules: complexes,

metabolic pathways, and known operons in E. Coli. Data incompleteness and noise is

one possible explanation for this. Another is that the observed evolutionary flexibility

actually reflects the functional flexibility (where, for example, there are many shared

components between modules [see 100]). Whether evolution tinkers with the interac-

tions between or within modules is also up for discussion: one recent study that runs

models of network evolution backwards found that complexes have been significantly

rewired over time and that new edges tend to form within existing complexes [228];

another recent study found that interactions within modules are more conserved than

interactions between modules [364].

In Chapter 3 of this thesis, I explore the function of communities in PINs, mo-

tivated by the idea that communities are potentially good candidates for biological

modules. Evolutionary considerations, which are tied to the idea of a module, lurk

in the background. In Chapter 4, I explore the evolutionary conservation of protein-

protein interactions without incorporating network structure. Further directions for

this research (discussed in Chapter 5) include the evolutionary conservation of com-

36



munities at the levels of proteins, protein-protein interactions, and protein function.

This thesis also contains four appendices: Appendix A contains a summary of

methods proposed in the literature to predict protein-protein interactions computa-

tionally; Appendices B and C contain examples of communities discussed in Chapter

3; Appendix D contains figures supplemental to those provided in Chapter 4.

37



Chapter 2

Tools and techniques

In this chapter, I discuss the choice of tools and techniques employed in later chapters

and explain the ideas on which they are based. This necessitates a brief review of

various techniques, discussion of known problems and limitations, and an assessment

of when particular choices are appropriate.

2.1 Community detection

2.1.1 Introduction

One often refers to groups such as families, villages, cities, nations, cultural groups,

friendship groups, and business organisations as social communities. This intuitive

notion of community is of a group of individuals with strong connections to other

members of the group and sparser connections to the rest of the social network.

Within the social sciences, there has been a long tradition of the mathematical study

of community structure, arguably dating from the 1920s [274, 345].

The field of community detection was invigorated in 2002 by Girvan and Newman

[108], a paper that bought the community detection problem to the attention of

the statistical physics community. Since then, several thousand papers have been
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published on the topic, and it is now one of the most active sub-fields in network

science [259]. The notion of a community is not precisely defined, and different

approaches thus rely on some arbitrary or common-sense notion of a community.

Reviews of the field appear in e.g. Porter et al. [259] and Fortunato [91].

Biological systems possess structure at many different scales. In investigating

community structure of PINs it is hence natural to seek out a method that allows

communities to be identified at multiple scales or resolutions. The most popular

method for detecting communities, modularity maximisation [91], was found to im-

pose a limit on the minimum size of communities that could be found [92]. A general-

isation of the method allows communities to be detected at multiple resolutions [270].

In the following sections I motivate our choice of this method, introduce some of the

mathematical details, and briefly mention some alternative approaches. As our focus

in Chapter 3 is with assessing the functional significance of detected communities, I

end this review by discussing the work that has been done in assessing the outputs

of community detection algorithms.

2.1.2 Choosing a method

Hundreds of different community detection algorithms have been proposed [91]. How

does one make a choice between them?

There are three main features that make an algorithm attractive for a particular

use. The first is that it is capable of dealing with networks of the size in hand in a

reasonable amount of time. The second is that it performs well in practical contexts.

The third is that the theoretical underpinnings of the method have been studied

sufficiently that it is well-behaved and its properties are understood.

The performance of community detection algorithms is typically assessed against

synthetic benchmark networks that are designed with community structure ‘planted’

within them [91] as well as using real-world networks with ‘known’ community struc-
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ture. The three elements of such a test are the output of an algorithm, a set of

benchmark networks with known community structure, and a comparison measure to

assess the similarity of the two. (I discuss comparison measures in Section 2.2.)

The most comprehensive benchmarking of algorithms appears in Lancichinetti and

Fortunato [173], though this is for graphs without hierarchical community structure.

Three algorithms were found to have comparably high performance. One of these is

a method for optimising modularity referred to as the Louvain method, proposed by

Blondel et al. [34] and outlined in Section 2.1.3.3. This algorithm is a locally greedy

algorithm – it trades off accuracy for speed, so it is surprising that it outperforms the

much slower and supposedly more accurate methods for optimising modularity such

as annealing.

Because this method also has a tunable resolution parameter, and is very fast

(running in a second or less on the networks considered here), and through being a

member of the family of algorithms that maximise modularity has theoretical prop-

erties that are at least partially understood, it is our choice of method.

It is of interest to note that the review of Fortunato [91] concludes that most mod-

ern algorithms yield similar results in practical applications (though others contest

this [111]), and stresses that the real challenge is to interpret the communities once

they are detected.

2.1.3 Modularity maximisation

The quantity known as ‘modularity’ was proposed in Newman and Girvan [236] to

measure the quality of a partition of the nodes of a network into communities. It

is based on the idea that a random network is not expected to have any community

structure, so the possible existence of communities is interrogated via a comparison of

the network of interest (represented by adjacency matrix A), to a suitably chosen null

model, P, where the null model is a network that shares some of the same properties
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as the original network. The modularity Q is then given by

Q =
1

2m

∑

ij

(Aij − Pij)δ(ci, cj), (2.1)

where the sum runs over every pair of nodes, m is the total number of edges of A and

ci is the community assignment of node i. The δ-function yields 1 if nodes i and j are

in the same community and 0 otherwise, so partitions that have a large modularity

will have many edges in which Aij > Pij inside communities and few edges in which

Aij < Pij inside communities.

The conventional choice of null model, known as the Newman-Girvan null model

[236], ensures that the expected degree sequence of P matches that of A, in recognition

of the importance of heavy-tailed degree distributions in many real-world networks:

Pij =
kikj

2m
, (2.2)

where ki =
∑

j Aij is the degree of node i. Numerous modifications and generalisa-

tions of modularity have been proposed [91].

Although originally introduced to judge the quality of a partition returned by an

independent algorithm, directly maximising modularity is now by far the most widely

used class of methods to detect communities in graphs [91]. It has been proved that

maximising modularity is an NP-hard problem [39]. Algorithms must hence employ

some computational heuristic to find a ‘good’ enough solution (i.e. a large local

maximum of Q) in a reasonable amount of time.

An issue with techniques based on modularity maximisation is the possibility of

an exponentially large number of distinct partitions, all of which have values close to

the maximum value of modularity, but which can be structurally quite different from

each other [111]. This is sometimes a serious issue with real-world applications.
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2.1.3.1 Resolution limit

Fortunato and Barthelemy [92] showed that community detection algorithms based

on modularity maximisation contain a resolution limit. Modularity optimisation of-

ten does not detect communities that are smaller than some characteristic size that

depends on the number of nodes in the network. Roughly speaking, communities

with a total number of interactions
√

m or smaller will tend to be merged with other

communities (recall that m is the total number of edges in the network).

2.1.3.2 A multi-resolution generalisation

Modularity maximisation can be adapted to incorporate a resolution parameter, al-

lowing one to explore the network at different resolutions in order to find communities

of different sizes.

Reichardt and Bornholdt [270] showed that optimising modularity is equivalent

to minimising the energy of an infinite-range q-state Potts model. In statistical me-

chanics, the Potts model is a model of interacting ‘spin states’, where q is the number

of spin-states (not all of which need be occupied). If the Potts spin variables are ci,

the energy H of the system is given by

H = − 1

2m

∑

ij

Jijδ(ci, cj), (2.3)

where J is the matrix of couplings between the spins. The components of J are given

by

Jij = Aij − λPij, (2.4)

where λ is the resolution parameter and Aij and Pij are, as above, the adjacency

matrix of the network and a null model, respectively. Other choices of J are possible;

see e.g. Traag and Bruggeman [320] and Ronhovde and Nussinov [278]. Minimising

the energy is equivalent to maximising the modularity if Pij is chosen to be the
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standard Newman-Girvan null model and λ is set to be 1. By tuning the resolution

parameter λ, the typical size of communities changes: at λ = 0, all nodes are placed in

the same community; at λ = ∞, all of the nodes are placed in different communities;

at intermediate values one finds communities at different scales or resolutions.

2.1.3.3 Algorithms for maximising modularity

A large variety of algorithms have been applied to find good approximations of the

modularity maximum. Many of these techniques are reviewed in Fortunato [91], and

they include greedy algorithms, simulated annealing, extremal optimisation, spectral

optimisation and more.

Here I outline the ‘Louvain’ method of Blondel et al. [34], because this is the

method we employ in Chapter 3 (see Section 2.1.2 for why we chose this method).

The method is based on the iteration of two phases. Initially all nodes are placed

in their own community. The first phase considers for each node i whether adding

it to the community of any of its neighbours increases the modularity and makes

the move with the largest gain in modularity if this is so. This process is applied

repeatedly and sequentially until no more moves result in increased modularity (the

order of the nodes can therefore make a difference). In the second phase, a new

network is built whose nodes are the communities found in the first phase, with edge

weights between them equalling the summed weight of edges between the nodes in

the two communities considered. These two phases are then repeated until no moves

lead to an increase in modularity, at which point the algorithm terminates. It is

freely available at www.lambiotte.be/codes.html. The algorithm is exceptionally

fast, running in a second or less on networks of the size considered in this thesis (i.e.

several thousand nodes).
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2.1.4 Other multi-resolution approaches

2.1.4.1 Traditional clustering techniques

One clan of traditional hierarchical clustering algorithm starts with a definition of

a similarity measure definable between nodes and clusters [126]. In agglomerative

clustering, each node is initially in its own cluster, and the two nodes with the highest

similarity are merged. The similarities between clusters are computed again, and the

process is repeated. Divisive algorithms are also possible, where the nodes are all

initially placed in the same cluster, and clusters are split by removing edges or other

structures with low similarity. These algorithms output a tree like structure known

as a dendrogram. They were argued in Newman [232] not to perform well as methods

for community detection on many large real-world networks, based on an analysis of

the performance of one such method on a common bench mark data set.

Partitional clustering techniques start with a pre-assigned number of clusters.

Each node is embedded in a metric space, such that distance between nodes is a

measure of their dissimilarity. The nodes are then assigned to clusters to optimise a

given cost function. The most popular technique in this family is k-means clustering

[197].

2.1.4.2 k-clique percolation

Palla et al. [245] proposed a method based on the notion of a k-clique. A k-clique

is a complete sub-graph of k nodes that are fully connected to each other. Two

k-cliques are called ‘adjacent’ if they share all but one node. The algorithm finds

k-clique communities, where such a community is a k-clique and all of the k-cliques

which are connected to it through being adjacent to each other. By varying k, one

can find nested communities. k-cliques with values of k between three and six are

usually used [91]. Despite the popularity of this method, it has numerous problems
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associated with it, summarised in Fortunato [91]: it has an overly stringent notion of

a community, which overlooks other dense regions that aren’t quite as well connected

as cliques; in networks with few cliques, few communities will be returned, and in

networks with many cliques, trivial structure will be returned; it has a fundamental

issue that, rather than looking for dense sub-graphs, the method looks for sub-graphs

that contain many cliques, which is often a different type of structure to community

structure.

2.1.4.3 MCL

Introduced in van Dongen [330], the Markov Clustering (MCL) algorithm is based

on a type of flow diffusion on the network. The transfer matrix, T, whose entries Tij

give the probability a random walker starting at node j moves to node i, is taken

as the starting point. In an ‘expansion step’, this matrix is raised to some power

(normally two). In an ‘inflation step’, each entry of the resulting matrix is raised to

some power α, and the resulting matrix is normalised such that the elements of each

column correspond to probability values. These two steps are then repeated until

the algorithm produces a separation of the network into disjoint segments. These

segments are interpreted as communities.

2.1.4.4 Hierarchical random graphs

The hierarchical structure of networks is explored in Clauset et al. [56] via the intro-

duction of a class of hierarchical random graphs. These are defined by dendrograms

that have a probability p attached to each node in the dendrogram. Nodes i and j

have a probability of being linked equal to the probability p associated to their lowest

common split in the dendrogram. The likelihood for a given model (with a certain

dendrogram structure and set of probabilities p) is sampled using a Markov chain

Monte Carlo method, such that an ensemble of model configurations is returned.
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A class of possible organisations of the network, with well defined-probabilities, are

hence returned. It is not clear what information one can extract from averaging over

the ensemble of hierarchical random graphs or whether this approach suggests that

we should alter the ways we think about relevant graph partitions [91].

2.1.4.5 Dynamical communities

‘Stability ’ emerges as a natural quality function if one takes a dynamical view of

community detection: a random walk on a network is expected to be trapped for

long periods of time in good communities before being able to escape [171, 172]. The

stability of a partition depends on the length of the random walk, such that the

characteristic size of the communities grows with time.

It has been shown that the Potts model formalism with the Newman-Girvan null

model is a linear approximation of the stability function, with the time parame-

ter inversely proportional to the resolution parameter λ [171, 172]. This dynamical

approach to modularity thus helps motivate the choice of the Newman-Girvan null

model, as it is shown to arise naturally within this framework.

2.1.5 What next after detecting communities?

In contrast to the vast amount of effort put into the development of new community

detection methods, there has been comparatively little work on assessing the sig-

nificance of the outputs of community detection algorithms. Mark Newman, whose

co-authored paper in 2002 sparked recent interest in the field [108], has written that,

‘The development of methods for finding communities within networks is a thriving

sub-area of the field (of network science), with an enormous number of different tech-

niques under development. Methods for understanding what the communities mean

after you find them are, by contrast, still quite primitive, and much needs to be done

if we are to gain real knowledge from the output of our computer programs’ [234].
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There are two broad approaches one might take to investigate the significance of

community structure. The first is an internal measure, where one uses the network

structure itself, perhaps in combination with randomised versions of this structure,

to investigate the extent to which a network does in fact have community structure.

The second is to enquire whether the detected community structure has any relevance,

which is done by investigating its relationship with external properties.

There are very few theoretical results concerning when a community or a network

partition is to count as significant. Borrowing results from spin glass theory, Re-

ichardt and Bornholdt [271, 272] have calculated the expectation of the modularity

for an Erdös-Rényi random network. Initial attempts at investigating the probability

distribution of maximum modularity for the Newman-Girvan null model have also

been made [264].

In the absence of many theoretical results, one possible approach is to assess the

robustness of a given partition to the addition of random error or noise [reviewed in

91]. Various measures have been proposed that assess precisely this [see e.g. 103, 156].

These measures have no absolute significance, so they need to be compared to the

values of these measures achieved with suitably randomised versions of the network.

Rather than introducing noise, one can also introduce quality functions and compare

directly to suitably randomised graphs [see e.g. 33]. Because many of the algorithms

are non-deterministic, another approach is to assess how sensitive an algorithm is

to initial conditions [see e.g. 171, 203]. One question of considerable importance is

whether the output of the algorithm as a whole is assessed or whether each community

is assessed one at a time; see e.g. Lancichinetti et al. [175] for an approach that

incorporates this second option. Such community-specific approaches are attractive,

as it may not be the case that the whole network is modular.

Multi-resolution methods can present an additional set of challenges for assessing

the significance of partitions. This is particularly the case if there are no clearly
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‘correct’ partitions, such as one would expect from a network designed to have clear

hierarchical structure. In general, a measure of the partition is proposed (for example,

the number of communities) and then plotted against resolution parameter, such that

plateaus in the measure can be used to identify ‘stable’ partitions [8, 278]. It is

also possible to define a measure for particular communities; for example, Pons and

Latapy [258] propose to investigate the range of values of the resolution parameter

over which a community ‘lives’. Because the outputs of community detection methods

can be noisy and can depend on initial conditions, investigating correlations between

partitions rather than relying on measures of the partitions themselves can be helpful;

see Ronhovde and Nussinov [278]. This is particularly the case for large graphs, where

minimal shifts of nodes between communities can introduce a large amount of noise.

What of external measures of the significance of communities? As mentioned

above, the focus of the community detection literature has not been the assessment

of the functional relevance of communities. The most frequent analyses compare

returned partitions with some properties (labels) of the nodes – for example, which

research division an individual is a member of [108], the college year group to which

they belong [323], or what functional class is annotated to a protein [e.g. 44, 75,

184, 191, 210, 253]. Such a comparison can be done by comparing the partition of

nodes by a community detection algorithm to the partition of the nodes by property

(e.g. research division), for which one needs a way to compare partitions (see Section

2.2). Alternatively, one can assess each value of the property (e.g. each functional

type of a protein), and assess whether that particular node type is over-represented

in any communities. The latter approach is the norm for assessing communities in

protein-protein interaction networks, and this will be discussed in Chapter 3.

There are very few studies that also study the functional significance of detected

communities. Bassett et al. [21] demonstrated dynamically changing modular struc-

ture associated with a learning task in networks derived from functional MRI data.

48



Guimera and Amaral [114] detected communities in metabolic networks and then

defined particular ‘node roles’. A node is characterised as having a participation

coefficient and within-community degree, this two-dimensional parameter space is

carved up into various roles, and the differing behaviour of these roles with different

functional characteristics is assessed. Additional quantities that capture a node’s re-

lationship to partitions can be defined. In the context of protein-protein interaction

networks, Agarwal et al. [1] suggested focusing on interaction roles rather than node

roles.

2.2 Comparing partitions

One might need to compare partitions of a set of objects into groups to compare:

1. the output of a community detection algorithm to a ‘ground truth’ of community

membership;

2. the output of a community detection algorithm to some independent grouping

of the nodes to ascertain whether or not the groupings are statistically related;

3. multiple runs of the same algorithm to discern the robustness of community

structure to changes in the initial conditions.

There are a suite of measures used to compare partitions, see Ref. [207]. I closely

follow this reference in this brief summary.

Suppose that one has two partitions of n objects, X = X1, X2, ....XnX
and Y =

Y1, Y2, ....YnY
, where nX and nY are the number of clusters in each partition. The

number of objects in clusters Xi and Yj are nX
i and nY

j , respectively.

There are three main types of comparison measures: those based on counting

pairs, those based on matching clusters, and those based on information theory.

49



Measures based on counting pairs are based on four variables: the number of

pairs that are in the same/different clusters in both X and Y , N11/N00; the number

of pairs of objects that are in the same cluster in X /Y but different clusters in Y/X ,

N01/N10. The sum of these variables is always equal to n(n− 1)/2. There have been

various measures proposed that are different functions of these variables, such as the

Rand measure [265], Wallace’s coefficient [339], the Jaccard measure [27], and many

more. These measures do not take into account that the two partitions could be

generated by chance alone, and various measures have been proposed that attempt to

account for this – for example the Fowlkes-Mallows index [93] and the Adjusted Rand

coefficient [140]. These measures have ‘baselines’ which are the expected values of the

measure under a suitable null hypothesis. The two main issues with such measures

are that a) the appropriate choice of null model is unclear (for example, whether this

should depend on how the data are generated), and b) the baselines can vary sharply,

and it is unclear whether any linearity in the measures can be assumed above the

baseline [207].

Set-matching measures find the clusters that best match each other in each parti-

tion and add up the contributions of matches found [e.g. 206]. The generic problem

with such measures is that they are not particularly discriminative, as they ignore

what happens to the unmatched part of each cluster [207].

The third set of measures is based on the idea that if two partitions are simi-

lar, then one needs little information to infer one given the other. To define these

measures, one needs the concepts of entropy and conditional entropy [195]. The un-

certainty about which cluster a randomly chosen object is in is given by the entropy:

H(X ) = −
nX
∑

i=1

P (i) log P (i), (2.5)
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where P (i) is the probability that a randomly chosen object is in cluster Xi (it is

simply P (i) = nx
i /n). If P (i) = 0, the value of the corresponding element of the sum

is taken to be zero. The conditional entropy of X given Y is

H(X |Y) = −
nX
∑

i=1

nY
∑

j=1

P (i, j) log(P (i|j)), (2.6)

where P (i, j) is the probability that an object belongs to clusters Xi and Yj, and

P (i|j) is the conditional probability that an object is in Xi given that we know it is

in Yj.

The mutual information of two partitions X and Y is defined as

MI(X ,Y) = H(X ) − H(X |Y). (2.7)

It is a measure of the mutual dependence of two random variables [195]. Dividing by

the mean of H(X ) and H(Y) has been proposed as a way of normalising the mutual

information [96], and the resulting measure has been used in the community detection

literature [64].

In the context of comparing partitions, Meilǎ [207] presented the measure variation

of information V I. It is defined as

V I(X ,Y) = H(Y|X ) + H(X |Y). (2.8)

The main advantage that the variation of information has over the mutual information

is that it is a mathematical metric, meaning that it can be thought of as a distance

between elements: it is always non-negative, it is symmetric, it is zero if and only

if the partitions being compared are identical, and it obeys the triangle inequality.

This enables treatments past pairwise comparisons between clusterings into the ag-

gregate set of relationships between clusterings, as its values can be manipulated via
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addition, multiplication, averaging, etc, which is necessary for the third application

enumerated above. V I grows with the maximum number of clusters in either par-

tition, which reflects the idea that partitions can get more diverse as the number of

clusters increases. V I can be normalised, nV I = V I/ log(n), to produce a distance

that varies between zero and one. The V I is very useful as a comparative measure –

e.g. comparing the similarity of X and Y to the similarity of X and Z – particularly

given that all those measures based on pair counting (such as the Rand index) must

be suitable corrected for chance in making such comparisons, and there are problems

associated with such corrections.

How should one interpret the absolute values of any of these measures? For

example, is a value of 0.3 large? For the second application enumerated above (where

detected communities are compared to some independent grouping of the nodes to

ascertain whether or not the groupings are independent), making suitable comparisons

to randomised distributions may be appropriate, à la the tests performed in Traud

et al. [323].

A related problem is how to assess the similarity of a particular cluster in X to

a particular cluster in Y , which is necessary if one wants to ‘track’ a community

through many different partitions – for example with changing resolution parameter.

We need to do exactly this in Chapter 3 for visualisation purposes. Various options

are possible, and the literature on set matching measures for the aggregate similarity

of partitions is relevant. We use a method based on the overlap of shared nodes [246].

(A convention based on edges rather than nodes gives nearly identical results.) For

each pair of communities {Xi, Yj}, define

Wij =
|Xi ∩ Yj|
|Xi ∪ Yj|

, (2.9)
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where |B| denotes the cardinality (number of elements) of the set B. Begin with X as

the partition at the highest resolution and Y at the next highest resolution. Starting

with the largest value of Wij , we relabel community i as community j. Relabelling

proceeds with the next largest Wij , as long as community i is not yet relabelled, until

all communities have been relabelled. If |nY | > |nX | (which will be unlikely in our

case, as Y is at a lower resolution), we introduce a new label. The old Y becomes the

new X , and the new Y is the partition at the next highest resolution.

2.3 Assessing predictive ability

In Chapter 3, we would like to assess whether any topological properties of a commu-

nity are predictive of that community being functionally homogeneous. In Chapter

4, we would like to see whether some properties of proteins are predictive of whether

those proteins will interact. If we treat the general case of a binary classification task,

one has the (binary) output of a diagnostic test or model and would like to compare

it to the (binary) true outcome of known cases. The possible outcomes of a binary

classification task can be represented in a contingency table (see Table 2.1). Various

summary statistics can be defined on the basis of the values in this table:

• The fraction of all of the actual positives that are predicted as positive, the true

positive rate, TPR (also known as the sensitivity or recall): TP
TP+FN

.

• The fraction of all of the actual negatives that are predicted as positive, the

false positive rate, FPR: FP
FP+TN

• The fraction of all of the actual negatives that are predicted as negative, the

true negative rate, TNR (also known as the specificity): TN
FP+TN

. Note that

FPR = 1 − TNR.

• The fraction of all of the predicted positives that are actually positive, the
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positive predictive value, PPV , also known as the precision: TP
TP+FP

.

• The fraction of all of the predicted negatives that are actually negative, the

negative predictive value, NPV : TN
TN+FN

.

Table 2.1: Possible outcomes of a binary classification task

actual value
1 0

prediction outcome 1 TP, ‘hit’ FP, ‘false alarm’
0 FN, ‘miss’ TN, ‘correct rejection’

In many applications, including those considered in this thesis, the output of

a predictive model will be a continuous variable. A threshold τ is applied to this

output such that a positive is predicted if the output value is above the threshold and

a negative is predicted otherwise. All of the quantities defined by the contingency

table and the summary statistics based on these can hence take on different values

for different values of τ . In order to overcome subjectivity in choice of τ , various ways

of assessing the performance of a classifier with changing τ have been proposed.

A Receiver Operating Characteristic (ROC) curve shows all of the possible pairs of

FPR (one minus specificity) and TPR (sensitivity) as τ varies [see e.g. 83]. The area

under the ROC curve, called the Area Under Curve (AUC), is a measure of the quality

of a classifier. A perfect classifier would achieve an AUC of 1, and a random classifier

would be expected to achieve 0.5. Values of the AUC below 0.5 indicate that one

could use the classifier in the opposite way to the one tested to achieve a performance

better than random. The AUC is very popular because it is an objective, non-

parametric and easy-to-calculate measure that enables straightforward comparisons

of classifiers. Several caveats are, however, necessary. The measure assumes that

researchers are interested in all conditions in which a model could operate: from very

high false positive rates to very high false negative rates. Partial ROC curves have

been proposed to focus attention on, for example, the regime of low false positive
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rate [e.g. 319]. A recent criticism in Hand [123] is that the measure does not allow

the user to specify the relative costs of false positives and false negatives, but rather

selects this relative cost to be a function of the output of the model. The measure

can be quite noisy when applied to small data sets [122]. Caution must be employed

in using ROC curves and the AUC when the size of the positive true class is much

smaller than that of the negative true class (as is often the case). This is because

large changes in the number of FP s can lead to small changes in FPR when the

number of TNs is very large. If this is the case, then one can either sample sets of

negative instances of the same size as that of positive instances set and plot ROC

curves for many such sampled sets, or adopt an alternative measure, such as the

Precision-Recall (PR) curve.

The PR curve plots precision (PPV ) against recall (TPR) [45]. The precision

must be compared with the precision that one would expect of a random classifier,

which is simply the fraction of the whole set that is actually positive. A disadvantage

of PR curves is that they cannot be summarised into a single number in a straight-

forward manner. Various relationships between the ROC curve and the PR curve

can be demonstrated; see Davis and Goadrich [67], where it is shown that if a classi-

fier produces a ROC curve that is ‘above’ that of another classifier, then it will also

produce a PR curve that is ‘above’ the other.

2.4 Similarity measures based on structured on-

tologies

It is impossible to uniquely define – let alone uniquely quantify – similarity in bio-

logical function, but for a variety of applications it is useful to have some proxy for

this. In order to systematise knowledge about gene products, structured vocabularies

have become prominent. The most comprehensive is the Gene Ontology (GO) [12].
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GO terms are related to each other through a directed acyclic graph (DAG), as illus-

trated in Figure 2.1. There are various relationships defined in GO, by far the most

prominent of which is the ‘is a’ relationship. Proteins are annotated with the most

specific terms that are known about them. It is then possible to add to this set their

parent terms by following the structure of the DAG up to the root node. The GO

has three separate sub-ontologies:

• The Cellular Component sub-ontology describes locations at the levels of sub-

cellular structures and macromolecular complexes.

• The Molecular Function sub-ontology describes the jobs a gene product does or

the ‘abilities’ that it has.

• The Biological Process sub-ontology describes ‘processes’, by which is meant a

recognized series of events or molecular functions.

Anyone can add to the set of maintained annotations of the terms in these sub-

ontologies to gene products. Annotations must include a reference to the source of

the evidence for that annotation as well as an indication of what type of evidence

it is. There are various evidence codes, such as ‘inferred from experiment’, ‘inferred

from sequence orthology’, and ‘inferred from electronic annotation’.

The Munich Information Center for Protein Sequences (MIPS) [212] provides an-

other set of functional annotations. There are twenty eight primary functional cate-

gories, and each of these has further sub-divisions, such that the resultant structure

of the aggregate scheme is a tree.

A starting point for defining a semantic similarity measure between two sets of

ontology terms is to think about the semantic similarity of two terms. Measures based

on the distance of the two terms within the ontology suffer from the fact that it is by

no means clear that it is appropriate to consider each edge as a uniform distance [273].

To get around this, Resnik [273] proposed an information content measure, based on
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Figure 2.1: Structure of the Gene Ontology. Terms are related to each other
through a directed acyclic graph.

the idea that the extent to which terms share information in common captures an

intuitive idea of similarity. In an ‘is a’ ontology, high shared information in common

is indicated by a highly specific common ancestor concept. The information content

IC of two terms ti and tj with common ancestral terms A(ci, cj) is

IC(ti, tj) = maxc∈A(ci,cj)(− log(p(c)), (2.10)

where p(c) is the probability that term c is annotated to any object in the ontology.

Note that the self-similarity of a concept does not have to be 1. One feature of this

measure is that it disregards how far away the two terms are from their most specific

common ancestor. Thus, for example, if chocolate cake is a cake is a snack, and a di-

gestive is a biscuit is a snack, then IC(chocolate cake, digestive) = IC(cake, biscuit).

However, one might consider that chocolate cake and digestives are more dissimilar

than cakes and biscuits. Lin [188] proposed a way of taking this into account by
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normalising by the self-similarities of the two terms:

ICN(ti, tj) =
2IC(ti, tj)

IC(ti, ti) + IC(tj , tj)
. (2.11)

Note that under ICN the self-similarity of two terms is ICN(ti, ti) = 1.

To compare the similarity of proteins, one needs to generalise to measures that

compare two sets of terms, {ti} and {tj}. Most proposed measures consider all

pairwise similarity measures between the two sets of terms (usually Resnik’s IC),

and define some function of them, for example the mean [190], the maximum [291],

or the mean of maxima [290]. Pandey et al. [247] took an axiomatic approach to the

problem and demonstrated that these measures all fail to satisfy some properties that

one would desire of a similarity measure. These desirable properties of the similarity

of two sets of terms are (a) that the relationship is symmetrical, (b) that adding a

common annotation should not decrease the similarity between the proteins, (c) if

new annotations are added to a protein, the similarity of this protein to any other

should not decrease (i.e. the similarity measure should rely on positive evidence only),

(d) a set of annotations should be at least as similar to itself as to any other set.

Pandey et al. [247] suggested using a straightforward generalisation of Resnik’s

information content measure defined on whole sets rather than on a composite of

pairwise similarity measures – they show this measure obeys the properties listed

above. One considers the probability that an object is annotated with the intersect

of the two sets of terms, p({ti} ∩ {tj}), to define the information content between

these sets as

ICs({ti}, {tj}) = − log(p({ti} ∩ {tj})). (2.12)

One can normalise this measure in exactly the same way as above:

ICs
N({ti}, {tj}) =

2ICs({ti}, {tj})
ICs({ti}, {ti}) + ICs({tj}, {tj})

. (2.13)
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The two measures ICs and ICs
N have contrasting strengths and weaknesses. When

considering functional annotations to proteins, one must take into account that there

are a vast number of missing annotations – both in terms of proteins about which

nothing is known and for proteins whose functions are only partially known (which

one might suspect to be the overwhelming majority of all proteins). In the cake and

biscuit example above, the normalised measure judges ‘cake’ and ‘biscuit’ as more

similar than ‘chocolate cake’ and ‘digestive’, even though it might well be the case

that one simply doesn’t know what kind of cake and what kind of biscuit is involved

in the first comparison because of lack of annotation. The normalised version thus

tends to judge things with non-specific annotations as similar, despite the fact that

they may simply be lacking annotations. This also goes for the self-similarity of

proteins. With the normalised measure, every protein has a self-similarity of 1 even

if it has only a very generic term annotated to it such as ‘cellular process’. One

could consider this a strength of the normalised measure, as with the un-normalised

measure, two proteins that are both members of a common functional type will be

judged less similar than two proteins that share more specialised functions. When

using the un-normalised measure, large sets of proteins that all have nearly identical

annotations hence have a low similarity score to each other, which is likely to be the

case for proteins in large complexes where in practice the annotations of all of the

subunits are nearly identical. In such cases, the un-normalised measure is likely to

be a more conservative measure of functional similarity, relative to what one might

intuit. Conversely, the normalised measure risks being overly generous in the case of

poorly annotated proteins. We opt to use both measures in our investigation. We

divide the measures by log(n), where n is the total number of proteins in the data

set, to get a quantity whose upper bound is 1.
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Chapter 3

The Function of Communities in

Protein-Protein Interaction

Networks at Multiple Scales

Most of the results presented in this chapter were published in BMC Systems Bi-

ology [181]. This chapter also includes new material, in particular the inclusion of

an additional measure of functional similarity; a look at the robustness of the par-

titions found (Section 3.4.1); results from the literature-standard test of functional

homogeneity (Section 3.6); a new test of functional homogeneity that considers chains

of interacting proteins (Section 3.7.1); and an investigation into the distribution of

protein functional types in communities (Section 3.10).

3.1 Introduction

The idea that network communities have some relationship to functional modules is

entrenched in the literature (see Section 1.3.4). Indeed, it is such a strong hypothesis

that finding communities enriched with functional terms has been used to assess how

good a given community detection algorithm is [50]. Nonetheless, this remains an
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under-tested hypothesis, and one that deserves greater attention given its centrality

to how it is thought biological function emerges from the interactions of parts to make

a whole.

In Section 2.1, we summarised the current state of the community detection lit-

erature: there has been a lot of work on proposing new algorithms, but less work

done to assess the significance of communities found [259, 323]. This is especially

true of communities found in protein-protein interaction networks. Myriad studies

have been published that employ a particular community detection algorithm, and

then assess the functional homogeneity of communities found by searching for terms

in a structured vocabulary – usually the Gene Ontology (GO, [12]) or Munich Infor-

mation Centre for Protein Sequences categories (MIPS, [211]) – that are significantly

over-represented within communities (e.g. [44, 75, 184, 191, 210, 253]). If such terms

exist, the identified communities are said to be ‘enriched’ for biological function (see

Section 1.3.4). This reliance on one yardstick (that of functional homogeneity as as-

sessed by enrichment of functional terms) for investigating the biological relevance of

network community structure is unsatisfactory for two main reasons. First, it is not

a stringent enough test for what it was designed to show, namely that community

structure adds insight compared to considering simpler topological features. Second,

there are additional aspects of the link between community structure and biological

function that are worth investigating: in particular, the patterns of the distribution

of different functional classes of proteins in communities.

In Section 2.1, I introduced the idea of multi-scale community detection. As there

are many scales of potential functional relevance within the PIN – one might expect

to find smaller communities embedded inside progressively larger ones [259] – it seems

natural to apply a method which allows one to uncover structure at many different

scales. Prior to our paper [181], there had been no study published to our knowledge

that investigated the community structure of PINs at multiple scales.
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In this chapter, we probe the functional relevance of communities at multiple res-

olutions (scales) in two S. Cerevisiae (yeast) PINs. There are three main issues we

consider. First we investigate the functional homogeneity of communities found, and

observe how this changes with the scale at which we probe the network. Second, we

consider the relationship of multi-scale community structure to a particular protein:

it is possible to see which other proteins co-occur in communities with a protein of

interest at different resolutions. Perhaps it co-occurs robustly with a small group of

proteins at high resolution but also with a larger set of proteins at a lower resolution.

Both groups are of potential interest in understanding what role the protein plays.

This is particularly pertinent for poorly annotated proteins, as their potential func-

tions can be revealed through clustering into communities [303]. Third, we explore

the distribution of proteins of different functional types in communities.

3.2 Data sets and data processing

3.2.1 Protein-protein interaction data sets

Protein-protein interactions are of two fundamentally different types (see Section

1.2.2). The Molecular Interactions ontology [128] recognises two distinct types of

interactions: physical associations (henceforth denoted P ) and associations (hence-

forth denoted A). The main experimental type for the former is yeast-two-hybrid

screens (y2h, see Section 1.2.3.1). The main type of experiment to fall under the

latter is based on tandem affinity purification (TAP, see Section 1.2.3.2). These in-

teraction types are known to have very different properties [294, 334]. Additionally,

the networks constructed using these two types of interactions have different global

properties (see Table 3.2). We thus investigate the two networks, based on A type

and P type interactions, independently.

Here we use the BioGRID (www.thebiogrid.org, downloaded January 2010,
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Table 3.1: Numbers of yeast interactions of A and P type in the three databases used.

A P
Intact 23632 26611
MINT 13347 10407
BioGRID 35716 13142
Union 48348 33342

[306]), IntAct (www.ebi.ac.uk/intact, downloaded January 2010, [159]), and MINT

databases (mint.bio.uniroma2.it/mint, downloaded January 2010, [361]) to as-

semble our protein interaction networks. These databases overlap in the interac-

tions deposited in them: we consider the union. We use only interactions between

proteins that have an SGD identification (Saccharomyces Genome Database, www.

yeastgenome.org, [53]).

We divide interactions on the basis of their type (A or P ) and hence assemble

two networks. Numbers of interactions are given in Table 3.1. The IntAct database

[159] gives interaction types from the Molecular Interaction ontology [128] directly.

The MINT database [361] uses the Molecular Interaction detection type ontology, the

broad categories of which are biophysical, biochemical, and protein complementation

assay. The biochemical techniques give evidence of association (A type interactions),

and the biophysical and protein complementation assays give evidence of physical

interactions (P type). The BioGRID database [306] uses its own evidence types.

Those giving evidence of P type interactions are reconstituted complex, PCA, Co-

crystal structure and yeast-two-hybrid. Those giving evidence of A type interactions

are affinity capture, biochemical activity, co-fractionation, co-purification and Far

Western. (Details of these experimental types can be found on the BioGRID website,

www.thebiogrid.org.)

Of the potential 6607 proteins in the yeast proteome (www.yeastgenome.org),

there are 5002 proteins connected by A type interactions, and 5692 connected by P

type interactions. There are only 5947 interactions in the intersection of the A and P
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Table 3.2: Network statistics of the A and P networks

Network A P
Number of nodes 4980 5669
Number of edges (of which self-edges) 48,330 (868) 33,321 (941)
Mean degree 19.1 11.5
Density of interactions 0.0039 0.0021
Mean local clustering coefficient 0.22 0.10

interactions sets. Here we only study the largest connected component of these two

networks. Some summary statistics for the networks are shown in Table 3.2. The

A network is denser (density is the number of interactions divided by the number

of possible interactions), and has a higher mean local clustering coefficient. A node

has a high clustering coefficient, c, if its neighbours are also neighbours of each other

[231, 344]. It is defined for each node as

c =
Ntriangle

Ntriple

, (3.1)

where Ntriangle is the number of triangles of which the node is a member, and Ntriple is

the number of connected triples in which the node is the central node. (A connected

triple is a single node with edges running to an unordered pair of other nodes.)

3.2.2 GO

Th Gene Ontology, GO, is a structured vocabulary, whose terms are annotated to

proteins by researchers (see Section 2.4). Here, we use the Biological Process sub-

ontology annotations to yeast, which are maintained by the SGD consortium [53].

Terms are related to each other through a directed acyclic graph (DAG, a directed

graph with no directed cycles). Proteins are annotated with the most specific terms

that are known about them. It is then possible to add their parent terms to this set by

following the structure of the DAG up to the root node. Of the 6346 yeast proteins in
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the GO annotation set, 5347 have biological process annotations (excluding the root

node). The mean number of annotations per protein is 17.2. The majority of proteins

in the PINs we consider have GO biological process annotations: 4394 proteins in the

P network and 4610 in the A network. We carried out the same analysis using

the molecular function and cellular component sub-ontologies and obtained similar

results.

We calculate the functional similarity between pairs of proteins using these GO

annotations and the measures defined in Equations 2.12 and 2.13 in Section 2.4, and

refer to these un-normalised and normalised measures as G and N , respectively. The

two measures differ in their consideration of lack of specific annotations, with the

un-normalised measure being in general more conservative (see Section 2.4).

3.2.3 MIPS

We compared our GO results to those gained from the use of MIPS terms (www.

helmholtz-muenchen.de/en/ibis, [211], an alternative set of functional annotations

to GO). Here we only use the top level of the MIPS hierarchy, which has 28 terms.

MIPS terms are annotated to 4431 of the proteins in the A and 4231 of the proteins

in the P network. We apply the un-normalised functional similarity measure given

by Equation 2.12 to the MIPS data. We refer to this similarity measure as M .

3.2.4 Chemoinformatics screen of growth rates data

Hillenmeyer et. al. published the growth rates of gene-knockout strains under 418

different conditions [129]. The data is given in the form of a vector Li with components

Lt
i = log(µc

i/µ
t
i), (3.2)
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Table 3.3: Pairwise similarities of proteins in the A and P networks under
the four different similarity measures, G, N , C, and M

A P
Measure All pairs Interacting pairs All pairs Interacting pairs
G (un-normalised GO) 0.13 0.31 0.12 0.25
N (normalised GO) 0.16 0.39 0.15 0.30
C (correlated phenotypes) 0.036 0.12 0.036 0.077
M (MIPS) 0.084 0.18 0.083 0.16

where the parameter µc
i is the mean growth rate of strain i under different control

conditions, and µt
i is the growth rate under one of the 418 treatment conditions. We

use the results from the homozygous strains. As many gene deletions are lethal, data

are only available for 3625 proteins, of which 3184 are in the A network and 3422 are

in the P network.

This data is used to give a measure of the functional similarity of two proteins i

and j, Cij , by calculating the Pearson correlation coefficient of Li with Lj .

3.3 Pairwise properties of proteins

Community structure, if of any biological relevance, should uncover patterns that are

more than the sum of effects from pairs of interacting proteins. In Table 3.3, we show

the pairwise similarity of proteins in each network under our four different measures of

functional similarity (two based on GO, one on MIPS, and one on correlated growth

rates; see Section 3.2). For each of the four measures, the similarity of pairs known to

interact with either A or P type interactions is much higher than a randomly chosen

pair of proteins. This not only helps motivate the investigation of the connection

between functional similarity of proteins and the topology of the network, but also

demonstrates the necessity of taking into account pairwise properties when assessing

any additional information that one can gain by studying communities.
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3.4 Communities

We apply the Potts community detection algorithm (discussed in Section 2.1.3.2,

using the Louvain algorithm [34]) to the A and P networks separately. The algorithm

partitions the network into disjoint communities, where the size of the communities

is influenced by a resolution parameter λ. When λ is small, large communities are

found. As it increases, higher resolution structure in the form of smaller communities

becomes visible.

We investigate partitions of the network in the range 0.1 ≤ λ ≤ 1000, and sample

at intervals of 0.01 on a logarithmic scale (we hence report results for −1 ≤ log(λ) ≤

3). At λ = 0, all nodes in our set will be assigned to the same community. As we

increase λ, communities split and become smaller. If we allow λ to increase eventually

each node will be assigned to its own community.

Figure 3.1 shows the communities that we find in the A and P networks as the

resolution parameter λ is varied. As λ increases, more and smaller communities are

found (see Table 3.4). At λ = 1 (i.e. log(λ) = 0), which corresponds to standard

Newman-Girvan modularity [233], most communities contain a few hundred proteins.

By log(λ) = 3 however, almost all proteins are in communities of size three or smaller.

As shown in Figure 3.1, some sets of nodes are classified in the same community

through large changes in the resolution parameter and hence represent particularly

inter-connected parts of the network.

Figure 3.1 can be contrasted with Figure 3.2, which illustrates similar calcula-

tions on an Erdős-Rényi random network and a network designed to possess strong

communities. In the former, not much structure is present; in the latter, there are

very distinct blocks. To produce these images, we adopt a convention for ordering

the proteins (explained in Section 2.2).

The two networks, A and P , contain very different types of interactions, and they

can therefore be used to identify different aspects of the cell’s functional organisation.
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Figure 3.1: Communities identified in the A and P Networks. Communities
identified in a) the A network and b) the P network. When the resolution parameter
λ is very small, all nodes are assigned to the same community (which is analogous to
viewing the network at a great distance). As λ is increased (viewing the network at
progressively closer distances), more structure is revealed. The figures on the right
hand side show visualisations of the networks’ partition into communities at three
different values of λ. Each circle represents a community, with size proportional to
the number of proteins in that community, positioned at the mean position of its
constituent nodes. (We acknowledge the authors of Ref. [322] for use of code to gen-
erate these plots. The node positions were determined via a standard force directed
network layout algorithm [154].) The shade of the connecting lines is proportional to
the number of edges between two communities. The main figure shows the commu-
nities that we find as we vary the resolution parameter. We identify communities as
the same through changing resolution parameter, and hence colour them the same,
according to a convention described in Section 2.2 (only communities of size 50 or
more are shown). Note that the ordering of proteins is not the same in the two figures.

68



Figure 3.2: As for Figure 3.1, but for a) An Erdős-Rényi random network
and b) a network with strong community structure. Both networks were
designed to be of approximately the same size as the A and P networks (5000 nodes).
The probability that two nodes are connected in the random network is the same
as for the A network. We generated the network with community structure from
code available at http://sites.google.com/site/santofortunato/inthepress2 (reported
in [174]). The parameters that we chose matched the statistics of the A network
(average degree of 19, maximum degree of 1182), with additional parameters chosen
as suggested default values (the exponent for the degree distribution is 2, the exponent
for the community size distribution is 1, and the mixing parameter is 0.2).
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Table 3.4: Mean size of communities in the A and P networks. Communities
of size three or fewer proteins are excluded from these calculations.

log(λ) mean size of communities
A P

−0.5 621 2834
0 293 405
0.5 73 79
1 22 26
1.5 11 10
2 6.4 6.5
2.5 5.2 4.9
3 4.4 4.4

The A network is also much denser than the P network. Clustering into communities

would be dominated by A type interactions if the two interaction types were consid-

ered together, thereby making it very hard to pick out any structures given by P type

interactions (as occurs in [256]).

3.4.1 Robustness of partitions found

As discussed in Section 2.1.3, a paper published recently pointed out a general problem

with maximisation of modularity and similar quality functions: there are potentially

many partitions all sharing nearly identical values of the modularity [111]. As finding

the exact maximum of modularity is known to be an NP-hard problem [39, 127],

the heuristics that have to be used in practice return varying partitions, and the

assignments of nodes to specific partitions can be potentially very different from one

another.

As mentioned in Section 2.1.3.3, the Louvain algorithm we use is sensitive to the

order in which the nodes appear in the input list. This enables an investigation of

the potential different partitions all with similar local maxima of modularity. We

hence run the algorithm for 100 different node orderings at each value of λ, to test
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Figure 3.3: The mean normalised variation of information (nV I) based on
one hundred different runs of the community detection algorithm at each
value of the resolution parameter λ, for a) the A network and b) the P
network. An nV I of 0 would indicate that all the partitions were identical. The
dashed curves show plus and minus one standard deviation.
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the extent to which partitions can differ in the networks we consider.

There are many ways to compare two partitions, see Section 2.2. For the reasons

outlined in that section, we employ the normalised Variation of Information, nV I, to

make the (100×99)/2 comparisons at each value of λ. The results are shown in Figure

3.3. Values of nV I are normalised to lie between 0 and 1, with 0 indicating identical

partitions. At intermediate values of λ the nV I has a maximum. For comparison to

some other measures, in the A network at log(λ) = 0.5 where the mean nV I is 0.25

(the resolution for which there is the most variability as judged by the mean nV I),

the mean normalised Mutual Information is about 0.75 and the mean Adjusted Rand

about 0.6 (see Section 2.2 for an introduction to these measures).

How large are these nV I values? To gain some intuition, we randomly rewired the

A network 100 times, keeping the number of interactions of each protein constant,

such that the rewired networks differed in 10% of their interactions. We ran the

community detection algorithm (keeping node ordering constant) on these networks,

and found the nV I values between the partitions to be slightly higher (about 0.05

larger over the full range of resolution-parameter values) than those shown in Figure

3.3.

3.5 Examples of communities found at multiple

resolutions

To motivate a systematic probing of the function of communities in protein-protein

interactions at multiple scales, we give two examples of communities in this section.

We ‘eyeball’ their significance not by any statistical test but by looking at the short

protein descriptions found on the SGD website (www.yeastgenome.org [53]).

Consider the community at log(λ) = 0 that is marked as the blue block in Figure

3.1 for the A network (over node labels approximately 0 to 500). This contains 528
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Figure 3.4: Examples of communities found a) A representation of a community
in the A network at resolution parameter value log(λ) = 0, with nodes (proteins)
coloured according to the partition of this community at log(λ) = 0.5. The colours
are the same as for Figure 3.1 a), where this group of proteins has labels roughly in
the range 0 − 500. Almost all of the nodes have some relationship to the ribosome.
The proteins in the yellow community are mostly ribosomal subunits, those in the red
community are mostly pre-cursors to and processors of the small ribosomal subunit,
and those in the blue community have similar roles to those in the red community but
for the large subunit. The shading of the edges has no significance; its purpose is to
ease visualisation. Black nodes are not located in one of the three largest communities
discussed in the text. b) A representation of a community at log(λ) = 0.5, with nodes
(proteins) coloured according to the partition of this community at log(λ) = 0.75. The
proteins identified at the lower resolution parameter value almost all play some role in
transcription initiation. At the higher resolution parameter value, more structure is
revealed: the pink community consists mostly of proteins from the RNA polymerase
II mediator complex and the green community mostly consists of proteins from the
TFIID and SAGA complexes. c) Partition at a higher resolution parameter value
(log(λ) = 1.6). The green community from b) has split into the SAGA complex
(green) and the TFIID complex (orange). The names and descriptions of the proteins
in the communities in these examples are given in Appendix B. The node positions
for visualisation were computed in the same way as for Figure 3.1.
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proteins, the majority of which are known to have some relationship to the ribosome,

see Tables B.1 – B.4. Figure 3.4 a) shows this community, where we have coloured

nodes according to the community partition at the higher resolution log(λ) = 0.5.

The colours – red, yellow, and blue – are the same as in Figure 3.1, where most of the

community present at log(λ) = 0 has split into three communities at log(λ) = 0.5.

The blue community consists of 107 proteins, which are largely precursors to and pro-

cessors of the large ribosomal unit. The red community consists of 95 proteins, which

have a similar function but for the small ribosomal subunit. The yellow community

has 190 proteins, 93 of which are constituents of the ribosome and the remainder of

which are either of unknown function or associate to the ribosome.

An illustration of the biological relevance of community structure at three par-

titions is given in Figures 3.4 b) and c). We show a community of 90 proteins at

log(λ) = 0.5, and display its partition into communities at b) log(λ) = 0.75 and

c) log(λ) = 1.6. Almost all of the proteins in the community at log(λ) = 0.5 play

some role in transcription initiation. At log(λ) = 0.75, this community has split into

two main smaller communities: the pink community contains constituent proteins of

the RNA polymerase II mediator complex and the green community contains com-

ponents of the closely related SAGA and TFIID complexes [353]. At log(λ) = 1.6,

this second community has split into the SAGA and TFIID complexes. We give short

descriptions of the proteins in these communities in Appendix B.

These examples illustrate that the results of multi-scale community detection can

have intuitive biological relevance. We proceed in the remainder of this chapter to

elucidate this connection between network structure and biological function.
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3.6 The standard assessment of biological relevance:

functional enrichment

There is a literature-standard way of assessing whether communities in protein-protein

interaction networks are functionally homogeneous and hence candidates for biological

modules (Section 1.3.4). A community is judged to be functionally homogeneous if

at least one term is enriched in the community, where enrichment is determined

in a comparison between the subset of proteins in a community compared to all

proteins in the data set using a cumulative hypergeometric distribution [38]. Consider

a population of size M , in which K elements have a particular feature. If N draws

are made without replacement from this population, the probability that up to x

of the drawn samples have the feature is given by the cumulative hypergeometric

distribution:

F (x|M, K, N) =

x
∑

i=0

(

K

i

)(

M−K

N−i

)

(

M

N

) . (3.3)

In our case M is the total number of proteins in the network, K is the number

of proteins annotated with the term in question, N is the number of proteins in the

community, and x is the number of proteins in the community with the particular

term. The probability, p, that a term would appear x or more times in the community

of interest by chance is then

p = 1 − F (x − 1|M, K, N). (3.4)

This test is performed for multiple terms, so to control for multiple testing we

must apply a correction. Here we apply the Bonferroni correction, which simply

means multiplying the resultant p values by the number of tests performed, and is a

standard approach [301].
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We assess the communities we find using this test. In common with the literature,

we judge a community functionally enriched if at least one term has a value of p

(after being corrected for multiple testing) below 0.05. Figure 3.5 shows the number

of proteins found in communities of size four or more (black), and the number of

proteins in such communities which are found to be functionally enriched under this

literature standard test (red). This test tends to find the very large communities

found at low resolution to be functionally enriched. for example, the community of

4873 proteins present at log(λ) = −0.74 in the A network is functionally enriched

using this test.

This test, although useful for identifying which terms are enriched within which

communities, is not a satisfactory test of whether communities are functionally homo-

geneous. This is because it fails to take into account that pairs of interacting proteins

are more likely to be annotated with the same functional terms than non-interacting

pairs (see Section 3.3). One must control for the presence of interacting protein pairs,

to see whether communities do not end up enriched for function just because they

contain many such pairs.

3.7 Functional homogeneity of communities

A community necessarily contains many more interacting pairs than a randomly cho-

sen set of proteins. We thus compare the pairwise functional similarities of all inter-

acting pairs of proteins in a community to the same measure for all interacting pairs

in the network, thereby controlling for the number of interacting pairs.

To capture the pairwise similarity between two proteins that interact {ij}, we use

z-scores:

z{ij} =
S{ij} − µ

σ
, (3.5)

where S stands for one of our four similarity measures – based on GO (G and N),
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Figure 3.5: Number of proteins in communities of size four or more that are
enriched for at least one GO biological process term at the 0.05 significance
level (red-curve) and in total (black curve) for a) the A network, and
b) the P network. At the standard resolution parameter value of log(λ) = 0,
almost every protein is in a community that is functionally enriched in both networks.
Many published studies have applied this test to the output of community detection
algorithms and found that most communities are enriched for at least one functional
term. This is taken as evidence for the modular organisation of the cell.
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MIPS (M), or correlated growth rates, (C) – µ is the mean, and σ the standard

deviation of all the values of S for which proteins i and j interact in the network of

interest (A or P ).

A desirable quality for our test of functional homogeneity is the ability to compare

communities found at different resolutions in an even-handed manner. It is inherent

in the nature of a statistical test that the significance of the test statistic under con-

sideration (for example, the difference between the sample mean and the population

mean) depends on the sample size: if one has a larger sample size, one can judge

smaller differences to be ‘significant’. To determine the aggregate z-score zagg for the

mean of a set of individual z-scores zind one calculates zagg =
√

Nµ(zind), where N

is the number of interacting pairs in the community and µ(zind) is the mean of their

zind [208]. Hence, given a µ(zind), a larger and hence more significant zagg is achieved

for a larger sample size (i.e., larger N). In order to separate the effects of the number

of interactors in the community from functional homogeneity, we thus choose to base

assessment of functional homogeneity on the µ(zind), in our case µ(z{ij}) (where z{ij}

is defined in Equation 3.5). We judge as ‘significant’ all those communities that have

µ(z{ij}) above 0.3, and call such communities “functionally homogeneous”. We stress

that this is not strictly an assessment of statistical significance, as we are choosing

to ignore sample size. The value of 0.3 is somewhat arbitrary: communities would

be judged to be significant at the 0.05 significance level if they contained 30 or more

interacting pairs.

We now assess how many communities are judged functionally homogeneous, look-

ing in particular at how our results vary with resolution parameter.

The black curves in Figure 3.6 illustrate for a) the A network and b) the P net-

work, i) the number of communities of size four or more as the resolution parameter

changes, and ii) how many proteins are in those communities. The coloured curves

represent, for each of our four measures of functional similarity, the number of com-
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Figure 3.6: For a) the A network b) the P network, i) the number of commu-
nities of size four or more and ii) the number of proteins in such commu-
nities and the fraction of these that are judged functionally homogeneous.
i) The number of communities of size four or more with changing resolution parameter
(solid black curve) ii) The number of proteins p in communities of size four or more
(solid black curve). Also shown are the numbers of communities/proteins in such
communities judged to be functionally homogeneous according to the GO G simi-
larity measure (green curves), the GO N similarity measure (dotted pink curves),
the MIPS measure (dot-dashed blue curves), and the correlated growth similarity
measure (dashed red curves). At values of log(λ) ≤ 0.5, relatively few proteins are
in communities judged to be functionally homogeneous. The curves are similar for
both networks, and they show a similar proportion of proteins in functionally homo-
geneous communities. One difference is that there are more proteins in functionally
homogeneous communities at a lower value of log(λ) for the P network.
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munities judged to be functionally homogeneous, and the number of proteins in the

communities that we judged to be functionally homogeneous. We find that the large

communities present at small values of the resolution parameter λ are not judged to

be functionally homogeneous. As λ is increased, larger numbers of proteins occur in

functionally homogeneous communities, peaking in the range 0.5 ≤ log(λ) ≤ 1 for

the A network. At log(λ) = 0.5, the mean community size is 73 proteins, and 2541

of 4980 proteins are in functionally homogeneous communities as judged by our GO

similarity measure G.

We find that the functional homogeneity is very similar under the G and N

measures, and show their correlation for communities detected in the A network

at log(λ) = 0.5 in Figure 3.8. The three communities which can be seen to have a

substantially lower functional homogeneity under the G measure than the N mea-

sure are exactly as anticipated – they are for large sets of proteins that all share

near identical annotations, which we would nonetheless consider to be fairly complete

annotations: one of these communities is dominated by ribosomal proteins, one by

mitochondrial ribosomal proteins, and one by proteasomal proteins. Due to the very

close correlation between the G and N measures, we henceforth refer only to the G

measure.

The shapes of the curves in both Figure 3.6 a) and b) are in the most part

similar for the measures considered. Indeed, we find that the overlap between the

communities judged to be functionally homogeneous between any two of the G, C,

and M measures is high; for example, it is 70% between the GO and correlated growth

rates measure over almost the entire range of the resolution parameter in both the A

and P networks (see Figure 3.7). Given that the correlated growth similarity measure

represents a very different data type to the GO and MIPS annotations, this agreement

gives us confidence in the similarity measure we use for GO and MIPS. As we use

only the top level of the MIPS functional annotations, we capture less information
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Figure 3.7: Agreement in assessment of functional homogeneity between
pairs of similarity measures. For a) the A network and b) the P network, the
fraction, f , of communities that are either both judged as functionally homogeneous
or both judged as not functionally homogeneous under the G and C measures (black
curve), the G and M measures (dark green dashed curve), and the M and C mea-
sures (red dot-dashed curve). The large overlap between the measures derived from
ontologies (G and M) with the measure derived from a single large-scale experiment
(C) gives confidence in our ontology-derived measures.

than the GO measure, so it is unsurprising that fewer communities are found to be

functionally homogeneous using this measure.

The P network shows a similar pattern to the A network. One difference is that

communities start to be judged as functionally similar at a slightly lower resolution.

That there are comparably many functionally homogeneous communities in the P

network as the A network is of interest, as communities found in P networks have

previously been found to be poor choices for predicting function on the basis of

enrichment of terms [303].

For almost all proteins, there is some value of the resolution parameter that as-

signs them to a functionally homogeneous community. In fact, 4652 out of 4980 A
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Figure 3.8: The functional homogeneity of communities is very similar using
the G and N measures of similarity. Here we show for a) the A network and b) the
P network the mean of the individual z-scores, µ(z{ij}), for the un-normalised measure
based on GO (G) and the normalised measure based on GO (N) for communities at
log(λ) = 0.5. The three communities with substantially lower values under the G
measure are as anticipated (see text).
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proteins and 5647 out of 5669 P proteins are in such communities at some value of

the resolution parameter that we considered.

3.7.1 Beyond pairwise measures

Tests of the functional homogeneity of communities need a comparison class, i.e. a set

of objects relative to which one wishes to assess functional homogeneity. Studies pub-

lished previous to ours had considered as a comparison class the whole set of proteins

(see explanation of the literature standard test in Section 3.6). This effectively treats

communities as ‘bags of proteins’, and compares each such bag to the whole. We

have argued that this is not a strict enough test as a community contains many pairs

of interacting proteins, and interacting proteins are known to be more functionally

similar than non-interacting pairs (see Section 3.3). The literature-standard test thus

leaves open the possibility that communities are no more functionally homogeneous

than a bag of interacting pairs of proteins. In the previous section, we introduced

our tests designed to check whether communities are more than a bag of interacting

pairs.

One could consider that these tests are still hampered by being purely pairwise.

The interactions within a community are not independent, but in some sense ‘close’

to each other. Here, we introduce a larger control class: that of sets of proteins joined

together along a path. In Section 2.1.3.2 we discussed how it has been shown that

modularity is a linear approximation of a quality function known as ‘stability’. The

optimisation of the stability quality function returns as communities sets of nodes that

a random walker on the network visits within a certain time span. This time span

is inversely proportional to the resolution parameter λ. As a comparison class for a

community, which is very closely related to the set of nodes a random walker visits, we

consider the set of nodes a random walker that performs minimal back-tracking steps

visits. Such a walk is given by the depth-first search algorithm [315]. A depth-first
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search starts at a node chosen uniformly at random, then follows unexplored edges as

far as possible before it needs to back-track, at which point it returns to the last node

it visited that had unexplored edges. We use MATLAB’s graphtraverse function to

generate such sets of nodes, which we henceforth refer to as chains. For a community

of size n nodes, we generate 100 such chains (each starting from a randomly chosen

node) also of length n.

To compare the functional homogeneity of a community to the comparison class of

a set of chains, we find the mean of the functional homogeneity of all pairs of proteins

in the community, mc, and the same value for each i of the hundred chains, mi. We

then define the z-score zc for the chains-based functional homogeneity of community

c to be

zc =
mc − µi

σi

, (3.6)

where µi and σi are the mean and standard deviation of the set mi. We calculate

these scores for each of the four functional homogeneity measures and for both the A

and P networks, and show our results in Figure 3.9.

In the P network, the very large community present around log(λ) = −0.5 (which

contains the whole network except for ten proteins) is judged functionally homoge-

neous under the M and C measures. This problem arises when creating samples

for comparison that are almost the size of the whole network: the samples are all

more or less identical and hence have a vanishing standard deviation, which leads to

a correspondingly high z-score if the actual community has an even slightly higher

value. This problem only arises when communities are almost, but not quite, the

size of the whole network. The same communities tend to be judged functionally

homogeneous compared to chains under all four measures (see Figure 3.10. Results

for the N measure are extremely similar to those for the G measure and are hence

not shown).

A comparison to Figure 3.6 illustrates that, with the exception of the issue just
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outlined, a similar proportion of communities and proteins within those communities

are judged as functionally homogeneous under this chain measure as with our inter-

actors measure introduced in the previous Section. It is the case that communities

judged functionally homogeneous under our interactors-based test also tend to be

judged homogeneous under our chains-based test (see Figure 3.11).

Both the chains-based test and our interactors-based test take into account dif-

ferent aspects of a community that could make it inappropriate to compare the func-

tional homogeneity of a community to a ‘bag of proteins’. The interactors-based test

controls for the presence of more interactions between the proteins than one would

expect if the proteins were chosen at random; the chains-based test controls for the

fact that interactions within a community are not independent of each other, but are

in some sense ‘close’. Using these tests, we show that communities give additional

insights compared both to sets of interacting pairs, and to groups of nodes joined

together in a chain.

In the following sections, when we refer to ‘functionally homogeneous communi-

ties’, we refer to the results of our interactors-based test.

3.8 Use of topological properties to select func-

tionally homogeneous communities

Almost all proteins are in functionally homogeneous communities at some value of

the resolution parameter, so we would like to devise a method to identify these res-

olutions. We investigate whether any easily-calculated topological properties of the

communities can act as indicators of functional homogeneity. Given a protein of in-

terest, we can then use such measures to identify ‘good’ resolutions without the need

to assess functional homogeneity.

We tested 26 topological properties – see the list in Table 3.5 – for their ability

85



Figure 3.9: For a) the A network and b) the P network, i) the number
of communities of size four or more and ii) the number of proteins in
such communities and the fraction of these that are judged functionally
homogeneous using our chains-based test. i) The number of communities of size
four or more with changing resolution parameter (solid black curve) ii) The number
of proteins p in communities of size four or more (solid black curve). Also shown
are the numbers of communities and the numbers of proteins in such communities
judged to be functionally homogeneous according to the GO G similarity measure
(green curves), the GO N similarity measure (dotted pink curves), the MIPS measure
(dot-dashed blue curves), and the correlated growth similarity measure (dashed red
curves). A comparison to Figure 3.6 shows that there are similar proportions of
proteins in functionally homogeneous communities judged using our chains-based test
as using our interactors-based test. This reinforces the idea that communities yield
additional insights that one cannot obtain by just using simple topological features.
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Figure 3.10: Agreement in assessment of functional homogeneity, where this
is as compared to chains, between pairs of similarity measures. For a) the A
network and b) the P network, the fraction f of communities of size four or more that
are either both judged as functionally homogeneous or both judged as not functionally
homogeneous compared to chains, under the G and C measures (black curve), the
G and M measures (dark green dashed curve), and the M and C measures (red
dot-dashed curve).
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Figure 3.11: Agreement in assessment of functional homogeneity for our
interactors-based test and our chains-based test under the different sim-
ilarity measures. For a) the A network and b) the P network, the fraction f of
communities of size four or more that are either both judged as functionally homoge-
neous or both judged as not functionally homogeneous for both the interactors-based
test and the chains-based test, under the G measure (green curve), the M measure
(dot-dashed blue curve), and the C measure (dashed red curve). The tests tend
to pick out similar sets of communities as functionally homogeneous under all the
similarity measures.
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to predict functional homogeneity using the area under the ROC curve (AUC, see

Section 2.3)). Examples of diagnostics tested include the mean local clustering co-

efficient, betweenness measures, and network diameter. Any topological properties

that correlate well with functional homogeneity can then be used to predict function-

ally homogeneous communities. We use each topological property as a classifier by

predicting communities as functionally homogeneous when the value of that property

is above a threshold, which we vary allowing us to construct a Receiver Operating

Characteristic (ROC) curve (see Section 2.3). A ROC curve plots the number of com-

munities correctly predicted as functionally homogeneous versus the number falsely

predicted [83]. We calculate the AUC for each diagnostic at each value of λ, and

report the mean of this quantity over resolutions between 0 ≤ log(λ) ≤ 3 (we exclude

−1 ≤ log(λ) < 0, as the results are very noisy due to the small number of commu-

nities present). An AUC of 0.5 would be expected from a random classifier. AUCs

of greater than 0.5 imply that higher values of the diagnostic are predictive of func-

tional homogeneity. AUCs of less than 0.5 imply the diagnostic would be predictive

if instances with values of that diagnostic below the threshold were used (i.e. that

the property and functional homogeneity are negatively correlated).

In general, the AUCs for the P network are lower than those for the A network

(Table 3.5), perhaps because there is more potentially usable information in the A

network as it is significantly denser (see Table 3.2).

We find that the mean local clustering coefficient is the most useful of the topo-

logical properties tested in the prediction of functional homogeneity for all three

similarity measures in the P network and for both the G and C measure in the A

network. (Recall from Section 3.2.1 that a node has a high clustering coefficient if its

neighbours are also neighbours of each other.) Figure 3.12 shows for a) the A network

and b) the P network the ROC curves for using the mean clustering coefficient of

nodes in a community as a predictor of functional homogeneity for each of the three
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Table 3.5: Topological network diagnostics tested and AUCs. The network
topology measures tested and their associated AUCs. We report the results for using
each of these as a predictor for functional homogeneity as judged under the three
measures of functional similarity – GO (G), correlated growth rates (C), and MIPS
(M) – for both the A and P networks. The AUCs are given as the mean performance
over the range 0 ≤ log(λ) ≤ 3. The clustering coefficient (definition given in the text,
equation 3.1) is the best predictor in all cases save for the MIPs measure in the A
network. (The topological properties were computed from code developed by Gabriel
Villar.)

A P

Network topology measure G C M G C M

Mean degree 0.6476 0.6142 0.513 0.6062 0.5373 0.5387
Degree assortativity coefficient [230] 0.6913 0.6277 0.4799 0.6541 0.5517 0.5181
Clustering coefficient [62] 0.7186 0.6613 0.5521 0.665 0.5829 0.5725
Global mean Soffer clustering coefficient [300] 0.4857 0.4819 0.3915 0.5395 0.4735 0.4461
Local mean Soffer clustering coefficient [300] 0.4784 0.4662 0.3892 0.5312 0.4654 0.454
Mean geodesic node betweenness centrality [342] 0.46 0.4973 0.5045 0.4954 0.5094 0.4959
Mean closeness centrality [342] 0.5275 0.5524 0.4877 0.5053 0.4919 0.4815
Mean eigenvector centrality [342] 0.5601 0.5722 0.5312 0.5658 0.5551 0.5246
Mean information centrality [342] 0.5191 0.5429 0.5253 0.5432 0.5456 0.517
Mean geodesic distance [62] 0.3839 0.3717 0.4274 0.4823 0.4945 0.5066
Diameter [342] 0.4457 0.4042 0.4366 0.5074 0.5004 0.5079
Mean harmonic geodesic distance [62] 0.4088 0.4042 0.5024 0.4709 0.4834 0.4995
Energy [62] 0.5237 0.4982 0.4568 0.5265 0.4976 0.5114
Entropy [62] 0.5655 0.5327 0.5077 0.5428 0.5127 0.528
Off-diagonal complexity [163] 0.5941 0.5457 0.5081 0.5827 0.5054 0.5237
Cyclomatic number [163] 0.6331 0.5733 0.5173 0.6146 0.53 0.5425
Connectivity [163] 0.6437 0.5766 0.5245 0.6324 0.5334 0.5468
Number of spanning trees [163] 0.4525 0.4531 0.4451 0.4584 0.4516 0.4491
Medium articulation [163] 0.5659 0.4463 0.5295 0.5754 0.507 0.5592
Efficiency complexity [163] 0.5316 0.5343 0.4911 0.5078 0.4945 0.4982
Graph index complexity [163] 0.6564 0.6492 0.5211 0.599 0.5469 0.525
Density 0.6541 0.6553 0.5277 0.6227 0.5676 0.5235
Efficiency [176] 0.579 0.5896 0.4964 0.5336 0.5071 0.4865
Fraction of articulation vertices [324] 0.5065 0.5028 0.5216 0.5064 0.5062 0.5091
Largest eigenvalue 0.6054 0.5663 0.4941 0.5619 0.5041 0.5185
Rich club coefficient [59] 0.5428 0.5896 0.4988 0.5486 0.5209 0.4868

similarity measures.

In the A interactions set some experimental results are described using the matrix

model and some using the spoke model (Section 1.2.3.2). This choice could cause

artefactual topological features, so the extent to which we find particular topological

features correlating with functional homogeneity could be sensitive to annotation

choice. We are therefore encouraged that the same trends in predictive ability are

evident in the P network, for which there is no such element of discretion.
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Figure 3.12: ROC curves for using mean clustering coefficient to pick out
functionally homogeneous communities in a) the A network and b) the
P network. The Receiver Operating Characteristic (ROC) curve for using mean
clustering coefficient as a predictor of functional homogeneity under the GO measure
(solid green curve), MIPS measure (dot-dashed blue curve), and correlated growth
measure (dashed red curve). We plot the false positive rate (FPR) versus the true
positive rate (TPR). As for Table 3.5, we use the mean FPR and TPR rates for res-
olutions between 0 ≤ log(λ) ≤ 3. A random classifier would give the solid black line.
For the A network under the GO measure, a true positive rate of 70% is achievable
with a false positive rate of 30%. For both networks, the best predictive ability is
achieved for the GO measure, and the worst for the MIPS measure (see Table 3.5
for AUCs). The AUCs for the P network are in general lower than those for the A
network (see Table 3.5).
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3.9 Tracing the community membership of a par-

ticular protein

Multi-resolution community detection and characterisation is relevant from the global

viewpoint, where one can investigate the aggregate functional organisation of the

proteome (as we have done in previous Sections). It is also relevant from a local

perspective, where the community membership of particular proteins can be traced

through changing the resolution parameter. As mentioned in Section 3.1, this could

be particularly useful for poorly characterised proteins, as the proteins with which it

co-occurs in communities at different resolutions can be indicative of its function.

We thus now investigate a protein-centred view of multi-resolution community

detection. We consider, for an example protein, the properties of the communities to

which it is assigned through changing resolution parameter (see Figure 3.13). The

size of the communities, their mean similarity under the G and C measures, and

the mean clustering coefficient are shown. The protein is a member of the ESCRT-I

complex. (Figure 3.14 gives a further four examples.) Note the robust properties

of the communities in the A network over resolution-parameter values of approxi-

mately 1 ≤ log(λ) ≤ 2.5, despite the tendency for them to be further partitioned as λ

increases. At these resolutions, the protein is in the same community as other mem-

bers of the complex, as well as a few other very closely associated proteins. Beyond

log(λ) = 2.5, the complex is broken up, as reflected in the drop in mean similarity

values. The community present over 0.7 ≤ log(λ) ≤ 1.4 in the P network contains

many proteins associated to the complex (in addition to the complex itself). Above

the step observable at log(λ) = 1.4, only members of the complex are present. In

Appendix C, we give the names and brief functional descriptions of proteins that

occur in some of the same communities for this example (as well as the four other

examples given in Figure 3.14). These five examples all show the following behaviour.
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• In general, as is expected, the size of the community to which a protein is

assigned decreases with increasing resolution. There is often a large range of

resolutions over which the community has constant size. Such communities are

particularly resilient to being partitioned at increasing resolutions, despite the

tendency for them to be further partitioned.

• The community similarity under the G and C measures often shows a close

correlation.

• At higher resolutions, there tends to be a higher community similarity, as might

be expected. This is, however, not always the case: community similarity can

decrease at higher resolutions. In these instances, a group of proteins has been

partitioned beyond the point at which function is shared – possibly through

the exclusion of proteins involved in the same processes that do not necessarily

directly interact with each other.

• Although there is often a large overlap between the community membership

in the A and P networks, this need not be the case. For example, in Figure

3.14 c), the depicted protein occurs with other proteins in the same complex in

the A network, whereas in the P network it occurs with members outside the

complex that are nonetheless involved in the same process (see Appendix C).

The functional homogeneity of communities can also be different: sometimes the

protein occurs in many functionally homogeneous communities in the A network

and not the P network, and sometimes vice versa. This is unsurprising given

the very different nature of A and P interactions. By treating them separately,

we are able to pick out both patterns.

• These figures suggest, as should be no surprise given the results in Section 3.8,

that clustering is a good proxy for functional homogeneity when looking at
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Figure 3.13: Tracing the community membership of a particular protein
through changing resolution. For the example protein YCL008C, we show the size
(solid blue curve), mean local clustering coefficient (dot-dashed black curve), mean
z-score under the GO measure (solid green curve), and correlated growth measure
(dashed red curve) with changing resolution for the A network (top) and P network
(bottom). Long plateaus in these properties represent robust communities.

individual proteins, and in the absence of much functional information could

guide which resolution(s) should be targeted for investigation.

3.10 Investigating particular protein functions

In the preceding sections we have focused on the aggregate functional homogeneity

of communities. In this section we investigate the distribution of particular protein

functional types in communities. We do not in general anticipate that one module

carries out a task well-captured by a particular functional annotation: functional an-

notation schemes were not necessarily designed to reflect the sort of tasks a biological

module might be anticipated to carry out. Consider the example of proteins involved

in transport. Almost every module’s task would be anticipated to need proteins to

move cellular components around. Likewise, a module entirely composed of proteins
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Figure 3.14: Further examples as per Figure 3.13. These figures display the
same information as Figure 3.13, but for the proteins a) YAL002W, b) YAL011W,
c) YAL016W, and d) YAL021C. We show the size (solid blue curve), mean local
clustering coefficient (dot-dashed black curve), mean z-score under the GO measure
(solid green curve), and correlated growth measure (dashed red curve) with changing
resolution for the A network (top) and P network (bottom). Gaps appear whenever
the protein is assigned to a community of size three proteins or less. We give the
names of proteins in several example communities, chosen as motivated by these
figures, in Appendix C.
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involved in transport is not anticipated (the transport of what for what purpose?).

There may well be functional annotations that do indeed better correspond to the

tasks that biological modules carry out. In this section we seek to give a more fine

grained view of the connection between community structure and biological function

by investigating the different behaviour of proteins in different functional classes.

There is a large class of questions of potential interest: Are proteins of the same

type typically concentrated in one or a few communities? How does this change with

changing resolution parameter? Do pairs of functional types co-occur preferentially

within communities? Are there any ‘natural’ resolutions for proteins of a particular

functional class?

Here we focus on a small but broad set of protein types, which are the GO biolog-

ical process terms within the yeast GO slim [132] that are annotated to at least 100

yeast proteins, see Table 3.6. A GO slim is a slimmed-down version of the whole GO

ontology to a small set of terms designed to give a representative and broad overview

of the complete set of annotations. It is not the case that they are the top level of

the hierarchy; indeed, it is possible for one GO slim term to be the parent of another.

3.10.1 Interactions and functional classes

In Section 3.3, we showed that a pair of proteins that interact have a higher functional

similarity (under the four measures considered) than a randomly selected pair of

proteins. This suggests that proteins interact with proteins that carry out similar

functions, but is this the case for all functional types?

Figure 3.15 shows the tendency for proteins of two functional types, s and t, to be

connected by protein-protein interactions. This tendency is calculated by counting the

number of times term s is annotated to a protein and term t is annotated to a protein

with which this protein interacts, and dividing by the total number of proteins term s

is annotated to multiplied by the total number of proteins term t is annotated to. For
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Table 3.6: GO slim terms used and the numbers of proteins in each network annotated
to these terms.

GO slim term Number of proteins

A network P network

1 generation of precursor metabolites and energy 127 130

2 DNA metabolic process 337 344

3 transcription 108 108

4 protein modification process 441 45

5 cellular amino acid and derivative metabolic process 173 177

6 transport 770 830

7 response to stress 431 444

8 mitochondrion organization 120 131

9 cytoskeleton organization 141 143

10 cell wall organization 126 133

11 signal transduction 143 148

12 membrane organization 197 206

13 RNA metabolic process 616 614

14 vesicle-mediated transport 272 277

15 cellular homeostasis 103 112

16 response to chemical stimulus 271 281

17 cellular lipid metabolic process 176 200

18 cellular protein catabolic process 120 124

19 cellular carbohydrate metabolic process 184 203

20 heterocycle metabolic process 120 133

21 cofactor metabolic process 105 121

22 chromosome organization. 332 333
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both A and P networks, this tendency is high when s = t (higher numbers down the

diagonal), indicating that to a large extent, proteins tend to interact with proteins

involved in similar biological processes. However, this tendency, called homophily in

the context of social networks [342], is by no means uniform for all functional types

and is indeed hardly present for certain functional classes in both the A and the P

network – for example proteins annotated with ‘cellular lipid metabolic process’ (term

17) and ‘cytoskeleton organization’ (term 10) in the A network. There are also some

pairs of functional classes with a high tendency to be connected by interactions, in

particular ‘transcription’ (term 3) and ‘RNA metabolic process’ (term 13) in the A

network.

There are some striking similarities for the A and P network, but also some notable

differences. For example, proteins annotated with ‘RNA metabolic process’ (term 13)

are much more likely to have A type interactions between themselves than is the case

for P type interactions.

These patterns of interaction between different functional classes should be borne

in mind when considering which functional types of protein are assigned to the same

communities.

3.10.2 Distribution of functional classes in communities

We now ask, are proteins of a given functional type concentrated within one or a few

communities, or are they spread evenly throughout the network?

The distribution of proteins annotated with a particular function across commu-

nities can be summarised by using the entropy (as introduced in Section 2.2). The

entropy of a term t, Et, is

Et =
∑

i

pt(i) log[pt(i)], (3.7)

where pt(i) is the fraction of proteins annotated with term t that are in community
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Figure 3.15: Tendency for pairs of GO slim terms to be connected by a) A
and b) P interactions. These values are normalised by the number of possible con-
nections between proteins of different functional classes. Proteins of some functional
types show a high tendency to interact with proteins of the same type.
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i. If a term is spread homogeneously through communities, it has a high entropy. If

a term is concentrated in one or a few communities, it has a low entropy.

We calculate the entropy of the 22 GO slim functional classes with changing

resolution parameter. As entropy is expected to change as the number of terms in

the sum (in this case, the number of communities) changes, we normalise the entropies

at each value of the resolution parameter using their z-score:

zEt
(λ) =

Et(λ) − µE(λ)

σE(λ)
, (3.8)

where µE(λ) and σE(λ) are the mean and standard deviation of the entropies of all

terms at resolution parameter λ. The zEt
-scores allow us to compare the concentration

of particular functional annotations within communities, and how this changes with

resolution parameter λ.

Different terms display different behaviours. We pick out a few terms that show

differing behaviours for the P network in Figure 3.16. Proteins annotated with

the term ‘transcription’ are highly concentrated within particular communities at

log(λ) = 0, but are more evenly spread through communities at increasing values of

λ; those annotated with ‘cellular protein catabolic process’ are most concentrated at

an intermediate value of log(λ) = 1; those annotated with ‘response to stress’ are

consistently evenly spread; proteins involved in ‘cell wall organisation’ are most con-

centrated relative to other terms at the highest resolution parameter value that we

investigate. The tendency for some functional types to be most concentrated within

communities at higher values of resolution perhaps indicates that these processes are

‘multi-faceted’, in the sense that the cell may require this process independently for

different tasks.

There is a very high similarity in the zEt
(λ)-scores between the A and P networks

(not shown). This similarity, notwithstanding the large differences between A and P
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Figure 3.16: The distribution of four GO slim terms throughout communi-
ties in the P network, as measured by the z-scores of the entropy of the
distribution of these terms throughout communities. The ‘bubble’ plots are
as for Figure 3.1; the pie-charts illustrate the fraction of proteins in that commu-
nity annotated with the term in question. The blue bubble plots are for the term
‘transcription’, the red ‘cellular protein catabolic process’. Low zEt

-scores indicate
that proteins annotated with term t tend to be concentrated in a few communi-
ties. Concentrating on the two left-most bubble plots, in the plot on the right many
of the communities have red content, whereas in the plot on the left very few of
the communities have blue content: transcription proteins are highly concentrated
within communities (i.e. have a low entropy) at this resolution. Terms show different
tendencies to be concentrated in communities at different resolution parameters.
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interaction types (in terms of their overall network structure, see Table 3.2, and the

functional classes that the interactions tend to join, see Figure 3.15), gives weight to

any identified differences between GO terms.

3.10.3 Co-occurrence of functional classes in communities

In the previous section, we investigated the distribution of individual terms across

communities. Here we investigate the distribution of pairs of terms across communi-

ties. Calculating the co-occurrence of terms based on the distribution of proteins in

communities does not take into account the known tendencies of proteins of particular

functional types to interact with each other (as seen in Section 3.10.1). We hence find

the ratio of the fraction of interactions that connect proteins annotated with terms

s and t that are within communities, F{st}(λ), to the fraction of all interactions that

are within communities, F{all}:

Wst(λ) =
F{st}(λ)

F{all}(λ)
. (3.9)

Figure 3.17 shows the values of Wst for both networks at log(λ) = 0.5 and log(λ) =

1.5. It is evident from these figures that, even after taking into account the pairwise

tendencies of different classes of protein to interact, the co-occurrence of terms within

communities is not homogeneous, particularly for the A network. Comparing Figures

3.17 and 3.15, one sees that the protein types that tend to interact also tend to

have these interactions inside communities. Some particularly strong connections

are evident at log(λ) = 1.5: for example, ‘mitochondrion organization’ (term 8) and

‘membrane organization’ (term 12) in the A network; ‘cell wall organization’ (term

10) and ‘heterocycle metabolic process’ (term 20) in the P network; and ‘heterocycle

metabolic process’ (term 20) and ‘cofactor metabolic process’ (term 21) in the P

network. The first and third of these are not surprising, though the second one
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is not obvious. This serves to highlight the relevance of community structure: it

recapitulates much of what we might expect, but can also bring to our attention

patterns that would not otherwise be obvious.

3.10.4 Functionally homogeneous communities and functional

classes

One might expect proteins involved in particular processes to show different propen-

sities to lie in functionally homogeneous communities. We investigate what fraction

of each type of protein lie in communities judged functionally homogeneous under the

GO measure G through changing resolution parameter. We pick out a few examples

for the A network in Figure 3.18. As these examples show, the propensity for proteins

of a particular functional type to be in communities judged functionally homogeneous

differs substantially (contrast ‘chromosome organisation’ and ‘cellular lipid metabolic

process’). Additionally, there are some indications that the resolutions of most in-

terest can depend on the type of protein under investigation. Proteins annotated

with ‘RNA metabolic process’ (term 13) are more likely to be found in functionally

homogeneous communities at log(λ) = 0.8, where the mean size of communities is

30. In contrast, proteins involved in vesicle-mediated transport (term 14) are found

in greater numbers in functionally homogeneous communities at log(λ) = 1.7, where

the mean size of communities is 10.

3.11 Conclusions

If protein interaction networks are to aid understanding of how biological function

emerges from the concerted action of many proteins, then it is crucial to explore

connections between network structure and biological function.

We find that community structure does indeed help identify sets of proteins that
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Figure 3.17: The fraction of interactions connecting proteins of different
types found within communities, Wst, in a) the A network and b) the P
network, at i) log(λ) = 0.5 and ii) log(λ) = 1.5. Interactions between proteins
of the same functional type are the most likely to be found within communities,
though there are exceptions (large off diagonal values). More heterogeneity of W is
present at log(λ) = 1.5 than at log(λ) = 0.5. There are several notable differences
between the A network and the P network. For example, at log(λ) = 1.5 interactions
between proteins annotated to ‘heterocycle metabolic process’ (term 20) and ‘cofactor
metabolic process’ (term 21) are very likely to be in the same community in the P
network, but not in the A network.
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Figure 3.18: Fraction f of proteins of particular types in functionally ho-
mogeneous communities in the A network With changing resolution parameter
proteins of particular types have consistent differences as to how often they are found
in functionally homogeneous communities. For example, proteins involved in ‘chromo-
some organisation’ are far more likely to be in functionally homogeneous communities
than proteins annotated with ‘cellular lipid metabolic process’. There are also some
features that suggest resolutions that may be of particular interest for a given process.
For example, log(λ) = 1.7 (for which the mean size of communities is 10) for proteins
involved in ‘vesicular mediated transport’ and log(λ) = 0.8 (where the mean size of
communities is 30) for proteins annotated with ‘RNA metabolic processes’.

105



act together, and that this connection between network structure and biological func-

tion depends on what network scales are probed. We do not expect there to be

any single scale of interest in this middle-scale structure of the protein interaction

network; although previous studies had applied community detection algorithms to

protein interaction networks, no study had investigated this structure at multiple

resolutions. We find that 4652 of 4980 proteins in the A network and 5647 of 5669

proteins in the P network are in functionally homogeneous communities at some value

of the resolution parameter, as judged under a similarity measure based on GO anno-

tations. The number of proteins in functionally homogeneous communities peaks at

about λ = 3 for the A network (where the mean size of communities is 73, compared

to the standard ‘modularity’ resolution of λ = 1, at which the communities have a

mean size of 293). For the P network the peak is less pronounced, with the actual

maximum occurring at λ = 7 (i.e. log(λ) = 0.86).

Having a good measure of functional homogeneity is central for our analysis. We

approach this issue by using four different characterisations of functional similarity:

two based on the GO and one on the MIPS structured vocabularies, and one based on

the growth rates of gene knock-out strains under different chemical conditions [129]

(an independent and objective characterization of biological function). The prevalent

method in the literature for assessing functional homogeneity of a group of proteins

is inappropriate for communities, as the number of interacting pairs in a group must

be taken into consideration. By defining similarity at the pairwise level, we have

developed a fair test of functional homogeneity through a comparison of interacting

pairs. We also capture the aggregate functional similarity of two proteins, overcoming

the need to assess functional homogeneity on a term by term basis (although this is,

of course, also possible once communities of particular interest have been identified).

Our tests of functional homogeneity – which are not statistical tests in the conven-

tional sense because of our desire to exclude the effects of sample size – using the
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four measures of similarity show a high level of agreement with each other, giving us

confidence in our chosen measures of functional similarity.

As the functional knowledge of proteins is far from complete (even for well-

characterised organisms such as yeast), we also search for topological properties of

communities that are correlated with functional homogeneity. Through a charac-

terization of the communities using 26 topological properties, we identify the mean

clustering coefficient of a community as a good predictor of functional homogeneity,

with a true positive rate of 70% achievable with a false positive rate of only 30% for

the A network using the GO similarity measure G.

We have illustrated the utility of our framework for biologists who are interested

in a particular protein. In a chosen interaction network, one can determine the

community membership of the protein of interest at multiple resolutions. Even if

there is a dearth of functional information, the easily-calculated mean local clustering

coefficient can suggest resolutions of particular interest.

An investigation of the distribution of proteins of different functional types through

communities uncovered some striking differences. As communities are broken up at in-

creasing resolution-parameter values, some functional types of proteins become more

concentrated within communities, whereas the distribution for others becomes more

homogeneous with increasing resolution-parameter values. This is the first hint of

the importance of different resolution parameters for proteins of different functional

types. We also found that some functional types are never concentrated within a

few communities but are instead always spread fairly evenly throughout communi-

ties. We find that interactions connecting proteins of the same functional type (for

some but not all functions) are very likely to be found within communities, and that

this tendency becomes more pronounced at higher resolutions. We also investigated

whether proteins of some functional types are more likely to be found in functionally

homogeneous communities than others, and found this was indeed the case.
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Throughout this study, we have investigated two separate yeast protein interaction

networks: that based on associations (the A network; mostly TAP-type data), and

that based on physical associations (the P network; mostly yeast-two-hybrid data).

We find that the two networks have similar properties with respect to their commu-

nity structure, despite their very different global topological properties. Rather than

regarding the yeast-two-hybrid data as of an inferior quality [303], we start from the

basis that it is of a fundamentally different type and should thus be treated sepa-

rately. We find similar percentages of functionally homogeneous communities in both

networks.

In conclusion, we have linked the community structure of two yeast protein inter-

action networks with biological function by probing different scales of network struc-

ture. The identified communities are candidates for biological modules within the

cell. We have illustrated how this connection can be used to select groups of proteins

that likely participate in similar biological functions. Through tracing the community

membership of some example proteins and investigating protein functional classes, we

have highlighted that there are different scales of interest in the community structure

of PINs, and that the scale (or scales) of primary interest depend on which proteins

or processes one is interested in.
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Chapter 4

What evidence is there for the

homology of protein-protein

interactions?

4.1 Introduction

In Section 1.4.5.1 interologs were introduced. They are pairs of interacting proteins:

A interacting with B in one species and A′ interacting with B′ in another, where

A′ is an ortholog of A and B′ is an ortholog of B (see Figure 1.3). In this chapter

we ask, how much evidence is there for interologs? We do so by investigating the

evidence for the homology of binary protein-protein interactions using data from six

species: baker’s yeast S. cerevisiae (SC), nematode worm C. elegans (CE), fruitfly

D. melanogaster (DM), human H. sapiens (HS), fission yeast S. pombe (SP) and

mouse M. musculus (MM). The first four species we investigate because there exists

considerable data for them, the last two because these species are evolutionarily close

to S. cerevisiae and H. sapiens respectively, and thus represent an interesting point

of comparison.
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We first calculate observed conservation rates for interactions across species and

discuss the effects of potential bias in the interaction data.

We then attempt to address the sources of error that could cause the observed

conversation rates to be underestimates. We decouple the effects of interaction com-

pleteness from the conservation of interactions through evolution and thereby arrive

at estimates for both. Using the assumptions of our model and definitions of homol-

ogy frequently employed for transferring functional annotations, we show that the

fraction of interactions that are conserved is low even when interactome errors are

taken into account. If strict definitions of homology are employed, the number of

conserved interactions across species is low. We emphasise that our estimates of the

fraction of conserved interactions do not consider the biases in the interaction data

and are hence probably overestimates.

Using our estimates for the fraction of interactions conserved across species we

produce estimates for the rate at which interactions are lost through evolution – the

first, to our knowledge, based on large-scale data sets and comparing species that

are well separated on the tree of life – finding rates of about 0.001 per million years

between the most sequence-similar proteins.

As we find that it is only at less stringent sequence similarities that significant

numbers of interactions can be inferred correctly, but that at these similarities the

fraction of correct inferences is low, we investigate several protein properties to see if

they can select those inferences that are likely to be correct. We investigate properties

that should be available in the absence of all information about the proteins save their

sequences. Although we do not find any properties that suggest reasons for the low

observed conservation rates, we do demonstrate that some of the properties can help

select conserved interactions, particularly if used in combination with one another.

Finally, we revisit the finding reported by Mika and Rost [216] that within-species

interactions are more conserved than across-species interactions. This finding was

110



inconsistent with the established belief that orthologs tend to maintain the same

function whereas paralogs tend to evolve new functions (see e.g. [316] and [229]

for a recent discussion of this). By carefully controlling for factors that advantage

within-species interaction prediction, we argue that within-species interactions are

less reliable than across-species ones.

Functional annotations are often transferred using definitions that are not partic-

ularly strict (e.g. [89, 112, 288]). We argue that the low success of interaction transfer

at comparable levels of sequence similarity cannot be explained solely by interactome

errors. Unless a very stringent definition of ortholog is employed, the rate of evolu-

tionary change of interactions is too high to allow transfer across species that are well

separated on the tree of life. At such stringent definitions, the number of conserved

interactions is low. The common practice of transferring interactions on the basis of

homology between such distant species [41, 42, 77, 102, 137, 138, 150, 177, 185, 255,

346, 356] must be treated with caution.

4.2 Data sets and data processing

4.2.1 Protein-protein interaction data

There are two primary types of protein-protein interactions; see Section 1.2.3: (1)

direct protein-protein interaction data (2) evidence that proteins participate in the

same complex. These different types of interaction have a different nature; for exam-

ple, they are predisposed to be identified between different protein functional classes

[334]. Because the ratios of direct protein-protein interactions to within-complex in-

teractions differ substantially by species (within-complex data is concentrated within

S. cerevisiae [100, 101, 131, 170]), we investigate only direct protein-protein interac-

tions.

Several publicly available databases gather interaction data from multiple sources

111



Table 4.1: Protein-protein interaction data for the six species investigated.
Low-throughput interactions are those interactions that have supporting evidence
in publications that report fewer than one hundred interactions. The S. cerevisiae
network is more complete than those of the other species: a much higher fraction of S.
cerevisiae proteins have protein-protein interaction data, and each protein is involved
in more interactions. The approximate number of proteins only considers one protein
isoform per gene (we report the number of unique STRING identifiers [147]).

SC CE DM HS MM SP
# interactions 44266 7275 20334 45695 2911 1155
Fraction of low-throughput interactions 0.15 0.15 0.08 0.61 0.75 0.90
# proteins in interactome 5782 3988 6514 9597 2101 793
Mean # of interactions for proteins in interactome 7.6558 1.8242 3.1216 4.7614 1.3855 1.4565
# proteins (approximate) 6490 19522 13520 20763 21427 4806
Mean # of interactions for all proteins 6.8206 0.3727 1.504 2.2008 0.1359 0.2403

[15, 49, 147, 159, 161, 194, 285, 306]. We assembled our interaction lists from

four of the largest databases: BioGRID (www.thebiogrid.org [306]; downloaded

in June 2010), IntAct (www.ebi.ac.uk/intact [159]; downloaded in June 2010),

MINT (mint.bio.uniroma2.it/mint [49]; downloaded in June 2010), and HPRD

(hprd.org [161]; downloaded in July 2010). We use a locus-based approach; in other

words, we consider only one protein isoform per gene and achieve this by mapping all

protein identifiers to the identifiers used in STRING [147].

From these databases we select only direct protein-protein interaction data, thereby

excluding all indirect association data, such as from tandem affinity purification ex-

periments. We used interactions with ‘physical association’ evidence type from the In-

tAct database; ‘biophysical’ or ‘protein complementation’ assay type from the MINT

database; ‘reconstituted complex’, ‘PCA’, ‘Co-crystal structure’ or ‘yeast-two-hybrid’

from the BioGRID database; and all interactions from the HPRD, as it only contains

binary interaction data.

We amalgamate the interaction data from these sources. Table 4.1 gives the data

set sizes for the species that we investigate. This data combines results from low-

throughput and high-throughput studies. We give an indication of the relative contri-

butions of low- and high-throughput studies by calculating the fraction of interactions

that are reported by a study that observed fewer than one hundred interactions. As
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indicated in Table 4.1, there are many more interactions per protein reported for S.

cerevisiae than for any other species, and the interaction data for S. pombe and M.

musculus are particularly sparse. Comparing the sizes of the interactomes of these

data sets to the estimates of the total sizes of the interactomes surveyed in Section

1.2.5 (see Table 1.1), it is clear that the S. cerevisiae interactome might not be far

from complete, whereas the coverage of the other interactomes is low.

4.2.2 Homology data

Detecting homologs is an unsolved problem [321], so one must adopt some opera-

tional definition. Sequence similarity lies at the heart of judging whether sequences

are homologous [36], though more advanced techniques incorporate additional infor-

mation such as phylogenetic-tree analysis and gene-tree/species-tree reconciliation

[280, 321, 333]. A conservative operational definition has the advantage that false-

positive homologs will be minimised, but the disadvantage that many true homologs

will be missed. In the context of inferring functional annotations from a source species

to a target species, a conservative definition of homology will lead to low numbers of

predictions. We consider three different operational definitions of homology: blastp

[5] reciprocal hits; blastp reciprocal best hits; and EnsemblCompara GeneTrees [333].

The most common tool used to identify potentially homologous protein sequences

on large scales is blastp [5]. Use of this method enables one to connect the success

of interolog prediction with the blast E-value, which is the most common diagnostic

used to measure sequence similarity. The E-value (Eval) gives a measure of how

often one would expect to observe a particular hit by chance when a query sequence

is compared to a database of potential hit sequences.

We downloaded amino acid sequences for the proteins of the species considered

from the NCBI (ftp://ftp.ncbi.nih.gov/refseq/release). We ran blastp using

default parameters (except for setting the maximum number of hits retrieved to be
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1000000 and the E-value cut-off to be 10−6). Note that the default settings include a

filter for low-complexity regions. This is important for large-scale analysis, as other-

wise the hits found for proteins with large amounts of low-complexity sequence will not

be comparable to those without (in smaller-scale analysis the outputs of blastp can

be checked individually for the effects of low-complexity sequence). For each query,

we selected the hit with the lowest E-value and only kept pairs that were found as

‘query-hit’ and as ‘hit-query’ (‘reciprocal hits’). These homology relationships are

thus many-to-many. In Table 4.2 we give the numbers of reciprocal hits found at two

different similarity cut-offs, Eval ≤ 10−10 and the more stringent Eval ≤ 10−70. In

Figure 4.1 we illustrate for the reciprocal-hit homologs for the example species pair D.

melanogaster and H. sapiens some of the relationships between percentage sequence

identity (the percentage of residues in the aligned region of the query-hit pair that

are identical), alignment coverage (the minimum of the fraction of the query covered

by the alignment and the fraction of the hit covered by the alignment), the product

of the lengths of the proteins, and the E-value. The E-value is designed to control

for the length of proteins (as, in general, it is easier for longer proteins to match other

proteins). However, a small residual correlation may remain between Eval(A, A′) and

the product of the lengths of A and A′. In our data this does not appear to be an

issue (see Figure 4.1 F). We tested for a linear relationship for the D. melanogaster –

H. sapiens matches, and found a correlation of −0.03 (Pearson’s coefficient). We did

not test for a non-linear relationship.

Rather than choosing a particular sequence-similarity cut-off, we investigate the

success of interolog inferences at different E-value thresholds. At each E-value thresh-

old we consider all sequence similar pairs with an E-value at or below that threshold

as homologs. We also consider using minimum percentage sequence identity values

as an operational definition of homology.

An alternative approach to defining homologs and then making inferences is to de-
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Table 4.2: Reciprocal-hits homology relationships at two different E-value
thresholds.

Number of homology relationships, Eval ≤ 10−10

target species SC CE DM HS MM SP
source species SC 9752 15427 20373 34988 31443 16327

CE 15427 103265 47023 78067 70543 17919
DM 20373 47023 51434 149693 134237 22749
HS 34988 78067 149693 217629 557652 41976
MM 31443 70543 134237 557652 495248 40304
SP 16327 17919 22749 41976 40304 6577

Number of proteins involved in homology relationships, Eval ≤ 10−10

source species SC 2446 2062 2428 2547 2435 3561
CE 2516 9233 5374 5441 5309 3055
DM 3362 5658 6366 7138 6914 4007
HS 4428 7728 9435 10229 12671 5811
MM 4211 7320 8913 13264 10756 5616
SP 3260 2191 2619 2837 2815 1903

Number of homology relationships, Eval ≤ 10−70

source species SC 3349 1085 1448 1961 1795 2515
CE 1085 8669 3294 4320 3924 1252
DM 1448 3294 3702 7546 6714 1721
HS 1961 4320 7546 32581 77188 2553
MM 1795 3924 6714 77188 62405 2434
SP 2515 1252 1721 2553 2434 791

Number of proteins involved in homology relationships, Eval ≤ 10−70

source species SC 1202 473 687 741 683 1479
CE 525 4284 1527 1585 1484 669
DM 757 1610 2350 2904 2720 977
HS 988 2116 3903 5882 10143 1376
MM 912 1893 3467 10536 6196 1321
SP 1359 586 820 922 911 763
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Figure 4.1: For the reciprocal-hits matches found between D. melanogaster

and H. sapiens, relationships between some sequence-similarity proper-
ties. All subplots except (D) give two dimensional histograms for the number of
matches (see colourbar) found at different values of two properties: (A) E-value and
percentage sequence identity (pid), (B) alignment coverage and percentage sequence
identity, (C) product of the lengths of the query and hit proteins and percentage
sequence identity, (E) alignment coverage and E-value, and (F) product of query and
hit lengths and E-value. Subplot (D) is a histogram of the number of matches at
different E-values.
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Table 4.3: Number of reciprocal-best-hits homology relationships. As this
is a one-to-one orthology definition, the number of homology relationships and the
number of proteins involved in homology relationships are the same.

target species SC CE DM HS MM SP
source species SC - 1230 1626 1749 1746 2666

CE 1230 - 2761 2886 2875 1477
DM 1626 2761 - 4347 4332 2037
HS 1749 2886 4347 - 12579 2225
MM 1746 2875 4332 12579 - 2205
SP 2666 1477 2037 2225 2205 -

fine a joint sequence-similarity measure. This has been investigated in the literature:

the results are very similar to those achieved when first defining homologs [216, 359].

For completeness, we also report results for using the product of E-values as a joint

sequence-similarity measure.

In addition to studying reciprocal-hit matches, we also consider only reciprocal

best hits. Two sequences are considered each others’ reciprocal best hits if the first is

the best hit when the second is queried against the database and the second is the best

hit when the first is queried against the database. The reciprocal-best-hit criterion

gives one-to-one query-hit matches. We also require that both hit-query and query-hit

E-values must be 10−10 or lower. We give the numbers of reciprocal-best-hit matches

in Table 4.3, and give a histogram of the E-values for these homologs in Figure 4.2.

The reciprocal-best-hits method suffers from being dependent on the precise database

used for the queries. There is also no guarantee that the closest-sequence homolog is

the closest functional homolog.

We additionally consider homologs as defined by EnsemblCompara GeneTrees

[333]. This method is based on the inference of multiple potential gene tree topologies;

it penalises those topologies which are inconsistent with known species relationships.

We report the numbers of orthologs defined by EnsemblCompara GeneTrees [333] in

Table 4.4. (EnsemblCompara GeneTrees does not include S. pombe). We also use the

manually-curated orthologs between S. pombe and S. cerevisiae that are reported in
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Figure 4.2: Histogram of the E-values for reciprocal-best-hit homologs.
There are an anomalously large number of very sequence similar reciprocal-best-hit
homologs between H. sapiens and M. musculus. This is because of all the species
pairs considered these are by the far the most closely related (they diverged about
90 million years ago, compared to 760 million years ago for the next most recently
diverged pair, S. cerevisiae and S. pombe). They also have large genomes compared
to the other species (see Table 4.1).

Ref. [352]. There are 4966 homology relationships reported between 3875 S. cerevisiae

proteins and 3657 S. pombe proteins.

4.3 Interactions conserved across species

4.3.1 The evidence

From an interaction A − B in the source species, we infer all interactions A′ − B′ in

the target species, where A′ is a sequence homolog of A and B′ is a sequence homolog

of B (see Figure 1.3). We consider all six species as source species but exclude M.

musculus and S. pombe as target species because of the sparsity of data in these

organisms. (We do, however, consider them as target species for H. sapiens and

S. cerevisiae, respectively.) For the reciprocal-hits data, we investigate the effect of

the E-value as an operational definition of homology (meaning that both Eval(A, A′)

and Eval(B, B′) must be below a similarity threshold). Each interaction in the target
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Table 4.4: Homology relationships as defined by EnsemblCompara Gene-
Trees [333].

Number of homology relationships
target species SC CE DM HS MM
source species SC - 5276 5109 6170 4943

CE 5276 - 13334 12656 10210
DM 5109 13334 - 12465 10196
HS 6170 12656 12465 - 16227
MM 4943 10210 10196 16227 -

Number of proteins involved in homology relationships
source species SC - 2315 2346 2456 2363

CE 3589 - 5623 5645 5501
DM 3514 5945 - 6189 5903
HS 4119 7577 7822 - 12461
MM 3812 7006 7252 12807 -

species can conceivably be predicted more than once, but we consider only one in-

ference to it. Hence, when we report the number of transferred interactions that are

correct, we always give the number of unique interactions that are predicted correctly.

We compute the number of inferred interactions that are correct by counting how

many of them are found in the interaction set of the target species (see Figure 4.3

A). The fraction of correct inferences observed, denoted Os,t, is the number of correct

inferences divided by the total number of inferences (see Figure 4.3 B). As can be seen

in Figure 4.3 A, large numbers of correct inferences are only made at relatively lax E-

values (to the right side of the figure). However, as would be expected and is shown in

Figure 4.3 B, only a small fraction of the inferences are correct at these lax E-value

cut-offs. Appendix D contains variants of Figure 4.3. Figure D.1 shows the same

figure as Figure 4.3 with the axes scaled differently for each target species. Figure

D.2 shows the results for using a threshold of percentage sequence identity. Figure

D.3 shows the results for using the geometric mean of E-values as a joint similarity

measure (see Section 1.4.5.1). It is similar to Figure 4.3, as is to be expected from

previous results in this literature [216, 359].

It is important to compare the success of inferring interactions using homology
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Figure 4.3: Large numbers of correct inferences are only observed when
the fraction of correct inferences is very low. We show the results of inferring
interactions from S. cerevisiae (SC), C. elegans, D. melanogaster (DM), H. sapiens
(HS), S, Pombe (SP), and M. musculus (MM) to the first four of those species. (A)
Number of correct interolog inferences across species, for different blastp E-value
cut-offs. (B) Fraction of all inferences that are observed in the interactions of the
target species, Os,t. (C) The Bayes Factor L. This indicates how much better it is to
use the inferences than to select random pairs of proteins in the target species that
have homologs in the source species interactome. (A) and (B) together indicate that
it is only at lax E-values that one makes significant numbers of correct inferences, but
this is a very small fraction of the total number of inferences made at these E-values.
The S. cerevisiae data-set coverage is significantly higher than that of other species,
so one obtains larger values for inferences to S. cerevisiae.
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relative to that achieved with random guesses – i.e. how often randomly chosen

pairs of proteins will actually interact. One must define what class of inferences are

‘random’: we first consider a random inference as one between any two proteins in the

target species, given that they both have homologs in the source species interactome.

Following the work of Jansen et al [146] and Yu et al [359], we consider the

Bayes Factor L for an interolog inference (from interacting proteins A and B to an

interaction between their homologs A′ and B′) to be a true prediction. Note that

in Jansen et al. [146] and Yu et al. [359] the term ‘likelihood ratio’ is used instead

of Bayes Factor. The Bayes Factor, which is a function of the source species and

target species interaction data (ints and intt), relates the odds of finding a conserved

interaction (a positive) before and after knowing the interaction data:

L(ints, intt) =
Dposterior

Dprior

,

where Dposterior, which denotes the odds of finding a positive (i.e. the ratio of the

probability of finding a positive to that of finding a negative) after we have inferred

interactions, is given by

Dposterior =
P (pos|ints, intt)

P (neg|ints, intt)
=

P (pos|ints, intt)

1 − P (pos|ints, intt)
.

The quantity P (pos|ints, intt) is the probability of finding a positive after we have

considered the interaction data ints and intt. This quantity is estimated by the

observed fraction of correct inferences Os,t. The quantity Dprior, the prior odds of

finding a positive in the target species given that there exist homologs of both proteins

in the source species interactome, is given by

Dprior =
P (pos)

P (neg)
=

P (pos)

1 − P (pos)
,
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where P (pos) estimates the number of correct inferences among all possible inferences

before we consider the interaction data (but assuming that we know which proteins

are in the source species interactome). The number of possible inferences is equal

to every pair of proteins in the target species, each of which have a homolog in the

source species interactome. If there are n proteins in the target species with homologs

in the source species interactome, then this is (n2 +n)/2 (including self-interactions).

Predictions are more likely to be true for higher values of the Bayes Factor L. A

Bayes Factor of L = 1 designates that prediction is no better than guessing that there

is an interaction between any pair of proteins in the target species, provided both of

them have homologs in the source species interactome.

Figure 4.3 C gives the Bayes Factor L, a measure of the performance of trans-

ferred interactions to be correct compared to random. The Bayes Factor indiciates

a performance of only a few times better than random at lax E-values, and it is not

much larger even at very strict E-values (and very few correct predictions are made

at such strict E-values). The Bayes Factor is generally higher for inferences across

species that diverged more recently. For example, inferences between S. cerevisiae

and other species have a low Bayes Factor; inferences from S. pombe to S. cerevisiae

have a higher Bayes Factor.

An alternative comparison to random inference is possible by rewiring the inter-

actions in the source species while fixing the number of interactions for each protein.

By keeping constant the number of times each protein appears in the interaction list,

we ensure that differences we identify are due to the interactions themselves rather

than to the properties of the proteins. We perform this rewiring of the source species

interactions ten times for each species pair. This comparison controls for biases in

protein appearance in the source species interaction list. (Such biases could either

result from the data-gathering process or reflect the underlying biology.) We give the

ratio of the number of correct inferences from the actual source species interactions
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Table 4.5: Across species: How does inferring interactions from the source
species interactome compare to inferring interactions from randomised
versions of the source species interactome? We give the ratio of the fraction of
correct inferences Os,t from the real interaction data compared to randomly rewired
data for the reciprocal-hits homologs. (The number of interactions in which each
protein participates is preserved in the randomization.) The numbers in parentheses
give the standard deviations over 10 rewirings.

Eval ≤ 10−10

target species SC CE DM HS
source species SC - 2.3 (0.17) 2.1 (0.091) 1.9 (0.092)

CE 2.3 (0.18) - 2.2 (0.16) 1.6 (0.13)
DM 2.3 (0.10) 2.1 (0.076) - 1.9 (0.047)
HS 2.4 (0.068) 2.1 (0.047) 2.0 (0.072) -
MM 2.3 (0.25) 1.8 (0.18) 1.7 (0.44) 2.0 (0.37)
SP 2.5 (0.21) 1.7 (0.22) 1.7 (0.19) 1.5 (0.092)

Eval ≤ 10−70

source species SC - 8.9 (1.4) 4.3 (1.6) 5.8 (0.90)
CE 9.1 (3.4) - 18 (19) 13 (9.5)
DM 9.9 (4.6) 16 (11) - 9.4 (3.0)
HS 5.0 (0.73) 7.3 (2.0) 6.2 (1.1) -
MM 6.4 (5.8) 11 (6.4) 11 (3.4) 6.5 (2.2)
SP 26 (32) 12 (5.9) 15 (12) 8.0 (1.7)

to the mean of several random sets of interactions for each species pair in Table 4.5.

A comparison between Figure 4.3 C and Table 4.5 illustrates that considering the

different propensities for proteins to appear in the source species accounts for some

of the success of transferring interactions on the basis of homology.

Although there are no standard E-value thresholds that are used to define ho-

mology, we draw attention to two thresholds that often appear in the literature. A

threshold of 10−10 is considered a fairly strict criterion for sequence similarity (it is

used by the functional annotation tool Blast2GO for their ‘strict’ annotation style

[112]) and has been used in this literature [204, 214]. At this threshold, although

hundreds or thousands of interolog inferences are correct, the fraction of correct in-

ferences is three percent or less (see Figure 4.3 A and B). This small fraction is a

result of the very large total numbers of predictions (between tens of thousands and
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two million, depending on species pair). An E-value threshold of 10−70 is considered

strict, and has also been used in the literature [214, 359]. At this E-value cut-off,

there are a few hundred correct inferences at most (depending on species pair) and

at most 30% correct inferences.

Interactions in the target species can be inferred more than once. We give his-

tograms of the number of inferences to each interaction at E-value thresholds of 10−10

and 10−70 in Figure 4.4.

We show the results for the EnsemblCompara GeneTrees homologs in Table 4.6

and those for reciprocal-best-hit homologs in Table 4.7. The number of correct pre-

dictions from S. cerevisiae to S. pombe using the manually curated set of orthologs

is 373, the fraction correct is 0.0091 and the Bayes Factor is 70.7. The corresponding

numbers for S. pombe as source and S. cerevisiae as target species are 387, 0.3446,

and 49.6. The results for all these homology definitions are similar to those for the

reciprocal-hits data at stringent E-value thresholds. The reciprocal-best-hits defini-

tion of homology is the most strict of the definitions considered, which is reflected in

the smaller number of correct inferences and the larger fraction of correct inferences.

The fraction of correct inferences clearly depends on the coverage of the target

species interactome – note the much higher fraction of correct inferences to S. cere-

visiae in Figure 4.3 B and in Tables 4.6 and 4.7. This is expected, and below we

investigate how the fraction of correct inferences is altered when we take the coverage

of the target species interaction data set into account.

Inferences with M. musculus and S. pombe as source species achieve higher frac-

tions of correct inferences than the inferences from other species. We hypothesise

that this is due to biases in the interactomes that are particularly evident for these

species. A very large proportion of interactions in the S. pombe and M. musculus data

sets come from low-throughput studies (see Table 4.1). There is a high correlation

between the number of publications in which a protein is mentioned and the number
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Figure 4.4: The number of inferences made to each inferred target species
interaction at (A) Eval ≤ 10−10 and (B) Eval ≤ 10−70.
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Table 4.6: Across species inferences using the EnsemblCompara GeneTrees
data. These results show the same quantities as for Figure 4.3 and Table 4.5.

Number of correct inferences
target species SC CE DM HS
source species SC - 197 349 1601

CE 203 - 146 421
DM 338 137 - 841
HS 1197 265 528 -
MM 112 55 89 532

Fraction of correct inferences Os,t

source species SC - 0.004 0.008 0.025
CE 0.166 - 0.031 0.047
DM 0.101 0.013 - 0.042
HS 0.153 0.013 0.025 -
MM 0.280 0.042 0.060 0.283

Bayes Factor L
source species SC - 28.9 18.8 31.6

CE 25.8 - 43.8 42.3
DM 19.5 66.8 - 53.2
HS 30.7 55.3 50.7 -
MM 33.0 62.9 48.2 114

Comparison to rewired source species interactions
source species SC - 19 (11) 13 (2.3) 15 (1.5)

CE 12 (2.4) - 27 (10) 24 (16)
DM 11 (2.4) 32 (18) - 18 (1.6)
HS 12 (1.4) 14 (3) 13 (0.93) -
MM 18 (7.9) 31 (21) 20 (11) 36 (11)
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Table 4.7: Across species inferences using the reciprocal-best-hits data.
These results show the same quantities as for Figure 4.3 and Table 4.5.

Number of correct inferences
target species SC CE DM HS
source species SC - 106 166 668

CE 106 - 106 166
DM 166 106 - 290
HS 668 166 290 -
MM 59 26 37 606
SP 222 20 26 133

Fraction of correct inferences Os,t

source species SC - 0.014 0.020 0.073
CE 0.275 - 0.076 0.103
DM 0.214 0.033 - 0.066
HS 0.335 0.031 0.044 -
MM 0.488 0.080 0.091 0.281
SP 0.440 0.062 0.071 0.299

Bayes Factor L
source species SC - 51.3 39.8 69.0

CE 41.6 - 78.8 66.5
DM 42.4 113 - 69.6
HS 76.1 107.6 77.5 -
MM 55.9 72.7 67.2 107
SP 62.0 50.8 45.3 73.5

Comparison to rewired source species interactions
source species SC - 38 (29) 23 (6.0) 26 (8.8)

CE 18 (6.4) - 26 (10) 25 (11)
DM 26 (7.8) 55 (37) - 28 (9.5)
HS 20 (3.4) 24 (8.4) 23 (6.7) -
MM 16 (6.8) 21 (0.36) 30 (0.62) 34 (16)
SP 21 (4.7) 11 (6.6) 18 (6.9) 41 (33)
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of interactions reported for that protein in literature-curated data (R2 ≈ 0.59) [287].

This reflects the fact that low-throughput experiments are hypothesis-driven – i.e.

particular interactions are tested for if they are of interest to researchers. If hypothe-

ses are formulated in part on what is known about homologous proteins, then one

should expect a bias in which homologous interactions are more likely to be reported.

This would lead to conservation rates appearing inflated compared to data sampled

independently in different species.

In Figure 4.5 and Tables 4.8 and 4.9, we demonstrate that, in the target species,

homologs of the source species are considerably more likely to interact than a ran-

domly chosen pair of proteins. This is particularly true for S. pombe and M. musculus.

This suggests that – especially for these two species – interactions are more likely to

be reported if there is a homologous interaction in another species. Evidence for

the homology of protein-protein interactions will be inflated because of this effect:

observed conservation rates depend both on the evolutionary conservation of inter-

actions and on the tendency for researchers to be more likely to look for homologous

interactions. Assessing the relative contributions of these two effects is hard, as they

manifest in the same way (i.e. in higher observed conservation rates of interactions).

Note that the Bayes Factors for inferences from S. pombe and M. musculus (Figure

4.3 C) are not large compared to the other species, as is the case with the observed

fraction of correct inferences (Figure 4.3 B). This is because the Bayes Factor controls

for some of this bias by comparing transferred interactions to random guesses between

proteins that have homologs in the source species interactome.

4.3.2 Errors in the interactome data

The bias in data-gathering discussed above leads to an overestimate in the fraction

of interactions conserved, though errors in the interactome data could lead to the

observed rates being underestimates. In particular, one expects the coverage of the
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Figure 4.5: Proteins in the target species that have homologs in the source
species interactome are q times more likely to interact than a pair cho-
sen uniformly at random from the target species interactome. This ratio
is the quantity P (pos) divided by the density of interactions in the target species
interactome. This indicates a bias such that proteins that have been investigated
for protein-protein interactions in one species are not independent of those that have
been investigated in another. This is particularly true for S. pombe (SP) and M.
musculus (MM).

Table 4.8: As for Figure 4.5, but for the EnsemblCompara GeneTrees data.
The density of interactions between proteins in the target species that have homologs
in the source species divided by the density of interactions in the target species
interactome.

target species SC CE DM HS
source species SC - 3.53 1.60 6.13

CE 7.06 - 3.02 8.78
DM 5.31 5.17 - 6.21
HS 5.39 6.26 2.04 -
MM 10.8 17.9 5.30 26.2

Table 4.9: As for Figure 4.5, but for the reciprocal-best-hits data. The density
of interactions between proteins in the target species that have homologs in the source
species divided by the density of interactions in the target species interactome.

target species SC CE DM HS
source species SC - 6.86 2.09 8.65

CE 8.34 - 4.18 13.2
DM 5.90 7.75 - 7.70
HS 6.07 7.65 2.40 -
MM 15.5 30.4 6.01 27.7
SP 11.5 33.1 6.82 43.8
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target species interactome to influence strongly the observed fraction of correct in-

ferences. Previous studies left such effects of interactome incompleteness as possible

explanations for the poor performance of interaction transfer on the basis of homology

[169, 204, 216, 359]. Here we investigate the magnitude of such effects by considering

several possible sources of error.

4.3.2.1 False positives

The effect of false positives in the source species leads to an underestimation of the

fraction of interactions that are conserved, as predictions from false-positive interac-

tions are less likely to be correct. As a simple check of the magnitude of this effect,

we simulated for the three species with the largest interactomes false-positive rates in

the source species in excess of 50% and found that the observed fractions of correct

inferences are not affected greatly by estimated false-positive rates (see Figure 4.6).

The effect of false positives in the target species is the opposite of that in the

source species: the fraction of interactions conserved will be overestimated, as some

predictions will be judged to be correct by matching to a false-positive interaction in

the target species.

We now show under reasonable assumptions that this overestimation is larger than

the underestimation (produced as discussed above by false positives in the source

species), provided that FPRs < FPRt/(1 − FPRt), where FPRs and FPRt are the

false-positive rates in the source and target species, respectively.

One can estimate the magnitude of underestimation from false positives in the

source species by assuming that false positives and true positives contribute in a

linear fashion to the aggregate fraction of correct inferences:

Os,t(data) = FPRs × Os,t(FPs) + (1 − FPRs) × Os,t(TPs) ,
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Figure 4.6: Even rewiring half of the source species interactions does not
have a large influence on the observed fraction of correct inferences Os,t. To
simulate the effect of false positives in the source species interactions, we randomly
rewire half of them (see Materials and Methods). We show results for the actual data
(solid curve) and the mean of 10 sets of rewired data (joined-up-dotted curve). The
rewiring process simulates a false-positive rate of (50 + h/2)%, where h is the false-
positive rate in the data. One can compare the observed fraction of correct inferences
for the actual and rewired data to obtain a rough indication of how much the fraction
deemed to be correct would differ if the false-positive rate were 0%. We found across
the full range of Eval thresholds that rewiring half of the data had little impact on
the fraction of inferences that were correct. Note that, as discussed in the main text,
although false positives in the source species lead to an underestimation of the fraction
of correct inferences, false positives in the target species lead to overestimation of the
fraction of correct inferences.
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where FPRs is the false-positive rate in the source species; and Os,t(data), Os,t(FPs),

and Os,t(TPs) are, respectively, the fraction of correct inferences observed for the

data, the fraction that would be observed with 100% false-positive source species

interactions, and the fraction that would be observed with 100% true-positive source

species interactions. The largest possible underestimation arises with Os,t(FPs) = 0.

The largest underestimation is thus

|Os,t(TPs) − Os,t(data)|
Os,t(TPs)

= 1 − (1 − FPRs) = FPRs .

Assuming that whether or not an interaction is a false positive and whether or

not it is predicted as an inferred interaction are independent assumptions, it follows

that the fraction of inferences that are falsely considered to be correct is simply the

false-positive rate of the target species interactions:

Os,t(TPt) = TPRt × Os,t(data) = (1 − FPRt) × Os,t(data) ,

where Os,t(TPt) is the fraction of correct inferences that would be observed if all of

the target species data were true positives, and TPRt and FPRt are the true- and

false-positive rates in the target species. The overestimation caused by false positives

in the target species is thus

|Os,t(TPt) − Os,t(data)|
Os,t(TPt)

=
|(1 − FPRt) − 1|

1 − FPRt

=
FPRt

1 − FPRt

.

Under these assumptions, and provided that FPRs < FPRt/(1 − FPRt), the

underestimation caused by false positives in the source species is always less than

the overestimation caused by the target species. False-positive rates in the different

species interaction sets are unlikely to be so different that this inequality fails to

hold, so we do not further consider the possibility that false positives can lead to an
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underestimation of the conservation of interactions.

4.3.2.2 Coverage of the source species interactions

We hypothesize that the fraction of inferred interactions observed to be correct Os,t

is independent of the coverage (which is defined as one minus the fraction of false

negatives) of the source species interactions. The reason is as follows: although more

correct inferences are observed with more interactions in the source species, more

incorrect inferences are also made. We tested whether such independence held by

sampling the source species interactions. We sub-sample from the interaction lists by

randomly selecting 25%, 50%, and 75% of the interactions. At each of these values,

we make ten random samplings. The results support our hypothesis; see Figure 4.7.

4.3.2.3 Coverage of the target species interactions

We hypothesised that the fraction of inferred interactions observed to be correct Os,t

is directly (i.e. linearly) proportional to the coverage of the target species interactions

ct. For example, if the interaction list of the target species is halved in size, then the

fraction of correct inferences should also halve. We tested this hypothesis by sampling

from the interaction list of the target species (in the same way as for the source-species

interactome) and report the mean coefficients of correlation R2 between Os,t and ct:

it is 0.98 for the reciprocal-hits definition, 0.99 for the EnsemblCompara GeneTrees

homologs, and 0.98 for the reciprocal-best-hits homologs. We give the full set of R2

values in Tables 4.10, 4.11 and 4.12. All associated p-values are less than 0.05.

The independence of the observed fraction of correct inferences on the source-

species interaction coverage and the linear dependence on the target-species interac-

tion coverage help motivate the following simple model for the estimated true rate of

conserved interactions:

Os,t = Es,tct , (4.1)
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Figure 4.7: The observed fractions of correct interologs Os,t are largely in-
dependent of interaction coverage in the source species. We sub-sample from
the source-species interactomes, and show mean values of Os,t for the actual data
(black curve) and when using only 75% (blue dash-dotted curve), 50% (green dashed
curve), and 25% (red curve) of the source species interactions. Also shown are the
mean ± one standard deviation for the 25% case (dashed red curves). In fact, the
values of Os,t actually seem, if anything, to be lower when more interactions are used.
Hence, low coverage of the interactions in the source species does not lead to an
underestimation of the fraction of correct interologs.
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Table 4.10: Results of tests carried out to examine the hypothesis that the
observed fraction of correct inferences Os,t is directly proportional to the
coverage of the target species interactions ct for the reciprocal-hits data.
As we did for the source-species interactome, we sub-sampled from the target-species
interactome 10 times by selecting a fraction f of the target species interactions. We
investigated f = 0.25, f = 0.5, and f = 0.75. For each of the 10 experiments, we
calculated the coefficient of correlation R2 between Os,t and ct at these three values
of f and also for f = 1 (i.e. the complete data set). Here we report the means
and standard deviations of the results of the 10 experiments. All the results have an
associated p-value of less than 0.05 across all E-value thresholds tested. We show the
results at two different E-value thresholds: 10−10 and 10−70.

Eval ≤ 10−10

target species SC CE DM HS
source species SC - 0.997 (0.0020) 0.9980 (0.0020) 0.9998 (0.0002)

CE 0.9976 (0.0030) - 0.9980 (0.0029) 0.9996 (0.0003)
DM 0.9989 (0.0012) 0.997 (0.0032) - 0.9998 (0.0001)
HS 0.9996 (0.0006) 0.9981 (0.0024) 0.9993 (0.0009) -
MM 0.9982 (0.0016) 0.9898 (0.0104) 0.9971 (0.0021) 0.9995 (0.0004)
SP 0.9987 (0.0009) 0.9814 (0.0149) 0.9959 (0.0034) 0.9993 (0.0007)

Eval ≤ 10−70

source species SC - 0.9865 (0.0098) 0.9757 (0.0227) 0.9963 (0.0039)
CE 0.9864 (0.0190) - 0.9845 (0.0143) 0.9966 (0.0042)
DM 0.9879 (0.0155) 0.9753 (0.0268) - 0.9986 (0.0015)
HS 0.9971 (0.0025) 0.9929 (0.0071) 0.9953 (0.0032) -
MM 0.9819 (0.0146) 0.9397 (0.0848) 0.9687 (0.0339) 0.9982 (0.0012)
SP 0.9900 (0.0083) 0.9265 (0.0716) 0.9627 (0.0283) 0.9930 (0.0066)

Table 4.11: As for Table 4.10, but for the EnsemblCompara GeneTrees data.
The means and standard deviations of the coefficient of correlation R2 between Os,t

and ct. All the results have an associated p-value of less than 0.05.
target species SC CE DM HS
source species SC - 0.9928 (0.0067) 0.9973 (0.0019) 0.9993 (0.0006)

CE 0.9939 (0.0048) - 0.9918 (0.0088) 0.9973 (0.0022)
DM 0.9966 (0.0034) 0.9896 (0.0115) - 0.9985 (0.0012)
HS 0.9990 (0.0014) 0.9951 (0.0037) 0.9978 (0.0026) -
MM 0.9867 (0.0099) 0.9804 (0.0221) 0.9831 (0.0173) 0.9985 (0.0018)

Table 4.12: As for Table 4.10, but for the reciprocal-best-hits data. The
means and standard deviations of the coefficient of correlation R2 between Os,t and
ct. All the results have an associated p-value of less than 0.05.

target species SC CE DM HS
source species SC - 0.9919 (0.0078) 0.9926 (0.0108) 0.9983 (0.0012)

CE 0.9871 (0.0097) - 0.9887 (0.0131) 0.9938 (0.0056)
DM 0.9942 (0.0063) 0.9901 (0.0080) - 0.9968 (0.0026)
HS 0.9977 (0.0015) 0.9934 (0.0035) 0.9959 (0.0033) -
MM 0.9838 (0.0157) 0.9339 (0.0662) 0.9611 (0.0338) 0.9982 (0.0014)
SP 0.9941 (0.0085) 0.9401 (0.0613) 0.9592 (0.491) 0.9916 (0.0095)
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where Os,t is the fraction of inferred interactions observed to be correct, Es,t is the

fraction of inferred interactions estimated to be correct (taking into account incom-

plete interactome coverage), and ct is the coverage of the target species interactome.

We emphasise that this simple model does not take into account the bias in data-

gathering processes discussed above. It thus gives estimates expected with biased

data; as discussed above, these will be overestimates compared to estimates on data

gathered at random. Due to the particularly strong bias associated with the two

smallest interactomes (S. pombe and M. musculus), we estimate Es,t values for these

species only with their most closely related species (see below). Focusing just on the

four species for which there is the most interaction data, there are twelve equations

(one for each pair of species, where order matters) of the form (4.1) for each definition

of homology. As there are more unknowns than equations – only the Os,t are known

– one cannot solve (4.1) without either making some assumptions or incorporating

independent estimates for values of Es,t or ct. We pursue the former strategy and

discuss the latter one.

We make two assumptions to calculate values of ct, which we then use to solve

for values of Es,t. First, we assume that the S. cerevisiae interactome is complete

(which is consistent with the literature; see Table 1.1). Altering this assumption

changes all our results by a constant multiple. Second, we assume that the fraction of

conserved interactions between a source species x and S. cerevisiae is the same as from

S. cerevisiae to species x; i.e. ESC,x = Ex,SC. This implies that cx = OSC,x/Ox,SC.

Making these assumptions allows one to decouple the Es,t values from the ct values

and hence to obtain estimates for both.

We give the estimated values of ct and the implied total interactome sizes in Table

4.13. These values lie within previous estimates (see Table 1.1). Our estimates of total

interactome size, like all others, make a series of assumptions and should therefore

be taken as complementary to existing estimates. We estimate the size of the C.
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Table 4.13: Estimated interactome coverages and interactome sizes. We
report the means and standard deviations for the reciprocal-hits data over all the
E-value thresholds that we investigate. These results assume that the S. cerevisiae
interactome is complete at 44266 interactions.

reciprocal hits EnsemblCompara GeneTrees reciprocal best hits
coverage interactome size coverage interactome size coverage interactome size

CE 0.0293 (0.0027) 256000 (24000) 0.024 310531 0.050 150742
DM 0.0707 (0.0214) 349000 (96000) 0.074 308787 0.095 240160
HS 0.1874 (0.0372) 158000 (35000) 0.162 174858 0.217 130204

elegans and D. melanogaster interactomes to be larger than that of H. sapiens. This

is surprising, as the numbers of proteins in the former two organisms are smaller

(see Table 4.1). Homologs of S. cerevisiae proteins are considerably more likely than

random to interact in H. sapiens (see Figure 4.5), which is probably due to the high

proportion of interactions in H. sapiens that come from low-throughput studies (see

Table 4.1). This would cause OSC,HS estimates to be higher than expected, and

hence, via the equation cHS = OSC,HS/OHS,SC, this would cause the cHS estimates to

be higher than one might expect. The same effect occurs for C. elegans, though to a

lesser extent (see Figure 4.5).

We show estimated fractions of interactions conserved in Figure 4.8 and Tables

4.14 and 4.15. As one should expect the estimated fraction of correct inferences is

lower between S. cerevisiae and the other three species. The estimates are highest for

the most stringent definition of homology (reciprocal best hits; see Table 4.15). The

extent to which strictness in definition of orthology is important for the transferability

of interactions is evident from Figure 4.8: using reciprocal hits at E-values of 10−10

and below gives success rates of a few percent, even when interactome incompleteness

is taken into account.

One could also solve the set of equations (4.1) by using independent estimates

of the coverage of the interactomes ct. Larger estimates of ct than ours would give

smaller estimates of Es,t. The estimated fraction of conserved interactions remains

low unless one assumes very small coverages of the target species interactome; this
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Figure 4.8: Fraction of interactions estimated to be conserved through evo-
lution Es,t, which we calculate by taking interactome coverage into account.
One should expect the lower conservation rates between S. cerevisiae (SC) and the
other species, given the known evolutionary relationships between these species. We
estimate the conservation rates at E-values often associated with the transfer of func-
tional annotations (E-values of about 10−10 and below) to be a few percent.

Table 4.14: Estimated fractions of correct inferences Es,t using the Ensem-
blCompara GeneTrees data.

Estimated fraction of correct inferences
target species SC CE DM HS
source species SC - 0.166 0.101 0.153

CE 0.166 - 0.433 0.288
DM 0.101 0.555 - 0.257
HS 0.153 0.556 0.341 -

Table 4.15: Estimated fractions of correct inferences Es,t using the
reciprocal-best-hits data.

Estimated fraction of correct inferences
target species SC CE DM HS
source species SC - 0.275 0.214 0.335

CE 0.274 - 0.800 0.475
DM 0.214 0.670 - 0.303
HS 0.335 0.631 0.467 -
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would imply very large total interactome sizes. For example, a 50% success rate for

transferring interactions between S. cerevisiae and H. sapiens at an E-value cut-off

of 10−70 would imply an interactome size of over half a million interactions for S.

cerevisiae and nearly three million interactions for H. sapiens.

We now consider the extent of conservation between S. cerevisiae and S. pombe.

Making the same assumptions as above, ESC,SP = ESP,SC = OSP,SC, the curve shown

in dashed-dotted pink in the left-most panel of Figure 4.3 B. We estimate ESC,SP and

ESP,SC to be 0.4396 using the reciprocal-best-hits homology definition and 0.3446 for

the manually-annotated ortholog data set. The estimated fractions of interactions

conserved across S. pombe and S. cerevisiae, whose last common ancestor existed

about 760 million years ago [223], are similar to those between D. melanogaster, H.

sapiens, and C. elegans. D. melanogaster and H. sapiens shared a common ancestor

about 830 million years ago [223], and C. elegans shared a common ancestor with

these two about 960 million years ago [223].

Of all the species pairs one would expect the estimated fraction of correct infer-

ences to be highest between H. sapiens and M. musculus, as these species shared a

common ancestor about 90 million years ago [223]. We report estimates for EHS,MM

and EMM,HS in Figure 4.9. At an E-value threshold of 10−10, we estimate EHS,MM to

be 3.5% and EMM,HS to be 2.1%. The estimated fraction correct rises above 1 at the

most stringent reciprocal hits E-values (this should clearly not be possible!), and is

well above 1 for the reciprocal-best-hits data (EHS,MM ≈ 1.45 and EMM,HS ≈ 1.29)

and the EnsemblCompara GeneTrees data (EHS,MM ≈ 1.75 and EMM,HS ≈ 2.70).

This could be because our estimates of the coverage of the two species interactomes

are too low (which is equivalent to our estimates of the interactome sizes being too

high). However, it is far more likely that the estimates of EHS,MM and EMM,HS are

too high because of the aforementioned biases in the data-gathering processes. Our

model assumes that interactions are sampled independently in different species; how-
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Figure 4.9: The estimated fraction of correct inferences between M. mus-

culus (MM) and H. sapiens (HS). This fraction should clearly not be higher
than 1. This feature is likely due to the biases in the data-gathering processes, see
text.

ever, if an interaction is known in one species, then researchers might be prompted

to search for it in another. This is likely to be particularly true between H. sapiens

and M. musculus.

Our estimates can be compared to the results of studies that experimentally tested

for the presence of interologs, which we review from Section 1.4.5.1. Matthews et al

[204] tested predictions of inferring from S. cerevisiae to C. elegans using an or-

thology definition that was many-to-one (each S. cerevisiae protein was considered

an ortholog of at most one C. elegans protein, but C. elegans proteins could have

more than one S. cerevisiae ortholog). They found that between 16% and 31% of

the inferences were correct (c.f. our estimates for the same species pair: 28% us-

ing reciprocal-best-hits data and 17% using the EnsemblCompara GeneTrees data).

Using one-to-one ortholog matching, a conservation rate of between 34% and 64%

was reported between H. sapiens and M. musculus transcription factor-transcription

factor interactions [267]. A recent study comparing two yeasts, S. cerevisiae and

Kluyveromyces waltii, which diverged about 150 million years ago, used one-to-one
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orthology relationships and found that 43 of 43 tested interactions were conserved

[262].

4.3.3 Probability per million years that a duplicated inter-

action is lost

The results described above can be used to estimate the rate of loss of protein-protein

interactions using a simple model. Assume that an interaction that existed in the last

common ancestor of the source and target species has a probability p per unit time of

being lost in either of the two species. For low p, the probability that we observe an

interaction between A′ and B′ in the target species, given that we have observed an

interaction between A and B in the source species, is approximately (1 − p)T , where

T is the number of units of time since the species diverged. There are many ways to

estimate T , and we use the mean time and range of times given in Ref. [223].

We seek to show how p varies with the extent of sequence homology. We report

results for the EnsemblCompara GeneTrees data, the reciprocal-best-hits data, and

the reciprocal-hits data in windows of similarity as judged by E-value. (i.e. a <

Eval ≤ b for different a and b). We solve the equation Es,t = (1 − p)T to obtain p.

Our calculations suggest that when the divergence time of species is taken into

account, the probability per million years of an interaction being lost appears to

be fairly independent of species pair (see Figure 4.10; the indicated errors represent

ranges in the estimates of T ). At the strictest definition of homology that we consider,

we find that the rate of change of protein interactions through evolution is about

10 × 10−10 interactions lost per year. One can compare this estimate to the only

other estimate we could find in the literature, which gives an estimated rate of (2.6±

1.6) × 10−10 [262]. That study, which is based on a small number of experimentally

tested interactions and does not investigate the role of sequence similarity, explicitly

excludes the impact of gene duplication, so one would expect a lower rate of protein
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Figure 4.10: Estimates of the probability p that a duplicated interaction
is lost per million years. If the proteins in two species remain highly similar in
sequence, then the probability that both species retain the interaction is higher – i.e.
one finds lower values of p at smaller E-values and using the reciprocal-best-hits and
EnsemblCompara GeneTrees homology relationships. The divergence time between
species is needed to calculate p; we use the estimate and range (shown in triangles)
of times given in Ref. [223].

interaction change.

The step from considering the success of inferring interactions across species to

inferring the rate at which interactions are lost through evolution is a large one that

entails numerous assumptions and abstractions, in addition to those used to estimate

values of Es,t. First, we suppose that the abstraction to a typical duplicated interac-

tion is a sensible one – i.e. that it makes sense to estimate the rate at which any given

duplicated interaction is lost. There are various heterogeneities in protein-protein in-

teractions that might make this questionable. For example, genes that are duplicated

might lose interactions faster than genes that are not duplicated. One response is to

restrict the enquiry and seek the probability that interactions between non-duplicated

genes are lost [262]. Second, we have modelled the loss of interactions as independent

of each other, though whether a given interaction is lost will presumably depend on
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its location in the protein-protein interaction network. Indeed, we present evidence

in the next section that some structural network properties can be relevant to the

success of interolog inference (also see [135]). Third, we have not taken into account

the role of interaction gain through evolution. Fourth, we assume that the homologs

we use are in fact true paralogs or orthologs. Our estimates should be considered in

light of these caveats. However, given the simplicity of our model, it is encouraging

that our estimates for the rate at which interactions are lost is in broad agreement

with that of Qian et al [262].

In contrast to the rate of protein sequence evolution, the rate of protein func-

tion evolution remains almost unknown [262]. Protein-protein interactions provide a

window through which to view this question. Although the rate at which protein-

protein interactions are lost within species has been studied [25, 336], the loss rate

across species has not received much attention. Consequently, our estimates should

be taken as initial ones, and we believe that they are the first ones that are based on

large data sets.

4.3.4 Can one select the conserved interactions?

Given the low number of interactions transferable at stringent definitions of homology

and the low success rate of transfer of interactions at less stringent definitions, we

were motivated to investigate whether there are any properties that can select which

inferences are likely to be correct among those made at less stringent definitions of

homology (i.e. the reciprocal-hits data). Studies that use transferred interactions in

building predicted sets of interactions sometimes also incorporate additional protein

properties [137, 150, 255, 356]. Our intention is to investigate the extent to which

certain biological properties can explain the lack of interaction conservation at less

stringent definitions of homology, rather than to seek an algorithm that accurately

predicts protein interactions across species. For this investigation, we focus on the
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three species for which there exists the most data – S. cerevisiae, D. melanogaster,

and H. sapiens – in the hope that the results for these data sets will be influenced

less by noise than the smaller data sets.

We are considering the transfer of interactions between interacting proteins A and

B in a source species to proteins A′ and B′ in a target species, where A and A′ are

homologs and B and B′ are homologs. For any given inferred interaction in the target

species, there can be multiple possible interactions in the source species from which it

could have been inferred. In order to consider properties of the proteins in the source

species, it is necessary to state which of these multiple possible interactions is consid-

ered to underlie a given inferred interaction A′ − B′ in the target species. We select,

as the ‘closest’ inference, the one that would be made using the strictest definition of

homology (i.e. the one with the minimum value of max{Eval(A, A′), Eval(B, B′)}).

The first property that we investigated was the size of the family to which a

protein belongs. If only one or a few interactions between proteins from one family

and proteins from another family is needed for the maintenance of biological function,

then one might expect that an inference from or to proteins with many homologs in

the other species would be less conserved. We tested how inferences to and from

proteins in large protein families affected our results by discarding all predictions

in which any of proteins A, B, A′, and B′ had more than 10 homologs in the other

species. This definition of size of family is clearly dependent on the E-value threshold,

as a protein’s family size becomes smaller at stricter E-values. Our intention was to

get an idea of the magnitude of the effect of large families, so we chose one definition

of a large protein family (i.e. those of size at least 10). We find that at lax E-values

the fraction correct is improved although the number of correct inferences is vastly

reduced (see Figure 4.11).

We also investigate the effects of several other properties, which roughly can be

divided into three classes: properties of the four proteins A, A′, B and B′ (e.g. the age
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Figure 4.11: Effects of disallowing inferences from and to large protein fam-
ilies. This figure is the same as for Figure 4.3 A and B (also see Figure D.1 for the
same figure with different scale axes), except that we only make inferences if each of
the four proteins A, B, A′, and B′ has ten or fewer homologs in the other species.
One could argue that the low fraction of correct inferences reported in Figure 4.3 B
was due in part to allowing inferences from and to large protein families. However,
comparing panel B of this figure to Figure 4.3 B illustrates that although the fraction
deemed to be correct is somewhat higher at lax E-value cut-offs, this comes only
at the great expense of a significant decrease in the number of correct predictions
(compare panel A of this figure to Figure 4.3 A). At more strict E-values, the results
are unchanged. In other words, imposing a limit on the sizes of the families has a
similar effect to imposing a stricter homology cut-off.
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of the proteins and the number of domains that make up the proteins); properties of

how the interaction A−B is embedded in the source species interaction network (e.g.

how many interactions the proteins have); properties of the homology relationships

between A and A′ and between B and B′ (e.g. the similarity of the lengths of proteins

A and A′).

In inferring A′−B′ from A−B, we assess the relevance of the following properties

(this list is by no means exhaustive):

• The product of the number of homologs of A in the target species and the

number of homologs of B in the target species (where homologs are defined as

above).

• The product of the number of homologs of A′ in the source species and the

number of homologs of B′ in the source species.

• The total number of inferences to the interaction A′ − B′.

• The difference in the ages of A and B. We use two proxies for protein age: the

lineage specificity of superfamilies (age) [349] (data kindly provided by Sanne

Abeln), which is based on the estimated age of the structure of the protein;

‘Excess retention’ (ER) [282], which counts the number of species in which

a protein has orthologs. (We use the Inparanoid database to define orthologs

[238]). We were prompted to investigate the difference in the ages of interacting

proteins by Refs. [165, 263].

• The difference in the ages of A′ and B′.

• The sum of the ages of A and B.

• The sum of the ages of A′ and B′.

• The product of the number of domains of A and the number of domains of B.

We defined domains via SCOP (Structural Classification of Proteins [227]).
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• The product of the number of domains of A′ and the number of domains of B′.

• The geodesic edge betweenness centrality of the interaction between A and B

[235]. Roughly, this centrality is given by the number of shortest paths between

pairs of proteins that pass through the interaction in question.

• The number of triangles in which A−B participates as a fraction of the triangles

in which it could participate. This quantity, called the ‘matching index’ in Ref.

[11], gives a measure of local clustering.

• The product of the number of interacting partners of A with the number of

interacting partners of B divided by the total number of interactions.

• min{Eval(A, A′)Eval(B, B′)}

• Eval(A, A′)Eval(B, B′)

• pid(A, A′) + pid(B, B′)

• pid(A, A′)pid(B, B′)

• g(A, A′) + g(B, B′)

• ac(A, A′) + ac(B, B′)

• ls(A, A′) + ls(B, B′),

where pid is the percentage sequence-similarity, g is the number of gaps in the se-

quence alignment, the alignment coverage ac is the minimum of the fraction of the

query covered by the alignment and the fraction of the hit covered by the alignment,

and the length similarity ls is the length of the shorter sequence divided by that of

the longer sequence.

To assess the utility of a property we first build a logistic regression model [134]

and then assess the performance of that model using the AUC measure (see Section
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2.3). The logistic regression model is used to predict the probability p of an occurrence

of an event (in our case, the conservation of an interaction):

p =
1

1 + e−(β0+β1x1+···+βkxk)
, (4.2)

where the set of β values are the regression coefficients. We used five-fold cross-

validation and MATLAB’s glmfit function to estimate the regression coefficients.

When using the AUC measure, if the number of positive instances and negative

instances is very dissimilar, samples from the larger set equal to the size of the smaller

set should be used (see discussion in Section 2.3). For each property we tested we

selected one hundred random sets of non-conserved interactions equal in size to the

size of the set of conserved interactions. We report the means and standard deviations

over these randomised samples in Figure 4.12. None of the properties achieves a high

AUC.

We also assess the performance of a model built using multiple properties. For

this, we selected the case of inferences from H. sapiens to S. cerevisiae as we expect

the actual conserved interactions to be well approximated by the observed conserved

interactions with S. cerevisiae as the target species (see Section 4.3.2.3) and taking

H. sapiens as source species gives the largest number of inferred interactions. We

started with a model that used only the property that achieves the highest AUC,

and then added in the property that, when used in conjunction with this property,

achieved the highest AUC out of all of the properties tested. We repeatedly added

properties in this way until the improvement in the AUC was less than 0.001. The

results are shown in Table 4.16. We also indicates whether the regression coefficient

for the property is negative or positive. A negative regression coefficient indicates

that selecting instances with lower values of the property leads to a higher proportion

of conserved interactions. The opposite is true for positive coefficients.
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Table 4.16: Order in which properties are included in a model for predicting
interactions from H. sapiens to S. cerevisiae.

Property AUC Sign of regression coefficient

1 Edge betweeness centrality 0.68 negative

2 Maximum E-value 0.7046 negative

3 Matching index 0.7278 positive

4 Sum of ages target species 0.7444 negative

5 ER difference source species 0.7542 negative

6 Age difference target species 0.7618 negative

7 Sum of alignment length 0.7687 positive

8 Product of sequence identities 0.7745 positive

9 Product of size of families target species 0.7788 negative

10 Product of number of domains target species 0.7812 positive

11 Sum of ER source species 0.7833 negative

12 ER difference target species 0.7847 negative

13 Sum of ER target species 0.7875 negative

14 Number of inferences to target interaction 0.7879 positive

15 Number of inferences from source interaction 0.7895 negative

Note that building a model using the maximum E-value and assessing its per-

formance via the AUC measure is equivalent to varying the E-value threshold used

to define homologs. This property is the second to be included in the model. The

first and third properties are both measures of the local network environment of the

interaction in the source species. This indicates the potential importance of net-

work structure in the conservation of interactions, an issue we discuss in Section 5.3.

Note that, after the inclusion of the maximum E-value, no further sequence-similarity

properties are included. We show ROC curves for models built using the top three

properties and the top ten properties in Figure 4.13 (for comparison we also show the

ROC curve for using the maximum E-value).

Logistic regression models the log odds of an occurrence of an event as a linear

function of the predictor variables. Ideally a linear relationship should exist between

variables considered and the log odds, and transformations of the predictor variables

can be considered to this end. This would be a way to improve the method described

above. Additionally, combinations of variables could be considered as additional pre-
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Figure 4.12: Informativeness of properties for finding conserved interactions,
as measured via the AUC. We investigate the helpfulness of certain properties for
selecting the correct inferences. In general, the sequence-similarity properties (shown
in the top plot) are more helpful than the others (shown in the bottom plot).
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Figure 4.13: ROC curves for predicting conserved interactions using three
models of increasing complexity. The false positive rate (FPR) versus the true
positive rate (TPR) for models built using (a) the predictor maximum E-value (blue
curve), (b) the first three properties given in Table 4.16 (dashed green curve), and
(c) the first ten properties given in Table 4.16 (red dot-dashed curve).
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dictor variables, though one must be careful not to overfit the model to the data

when including additional variables. The standard form of logistic regression em-

ployed here assumes that the observations are independent of each other. The utility

of some of the PIN properties in our model suggests that in this case the observations

are not independent of each other. More sophisticated modelling frameworks that

included some of the dependencies in both the source-species PIN and the predicted

target-species PIN could offer further improvements.

4.4 Interactions conserved within species

We now examine the evidence for the homology of protein-protein interactions within

a species. Our principal aim is to compare this evidence to that for across-species

inferences.

Two possibilities exist when investigating the homology of interactions within a

species. Interactions A − B and A′ − B′ are homologous; we refer to these as both-

different conserved interactions. Additionally, interactions A − B and A − B′ are

homologous; we refer to such interactions as one-same conserved interactions. See

Figure 1.3.

Evidence of conserved interactions across species comes from interologs. What is

the equivalent of an interolog if one is investigating the conservation of interactions

within a species? In particular, are one-same inferences to count as interologs ? If so,

there are considerably more within-species interologs than across-species interologs,

as demonstrated below. However, one could consider allowing correct one-same infer-

ences to count as interologs to be unfair in making a comparison to the across-species

case. One might instead argue that both-different inferences are a suitable comparison

to across-species inferences.

In an influential study, Mika and Rost [216] presented evidence that interactions
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are more conserved within species than across species. They excluded all one-same

inferences on the basis that including them made the comparison to across-species in-

ferences unfair. In comparing the success of both-different within-species transferred

interactions to across-species transferred interactions, they found that interactions

were more conserved within than across species. They considered this result surpris-

ing, as it runs against what is commonly believed about the similarity in function

of different types of homologs (orthologs and paralogs): for a gene duplicate (a par-

alog) to be retained in the genome, it quickly tends to cease functioning identically

to its parent gene and hence must diverge in function; however, a gene pair that

results from a speciation event (orthologs) normally maintains the ancestral protein’s

functions and is hence subject to higher functional conservation [193]. This general

expectation that paralogs must always change function in order to be maintained has

recently been questioned by Kondrashov and Koonin [168] who argued that some

genes are retained simply because their protein products are needed in greater quan-

tity in the cell (the ‘gene dosage’ hypothesis; see also Ref. [167]). The evidence

supporting this hypothesis has been questioned by Qian and Zhang [261] who argued

that the evidence instead supports the ‘dosage balance’ effect [17], whereby a duplica-

tion of a single member of a protein complex is deleterious. The extent of maintenance

of ancestral gene function by orthologs is also under debate [104, 193, 229].

Although we agree that a direct comparison of across-species transferred interac-

tions to one-same transferred interactions does not represent a fair comparison, we

argue that Mika and Rost can be considered to have over-counted the number of

both-different transferred interactions. Interactions can be inferred multiple times

and some inferences can be from considerably more sequence-similar proteins. As we

did in Section 4.3.4 we define the ‘closest’ inference as the one that would be made

at the most stringent E-value cut-off. For example, consider the case in which the

interaction A − B is predicted both from the interaction A − B′ and the interaction
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Table 4.17: Within species: Ratio of correct inferences using the real data
compared to randomly rewired interactions. The one-same inferences perform
better than the both-different inferences. The values in this table should be compared
to those in Table 4.5. A comparison with Figure 4.14 C illustrates that the choice of
how to measure the improvement over random can have large effects on the results.

Eval ≤ 10−10 Eval ≤ 10−70

One-same Both-different One-same Both-different
SC 4.6 (0.48) 1.5 (0.26) 7.9 (0.99) 2.4 (0.71)
CE 3.3 (0.26) 1.5 (0.25) 8.2 (0.61) 7.4 (0.54)
DM 3.5 (0.38) 1.1 (0.14) 11 (2.2) 2.4 (2.0)
HS 4.9 (0.33) 1.1 (0.14) 10 (0.95) 2.8 (0.53)

A′′−B′′. If one of the two homology relationships [A, A′′] and [B, B′′] is more distant

than [B, B′], then the first inference is closer than the second.

We observed in practice that for a great many interaction pairs A−B and A′′−B′′,

there was a closer interaction A−B′. By parsimony, we treat the interaction A−B′

as underlying the observed conservation.

For every inferred interaction, we classify the inference to it as either one-same

or both-different, depending on which type of inference would be made at the most

stringent definition of homology.

We conduct an investigation similar to the across-species case for both types of

within-species inference. See Figure 4.14 and Table 4.17; additionally we provide a

version of Figure 4.14 using percentage sequence identity instead of E-value (Figure

D.4) and for joint sequence-similarity measure (Figure D.5). The number of cor-

rect one-same interactions is large in comparison with both across-species and both-

different interactions. Indeed, one-same interactions represent a sizeable fraction of

the aggregate interaction lists (compare Figure 4.14 A and Table 4.1). However, a

comparison to Figure 4.3 shows that the observed fraction of correct one-same infer-

ences is comparable to and sometimes lower than that for across-species inferences

(depending on the species pair).

To make a fair comparison to the across-species case, we compare to both-different
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Figure 4.14: Inferences within a species: ‘one-same’ inferences (left) domi-
nate ‘both-different’ inferences (right). For inferences within S. cerevisiae (SC),
C. elegans (CE), D. melanogaster (DM), and H. sapiens (HS), one-same inferences
dominate for (A) the number of correct inferences, (B) the fraction of inferences ob-
served to be correct Os,t, and (C) the Bayes Factor L. We consider a given inferred
interaction to be inferred from the ‘closest’ interaction (see the main text for a defi-
nition and discussion). The very large Bayes Factors for C. elegans, particularly for
the one-same case, are due to small-number effects.
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Table 4.18: Fraction of observed correct inferences Os,t at blastp E-value cut-
offs of 10−10 and 10−70 for across-species and both-different within-species
transferred interactions. This table compares values also shown in Figure 4.3 B
and Figure 4.14 B. If investigating only the ‘closest’ homologous inference (see text),
one can see by comparing the diagonal to off-diagonal entries that when considered
this way within species inferences are neither more accurate nor result in more correct
inferences than across-species inferences.

Fraction of correct inferences, Eval ≤ 10−10

target species SC CE DM HS
source species SC 0.0055 0.0006 0.0018 0.0041

CE 0.0207 0.0002 0.0029 0.0041
DM 0.0157 0.0007 0.0006 0.0024
HS 0.0175 0.0006 0.0017 0.0009

Fraction of correct inferences, Eval ≤ 10−70

source species SC 0.0128 0.0054 0.0066 0.0221
CE 0.2201 0.0046 0.0258 0.0464
DM 0.1285 0.0113 0.0013 0.0373
HS 0.1092 0.0076 0.0138 0.0079

interactions. We show the values at two different E-value thresholds in Table 4.18.

As we have shown, if one is not considering one-same inferences, then taking into

account that one-same inferences may provide better evidence for conserved interac-

tions suggests that protein-protein interactions are no more conserved within species

than they are across species. This conclusion is opposite to that of Ref. [216], and it

arises from our observation that one-same inferences underlie much of the observed

conservation of interactions within a species.

4.5 Conclusions

Using six species, a mixture of low-throughput and high-throughput binary protein-

protein interaction data and three different sets of homology definitions, we have in-

vestigated the conservation of interactions across and within species. Several factors

mean that observed conservation rates do not reflect true evolutionary conservation

rates. We argue that the data is biased, such that observed conservation rates will
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be inflated due to preferential investigation of homologous interactions. We develop

a framework that takes interaction incompleteness into account – in contrast to pre-

vious studies, which have side-stepped the question of interactome errors. Using this

framework, we are able to estimate interactome sizes with a method that is different

from others in the literature.

Our estimates for the fraction of conserved interactions, which will be too high

due to the bias in the data, are very low for definitions of homology that are often

associated with the transfer of functional annotations across species.

We used our results on the conservation of interactions to estimate the rate at

which protein-protein interactions are lost through evolution, though we stress the

caveats involved with such an estimate.

Given that inferred interactions are not accurate unless stringent definitions of

homology are used but that few interactions are transferable when such definitions

are in place, we considered the possibility that certain types of inference were sub-

stantially less likely to yield conserved interactions. For example, we considered it

possible that inferences from proteins in large protein families were substantially less

accurate. Despite investigating a range of properties that might influence the con-

servation of interactions, we found no properties that, when taken into account, gave

much improvement in conservation rates.

A previous study that compared the conservation of interactions within and across

species found that interactions within a species are more conserved than those across

species [216]. In contrast, we have shown that if ‘one-same’ inferences are taken into

account and considered as potentially more parsimonious explanations for conserva-

tion, then one obtains the opposite conclusion. Moreover, our result is in line with

the general expectation that orthologs retain more functional similarity than paralogs,

and we thereby contribute to a current debate on whether this is a valid expectation

[229]. These results could be developed through an investigation of the conservation
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of interactions of paralogs with different evolutionary histories. S. cerevisiae under-

went a whole-genome duplication event [198] and comparison of its genome to that

of other yeasts that diverged prior to this event (e.g. Zygosaccharomyces rouxii) has

revealed the presence of ancient paralogous gene families as well as novel, lineage

specific ones [61]. It would also be possible to compare duplicates that were retained

after the whole-genome duplication to those in which one of the copies was lost.

The present study concentrates on the success of interolog inferences, which is

the basis for a large number of widely-used methods to predict interactions [41, 42,

77, 102, 137, 138, 150, 177, 185, 255, 346, 356]. We urge caution in interpreting

interactions transferred across species unless the definition of homology employed is

a strict one, and we believe that interactome incompleteness is not solely responsible

for the lack of observed conservation of interactions.
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Chapter 5

Conclusions and future directions

5.1 Communities

Systems biologists stress that it is one thing to enumerate parts of a cell – genes and

their products – and another thing entirely to understand how these act together to

bring about biological function. A network perspective holds promise for bridging

these gaps in our understanding. However, establishing connections between net-

work structure and biological function has proven difficult, with many initial findings

subject to debate (see Chapter 1).

The community structure of protein-protein interactions is of considerable interest

because there is a strong a priori hypothesis about its relevance: communities are

hypothesised to be good candidates for functional modules. As functional modules

are themselves believed to be present at multiple different scales within biological sys-

tems, it makes sense to probe the community structure of protein-protein interaction

networks (PINs) at multiple scales.

The literature that applies community detection algorithms to PINs is consider-

able, but the biological relevance of this community structure has been probed insuffi-

ciently: previous work overwhelmingly relies on one measure of functional enrichment
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that is insufficient to test the hypothesis that communities are good candidates for

functional modules. The results presented in Chapter 3 represent an attempt at mak-

ing a robust connection between PIN community structure and biological function.

Our study represents the first systematic attempt to investigate community structure

in PINs at multiple scales. We design new tests of the functional homogeneity of

detected communities, finding that many communities are indeed good candidates

for functional modules and that almost every protein is found within a function-

ally homogeneous community at some scale. We demonstrate how the community

membership of an individual protein of interest can be traced. Finally, we show that

different functional types of proteins are organised in different ways – for example, the

scales at which different types of proteins are most concentrated within communities

can vary dramatically.

There are several directions this work can be taken in. A recently introduced

method detects communities in multiple networks simultaneously [226], through in-

corporating edges between the same node in different networks. The different net-

works, called different ‘slices’, could be networks involving different types of relation-

ship between the same objects, views of the network at different resolutions/scales,

or the network as it existed at different points in time. Other data types could be

incorporated using this method: for example, data on gene co-expression, genetic in-

teractions, correlated-phenotypes, and functional similarity could each be represented

as a ‘slice’.

It is always possible to incorporate new data sources, but I feel that in order for the

relevance of community structure to truly be tested, it is important to demonstrate

its utility for particular cases, whether this be for biological processes or for individual

proteins. This would perhaps be best facilitated by a mechanism (e.g. a website) that

allowed querying of particular proteins or GO terms. Another tack could be to use

some of the results concerning the heterogeneous behaviour of the different protein
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functional classes to develop more sophisticated protein function prediction methods.

5.2 Homology

Existing protein-protein interaction data is concentrated within a few model organ-

isms, and the coverage of this data for all species save S. Cerevisiae remains limited.

This situation is by no means restricted to protein-protein interactions: in general,

knowledge about particular biological processes is gleaned from the study of one or a

few model organisms. It is widely assumed that knowledge gained in one species can

be transferred to another species, even among species that are widely separated on

the tree of life.

In Chapter 4, we investigated the validity of this transfer of knowledge for the

case of protein-protein interactions. This common procedure is known to have short-

comings, which are generally ascribed to the incompleteness of protein interaction

data. We show, however, that the procedure is unreliable even when the incomplete-

ness of the data is taken into account. Our results imply that, unless very stringent

definitions of homology are in place, interactions rewire at a rate too fast to allow

reliable transfer between species that are well separated on the tree of life. We thus

urge caution in interpreting the results of such transfers.

Transfer of interactions can also be performed within a species. We find that,

when controlling for factors that favour within-species interaction transfer, this type

of interaction transfer is even less reliable than that between species. Our result,

though counter to previous studies, agrees with the general belief that duplicated

proteins in the same species tend to diverge to be maintained, whereas the same

protein in different species tends to stay the same in order to preserve ancestral

functionality.

We can use our estimates of the reliability of interaction transfer to model the
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speed at which interactions are lost in evolution. These estimates are preliminary

ones and can be improved upon in many ways, as suggested in Section 4.3.3.

We find that properties of proteins, such as their age, the number of domains

that constitute them, and the size of the protein family to which they belong, are

not very helpful for identifying which interactions are more likely to be conserved

across species. This could be a limitation of the simple modelling framework that we

employed. Our observations in Chapter 3 concerning the heterogeneity of behaviour

of proteins of different types suggest that investigating mixture models (where sub-

populations are represented differently) could be a promising line of enquiry. Different

sub-populations that could be modelled include classifications by protein structure

(e.g. using the classes from the Structural classification of protein folds, SCOP [6])

and GO slim classes.

5.3 Communities and homology of protein-protein

interactions

The main finding from Chapter 4, the low rates of conservation of protein-protein

interactions, has three primary potential explanations:

• Protein-protein interactions are not very constrained evolutionarily. This could

be because they are not adaptive in the first place [84].

• Protein-protein interactions are a large source of phenotypic diversity. Small se-

quence changes can lead to large changes in phenotype via interaction rewiring.

That is, in the case of protein-protein interactions, sequence is not very infor-

mative about function.

• Protein-protein interactions are not conserved at the level of individual inter-

actions but rather at a ‘fuzzier’ level. This would suggest the hypothesis that
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interactions are not that conserved because of rewiring internal to communities

rather than between.

This third possibility could be investigated by looking not for patterns of precise

wiring but for communities of evolutionary conserved interactions. There are several

questions that a combination of approaches from Chapters 3 and 4 suggest:

1. What evidence is there for the homology of protein-protein interaction commu-

nities across species?

2. Where are the successful interolog inferences in a network? Do they tend to be

within communities, or between communities? Are they randomly distributed

throughout the communities, or are they concentrated in particular commu-

nities? If they are concentrated in particular communities, which functional

categories dominate in these?

3. Are communities in inferred interaction networks comparable to the communi-

ties based on real data in terms of their constituent proteins? Although indi-

vidual inferences may be bad (see Chapter 4), perhaps taken in the aggregate

they are better.

4. How do communities inferred in an individual species compare to communities

inferred in all species simultaneously? The simultaneous detection of commu-

nities in multiple species could be achieved using the multi-slice community

detection method discussed above [226]: the PIN of each species would be a

‘slice’, and either homology or functional similarity relationships could link the

proteins in each slice. The success of the technique could also be benchmarked

against local network alignment tools (see Section 1.4.5.2).

These research questions connect closely to the debate about whether functional

modules are also evolutionary modules. There seem to be at least two main senses
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in which they could be. Wagner [337] made the case that neutral mutations (i.e.

mutations with no phenotypic effect) can be hidden – possibly inside modules – until

a changing environment yields a phenotypic effect. Recently, Navlakha and Kingsford

[228] suggested that new edges indeed tend to form within existing complexes. This

could enable overall ‘fuzzy’ homology of interaction patterns without conservation of

individual interactions, as discussed above. In another sense of a functional module

being an evolutionary module, nature could settle on functioning modules, and then

link them up in different ways, much as engineers do with components. Recently,

Zinman et al. [364] reported that interactions within modules are more conserved

than interactions between modules. The study [299] mentioned in Section 1.5 reported

little evidence for the functional cohesiveness of evolutionary modules, but this can

be contrasted with examples such as that of signalling pathways that can be co-opted

in different developmental contexts. As Pereira-Leal et al. [254] pointed out this

indicates that a functional module can be re-used in different contexts. The results

in the literature appear difficult to reconcile, but it seems that modules may well

play a crucial role in the accommodation of evolutionary robustness and evolutionary

flexibility [125], though whether and how this is the case is still very much open to

debate.

Distinguishing between these different theories, or proposing new ones based on

the results of a carefully designed comparative analysis, could go a long way toward

increasing understanding of the evolution and organisation of biological parts into the

whole.

164



Appendix A

Methods for predicting protein

interactions

This Appendix is in large part reproduced from a paper published jointly with Ra-

mazan Saeed and Charlotte Deane [182].

An increasing amount of protein interaction data is available, but it is error-

prone and focuses on a few model organisms (see Section 1.2). Predicting protein

interactions is thus a key challenge.

Protein interactions can be predicted computationally by employing various sources

of information – including protein features, evolutionary knowledge, and network in-

formation. In this Appendix, I explain the ideas behind many of the most popular

interaction prediction methods. Rather than giving algorithmic details, the evolu-

tionary ideas behind the methods are highlighted. Figure A.1 illustrates some of the

methods I will discuss.

The main category of prediction methods not covered here are ones based on

machine-learning approaches. Two reviews of protein interaction prediction that

include these approaches are given in Shoemaker and Panchenko [295] and Pitre

et al. [257].
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Figure A.1: Different interaction prediction methods.

A.1 Assessing prediction methods

Most commonly, interaction prediction methods are judged by using the reference

methodology in which an overlap between a true-positive gold standard set and a
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true-negative gold standard set is employed in a receiver operating characteristic

(ROC) analysis (see Section 2.3 and [83, 150, 249]). The larger the area under the

ROC curve for a binary classifier, the better that classifier is. As discussed in Section

2.3, ROC curves are unsuitable when the size of the two sets are very different.

A common way of obtaining true positive gold-standard sets is to select interac-

tions observed in multiple assays [14] or manually curated datasets [115, 269]. How-

ever, such sets do not exist for all species due to low experimental coverage, and they

can lead to bias in results [26, 283].

A.2 Network-based methods

An early example of using the topology of a network to assess the quality of interac-

tions was proposed by Saito et al. [284], who suggested that the greater the number

of isolated interaction partners two proteins had, the more unreliable the interaction.

This observation has been employed to predict putative protein interactions in an

existing network [51]. In particular they were able to rank the reliability of a pre-

dicted interaction using a measure of the shortest alternative pathway between the

two interactors. Chen et al. [52] also exploited the high level of clustering in the

network to predict interactions based upon triangular motifs in the network. This

work demonstrated that there was information encoded in triangles of interactions

in the PIN, which suggests that it is necessary to look beyond pairwise relationships

to understand the evolution of the PIN as a whole. This claim has been surprisingly

hard to demonstrate [52].

Clauset et al. [56] used the hierarchical structure (that is, structures present at

different scales) of networks to predict ‘missing’ edges between nodes. Interaction

probabilities were assigned between hierarchical groups, and a pair of nodes was

suggested to be possibly linked if they possessed a high mean probability of connec-

167



tion within these hierarchical groups but were observed as unconnected. Whilst this

method was tested on various networks, including a metabolic network, it has yet to

be applied to PINs. It has the potential to be successful if PINs are found to have

biologically meaningful hierarchical structure (Yook et al. [358] claimed that this is

the case). This, in turn, rests on our understanding of the evolution of hierarchical

modularity.

A common shortcoming of such network-based methodologies is that the results

are likely to be sensitive to errors in the network data (see Sections 1.2.3 and 1.2.5).

A.3 Genome-based methods

Genomic information methods rely on the context of the gene/protein in an organism’s

genome, as well as the context of its homologs in other genomes. For a review, see

Marcotte et al. [201]. Homologs are proteins that are believed to share characteristics

because of shared ancestry. They are usually detected through sequence alignment.

Proteins that are homologs due to a speciation events are called orthologs. Proteins

that are homologs due to a gene duplication event are known as paralogs.

A.3.1 Gene neighbourhood

Gene neighbourhood methods are based on the observation mentioned in Section 1.4.3

that products of genes that are co-regulated have a higher chance of interacting phys-

ically, and on the fact that co-regulated genes – particularly in bacteria – tend to be

close together in the genome. Gene neighbourhood methods exploit this relationship

by searching for genes that are conserved and remain in the same neighbourhood

across genomes. This adjacency is used to predict possible functional association

[141, 242].
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A.3.2 Gene fusion

The gene fusion method, also known as the Rosetta Stone method, assumes that the

two interacting proteins depend on each other such that at some point in evolution,

the two proteins were fused into one. The fused protein, dubbed the ‘Rosetta Stone’,

is used to predict interactions in species in which the two proteins remain separate

[80, 201]. This assumes that there is an evolutionary pressure for proteins that always

interact to be transcribed as a single protein.

A.3.3 Phylogenetic profile

In the phylogenetic profile method, interactions are predicted based on the presence

or absence of genes in related species. Utilising the recent dramatic increase in fully

sequenced genomes, a phylogenetic profile is constructed for each gene. (A phyloge-

netic profile is a binary vector showing whether a protein is present in a genome or

not). Similarities between the phylogenetic profiles of any two genes can be taken to

indicate that the genes have some functional interdependencies on each other, thereby

explaining their co-conservation across different species [252].

Here it is assumed that there is enough selective pressure that if two proteins

interact to perform their cellular function and one protein is lost, then the other

protein will also be lost (for example, this would be the case for some complexes).

In the case of horizontal gene transfer in bacteria, genes will only be kept if they are

transferred with other genes with which they need to interact to perform a fitness

enhancing function.
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A.4 Sequence-based methods

A.4.1 Interologs

I discuss interologs in Section 1.4.5.1 and Chapter 4. As discussed in Chapter 4,

inferring interactions on the basis of homology is inaccurate unless strict definitions

of homology are employed. At such strict definitions, few inferences are made.

A.4.2 Phylogenetic tree methods

Sequence homology can be used to build the phylogenetic trees of protein families

[109]. These can then be compared. Pazos and Valencia [250] developed a method

called mirrortree that utilises phylogenetic trees to make predictions. This explicitly

uses the idea that co-evolving proteins are likely to be functionally associated. Va-

lencia and Pazos [329] based predictions on the co-evolution of interacting interfaces

only.

As discussed in Section 1.4.3, the main issue is in the inference from functional

association to physical interaction (from co-evolution to co-adaptation).

A.5 Structure-based methods

A further category of interaction prediction methods consists of approaches that ex-

ploit structural similarities and make predictions based upon structural models.

In analogy with sequence-based interologs, structure-based interologs have been

investigated. Aloy et al. [4] found that proteins with the same folds or structural

domains tended to participate in similar interactions if the sequence identity of the

proteins was above approximately 30%. Below this percentage, there is a ‘twilight

zone’ where proteins may or may not share similar interactions. The evolutionary as-

sumptions and potential problems are similar to those for sequence-based interologs
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(see Section A.4.1). Their advantage is that they are more accurate compared to

sequence-based methods, their disadvantage is the relative paucity of structural in-

formation.

Protein-docking methods [58, 298], in which two structural proteins are rigidly

combined and then refined, can also be used to predict interactions. However, due

to the computational cost of such methods, they are in general more useful for pro-

viding information on the interacting interface of two structurally defined subunits

[281]. Other methods predict interactions based on surface patch comparison [47] and

oligomeric protein structure networks [40]. Carugo and Franzot [47] divided atoms

on the surface of each protein into small, partially overlapping sets called ‘patches’.

They compared the shapes of each pair of patches belonging to different proteins, and

they used a statistical analysis of the shape complementarity values to discriminate

interacting and non-interacting protein pairs with an accuracy of up to 80%. Brinda

and Vishveshwara [40] attempted to understand the factors involved in protein in-

teractions by analysing interactions between amino acids based on the number of

non-covalent bonds, which are known to play a role in mediating protein interactions

[189].

One lesson from the field of protein docking is that supplementing physical and

chemical considerations with information deduced from sequence and structural databases

can improve predictions greatly [209]. The use of these databases rests on the assump-

tion that similar structures imply similar interactions because the proteins are related

to each other through evolution.

A.6 Domain-based methods

A range of methods have been devised that attempt to predict which of the domains

in a protein interact. The methods annotate protein sequences with domains defined
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by Pfam, SCOP, CDD, and other domain databases [6, 86, 200].

Association methods are a group of prediction methods that look for blocks of se-

quence or structural motifs that distinguish interacting proteins from non-interacting

proteins. In one such study, Sprinzak and Margalit [304] looked for sequence domains

that were found to interact more often than expected by chance. They used such

domains as signatures to predict new interactions.

A problem with association models is that they only consider one domain at a

time and ignore the effect of other domains on the interaction. This was addressed by

Deng et al. [71], who estimated the probabilities of interactions between every pair of

domains and used them to predict interactions between proteins. Rare interactions

between two domains can be missed by this method. To compensate for this, Riley

et al. [275] developed measures based on the reduction in the likelihood of the PIN,

caused by disallowing a given domain-domain interaction. This can give some indica-

tion of which domain-domain interaction is more likely to be responsible for a given

protein-protein interaction.

In all these approaches, domains are assumed to interact independently, though

this can depend on other domains within a protein pair and remains a severe limitation

of these methods.

These methods could potentially be powerful in predicting entire PINs of organ-

isms for which interaction data is not available [257]. This is because surprisingly

few domains have been duplicated and recombined to form proteins across the tree

of life: 50% of domain structure annotations in each organism are to fewer than 200

domain families common to all kingdoms. There is cause for caution, however, as one

needs to ascertain that domain interactions are not organism-specific, remembering

that domain combinations tend to be specific to organisms [240]. Basu et al. [22]

demonstrated both that domains that occur in diverse domain architectures tend to

have more interactions and that which domains end up in diverse architectures is
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organism-specific.

A.7 Summary

There are two main areas in which caution is needed in inferring protein interactions

from evolutionary assumptions. The first is the use of interologs. There is widespread

belief in the bioinformatics community that transfer of biological function, including

protein interactions, should be possible from sequence homology. The evolutionary

assumption is that close sequence similarity implies little functional divergence. This

fundamental assumption has been bought under suspicion in the case of protein in-

teractions (see Chapter 4). The second is separating the effects of actual molecular

co-adaptation from the observation of co-evolution.

Key to the reliable use of interologs and co-evolution is a better understanding

of the molecular mechanisms underpinning the evolution of interactions. There is

evolutionary knowledge that has yet to be exploited in this regard. Notably, these

include the large documented differences between transient and obligate interactions.

(Proteins that must interact in order to carry out their cellular role are said to partake

in an obligate interaction.) These differences can potentially be detected on the basis

of sequence alone [239]. An investigation of the different sequence cutoffs that should

be employed for interolog prediction for transient and obligate interactions would be

a useful starting point.

Another step for improving interolog-based and co-evolution-based predictions is

to use the comparative protein-protein interaction data that is now becoming avail-

able. Alignments of entire interaction networks (see Section 1.4.5.2), rather than just

pairs of proteins, can give additional information as to when an interolog inference is

acceptable. If proteins A, B, and C all interact in species S and proteins A′ and B′

and A′ and C ′ interact in species S ′, then there is better evidence to predict that B′
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and C ′ also interact.

There is potential for models of network evolution to be used in the prediction of

protein interactions. At present, there is no clear consensus as to which are the good

models of network evolution. It is clear that there is evolutionary information that

can be incorporated into these models to make them more realistic. For example,

no model proposed (to our knowledge) distinguishes between transient and obligate

interactions, which is perhaps surprising given the known differences between the evo-

lution of these different interaction types. Good models of protein-protein interaction

network growth will be helpful in predicting new interactions. Such models could be

used to generate ensembles of interaction networks matching observed statistics in

empirical interaction networks. The frequency with which a given pair of proteins

interacts in an ensemble can be used to predict likely interactors [56], although this

has yet to be put into practice.

An important observation is that it is not easy to assess the relative success of

different prediction methods. It is likely that different methods are more successful on

certain types of proteins, which would be related to the different evolutionary assump-

tions underlying different methods. Through direct comparison of which methods do

best on which proteins, interaction prediction could be tailored to what else is known

about the proteins involved.
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Appendix B

Examples of community

membership

The proteins found in the communities given in Section 3.5. Protein numbers are the

SGD identification numbers (Saccharomyces Genome Database, www.yeastgenome.

org, [53]), the short descriptions are given on the SGD website.
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Table B.1: Example given in Figure 3.4 a). Of all those proteins found in
the community at log(λ) = 0, the proteins found in the red community at
the partition at log(λ) = 0.5. Continues on next page.

100 Component of the small-subunit (SSU) processome, which is involved in the biogenesis of the 18S rRNA
451 Protein associated with U3 and U14 snoRNAs, required for pre-rRNA processing and 40S ribosomal subunit syn-

thesis; localized in the nucleus and concentrated in the nucleolus
541 Protein of unknown function, identified as a high-copy suppressor of a dbp5 mutation
564 Essential nucleolar protein required for the synthesis of 18S rRNA and for the assembly of 40S ribosomal subunit
609
643 Protein involved in bud-site selection; diploid mutants display a random budding pattern instead of the wild-type

bipolar pattern
653 Conserved 90S pre-ribosomal component essential for proper endonucleolytic cleavage of the 35 S rRNA precursor at

A0, A1, and A2 sites; contains eight WD-repeats; PWP2 deletion leads to defects in cell cycle and bud morphogenesis
752 RNA binding protein, part of U3 snoRNP involved in rRNA processing, part of U4/U6-U5 tri-snRNP involved in

mRNA splicing, similar to human 15.5K protein
781 DNA Polymerase phi; has sequence similarity to the human MybBP1A and weak sequence similarity to B-type DNA

polymerases, not required for chromosomal DNA replication; required for the synthesis of rRNA
837 RNA-binding protein, activates mRNA decapping directly by binding to the mRNA substrate and enhancing the

activity of the decapping proteins Dcp1p and Dcp2p
884 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in

processing of pre-18S rRNA
929 Essential protein involved in maturation of 18S rRNA; depletion leads to inhibited pre-rRNA processing and reduced

polysome levels; localizes primarily to the nucleolus
964 Protein that recognizes and binds damaged DNA (with Rad23p) during nucleotide excision repair; subunit of Nuclear

Excision Repair Factor 2 (NEF2); homolog of human XPC protein
1030 Mitochondrial protein required for splicing of the group I intron aI5 of the COB pre-mRNA, binds to the RNA to

promote splicing; also involved in but not essential for splicing of the COB bI2 intron and the intron in the 21S
rRNA gene

1081 Protein of unknown function, green fluorescent protein (GFP)-fusion protein localizes to the endoplasmic reticulum;
msc7 mutants are defective in directing meiotic recombination events to homologous chromatids

1107 Protein involved in rRNA processing; required for maturation of the 35S primary transcript of pre-rRNA and for
cleavage leading to mature 18S rRNA; homologous to eIF-4a, which is a DEAD box RNA-dependent ATPase with
helicase activity

1131 Protein component of the H/ACA snoRNP pseudouridylase complex, involved in the modification and cleavage of
the 18S pre-rRNA

1191 Component of the SSU processome, which is required for pre-18S rRNA processing, essential protein that interacts
with Mpp10p and mediates interactions of Imp4p and Mpp10p with U3 snoRNA

1239 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in
processing of pre-18S rRNA

1281 Protein required for pre-rRNA processing and 40S ribosomal subunit assembly
1498 Transcriptional activator of proline utilization genes, constitutively binds PUT1 and PUT2 promoter sequences and

undergoes a conformational change to form the active state; has a Zn(2)-Cys(6) binuclear cluster domain
1518 UDP-glucose pyrophosphorylase (UGPase), catalyses the reversible formation of UDP-Glc from glucose 1-phosphate

and UTP, involved in a wide variety of metabolic pathways, expression modulated by Pho85p through Pho4p
1561 Predominantly nucleolar DEAH-box ATP-dependent RNA helicase, required for 18S rRNA synthesis
1582 Subunit of U3-containing Small Subunit (SSU) processome complex involved in production of 18S rRNA and as-

sembly of small ribosomal subunit
1768 Subunit of U3-containing 90S preribosome complex involved in production of 18S rRNA and assembly of small

ribosomal subunit
2172 Nucleolar protein, component of the small subunit processome complex, which is required for processing of pre-18S

rRNA; has similarity to mammalian fibrillarin
2307 Nucleolar protein, forms a complex with Noc4p that mediates maturation and nuclear export of 40S ribosomal

subunits; also present in the small subunit processome complex, which is required for processing of pre-18S rRNA
2367 Nuclear protein related to mammalian high mobility group (HMG) proteins, essential for function of H/ACA-type

snoRNPs, which are involved in 18S rRNA processing
2372 Putative RNA-binding protein implicated in ribosome biogenesis; contains an RNA recognition motif (RRM) and

has similarity to hydrophilins; NOP6 may be a fungal-specific gene as no homologs have been yet identified in higher
eukaryotes

2509
2707 Essential protein that is a component of 90S preribosomes; may be involved in rRNA processing; multicopy sup-

pressor of sensitivity to Brefeldin A; expression is induced during lag phase and also by cold shock
2732 Subunit of U3-containing 90S preribosome and Small Subunit (SSU) processome complexes involved in production

of 18S rRNA and assembly of small ribosomal subunit; member of t-Utp subcomplex involved with transcription of
35S rRNA transcript

2747 Putative PINc domain nuclease required for early cleavages of 35S pre-rRNA and maturation of 18S rRNA; compo-
nent of the SSU (small subunit) processome involved in 40S ribosomal subunit biogenesis; copurifies with Faf1p

2773 Nucleolar protein involved in pre-rRNA processing; depletion causes severely decreased 18S rRNA levels
2806 Subunit of U3-containing Small Subunit (SSU) processome complex involved in production of 18S rRNA and as-

sembly of small ribosomal subunit
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Continued from previous page.
2857 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in

processing of pre-18S rRNA
2860 Vacuolar endopolyphosphatase with a role in phosphate metabolism; functions as a homodimer
2953 Helicase encoded by the Y’ element of subtelomeric regions, highly expressed in the mutants lacking the telomerase

component TLC1; potentially phosphorylated by Cdc28p
3036 Protein associated with the mitochondrial nucleoid; putative mitochondrial ribosomal protein with similarity to E.

coli L7/L12 ribosomal protein; required for normal respiratory growth
3046 Putative ATP-dependent RNA helicase of the DEAD-box family involved in ribosomal biogenesis
3139 ATP-dependent RNA helicase of the DEAD box family; required for 18S rRNA synthesis
3181 Ski complex component and WD-repeat protein, mediates 3’-5’ RNA degradation by the cytoplasmic exosome; also

required for meiotic double-strand break recombination; null mutants have superkiller phenotype
3322 Possible U3 snoRNP protein involved in maturation of pre-18S rRNA, based on computational analysis of large-scale

protein-protein interaction data
3332 Cytoplasmic GTPase-activating protein for Ypt/Rab transport GTPases Ypt6p, Ypt31p and Sec4p; involved in

recycling of internalized proteins and regulation of Golgi secretory function
3360 Nucleolar protein required for export of tRNAs from the nucleus; also copurifies with the small subunit (SSU)

processome containing the U3 snoRNA that is involved in processing of pre-18S rRNA
3377 Essential nucleolar protein of unknown function; contains WD repeats, interacts with Mpp10p and Bfr2p, and has

homology to Spb1p
3391 Nucleolar protein that binds nuclear localization sequences, required for pre-rRNA processing and ribosome biogen-

esis
3430 Cargo-transport protein involved in endocytosis; interacts with phosphatidylinositol-4-kinase Stt4; GFP-fusion pro-

tein localizes to the cytoplasm; YGR198W is an essential gene
3515
3547 Essential subunit of U3-containing 90S preribosome involved in production of 18S rRNA and assembly of small

ribosomal subunit; also part of pre-40S ribosome and required for its export into cytoplasm; binds RNA and
contains pumilio domain

3605 Possible U3 snoRNP protein involved in maturation of pre-18S rRNA, based on computational analysis of large-scale
protein-protein interaction data

3645 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in
processing of pre-18S rRNA

3683
3762 Component of the SSU processome and 90S preribosome, required for pre-18S rRNA processing, interacts with and

controls the stability of Imp3p and Imp4p, essential for viability; similar to human Mpp10p
3934 Essential protein required for biogenesis of 40S (small) ribosomal subunit; has similarity to the beta subunit of

trimeric G-proteins and the splicing factor Prp4p
4041 Essential nucleolar protein involved in the early steps of 35S rRNA processing; interacts with Faf1p; member of a

transcriptionally co-regulated set of genes called the RRB regulon
4053
4119 Nucleolar protein, specifically associated with the U3 snoRNA, part of the large ribonucleoprotein complex known

as the small subunit (SSU) processome, required for 18S rRNA biogenesis, part of the active pre-rRNA processing
complex

4165 Pseudouridine synthase catalytic subunit of box H/ACA small nucleolar ribonucleoprotein particles (snoRNPs),
acts on both large and small rRNAs and on snRNA U2; mutations in human ortholog dyskerin cause the disorder
dyskeratosis congenita

4176 Member of the alpha/beta knot fold methyltransferase superfamily; required for maturation of 18S rRNA and for
40S ribosome production; interacts with RNA and with S-adenosylmethionine; associates with spindle/microtubules;
forms homodimers

4187 Essential evolutionarily-conserved nucleolar protein component of the box C/D snoRNP complexes that direct 2’-
O-methylation of pre-rRNA during its maturation; overexpression causes spindle orientation defects

4212 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in
processing of pre-18S rRNA

4372 Phosphatidylinositol transfer protein with a potential role in regulating lipid and fatty acid metabolism under
heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress
resistance

4401 Subunit of U3-containing 90S preribosome and Small Subunit (SSU) processome complexes involved in production
of 18S rRNA and assembly of small ribosomal subunit; synthetic defect with STI1 Hsp90 cochaperone; human
homolog linked to glaucoma

4526 DNA helicase involved in telomere formation and elongation; acts as a catalytic inhibitor of telomerase; also plays
a role in repair and recombination of mitochondrial DNA

4558 Subunit of U3-containing Small Subunit (SSU) processome complex involved in production of 18S rRNA and as-
sembly of small ribosomal subunit

4616 Protein involved in bud-site selection; diploid mutants display a random budding pattern instead of the wild-type
bipolar pattern

4699 Nucleolar protein, component of the small subunit (SSU) processome containing the U3 snoRNA that is involved in
processing of pre-18S rRNA

4735 Essential DEAH-box ATP-dependent RNA helicase specific to the U3 snoRNP, predominantly nucleolar in distri-
bution, required for 18S rRNA synthesis

4751 Protein component of the small (40S) ribosomal subunit; identical to Rps16Bp and has similarity to E. coli S9 and
rat S16 ribosomal proteins

4842 RNA binding protein with preference for single stranded tracts of U’s involved in synthesis of both 18S and 5.8S
rRNAs; component of both the ribosomal small subunit (SSU) processosome and the 90S preribosome

4927
5019 Component of the SSU processome, which is required for pre-18S rRNA processing; interacts with Mpp10p; member

of a superfamily of proteins that contain a sigma(70)-like motif and associate with RNAs
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Continued from previous page.
5076 Essential protein of unknown function; heterozygous mutant shows haploinsufficiency in K1 killer toxin resistance
5199 Protein with seven cysteine-rich CCHC zinc-finger motifs, similar to human CNBP, proposed to be involved in the

RAS/cAMP signaling pathway
5252 Essential nucleolar protein required for 40S ribosome biogenesis; physically and functionally interacts with Krr1p
5337 Essential nucleolar protein involved in pre-18S rRNA processing; binds to RNA and stimulates ATPase activity of

Dbp8; involved in assembly of the small subunit (SSU) processome
5368 Coenzyme Q (ubiquinone) binding protein, functions in the delivery of Q¡sub¿6¡/sub¿ to its proper location for

electron transport during respiration; START domain protein with homologs in bacteria and eukaryotes
5370 Subunit of U3-containing 90S preribosome processome complex involved in 18S rRNA biogenesis and small ribosomal

subunit assembly; stimulates Bms1p GTPase and U3 binding activity; similar to RNA cyclase-like proteins but no
activity detected

5462 tRNA 2’-phosphotransferase, catalyzes the final step in yeast tRNA splicing
5530 Essential nucleolar protein that is a component of the SSU (small subunit) processome involved in 40S ribosomal

subunit biogenesis; has homology to PINc domain protein Fcf1p, although the PINc domain of Utp23p is not
required for function

5604 Component of small ribosomal subunit (SSU) processosome that contains U3 snoRNA; originally isolated as bud-site
selection mutant that displays a random budding pattern

5671 Essential nucleolar protein required for pre-18S rRNA processing, interacts with Dim1p, an 18S rRNA dimethyl-
transferase, and also with Nob1p, which is involved in proteasome biogenesis; contains a KH domain

5837 Protein involved in pre-rRNA processing, 18S rRNA synthesis, and snoRNA synthesis; component of the small
subunit processome complex, which is required for processing of pre-18S rRNA

5908 Ferric reductase, reduces siderophore-bound iron prior to uptake by transporters; expression induced by low iron
levels

5933 Protein required for export of the ribosomal subunits; associates with the RNA components of the pre-ribosomes;
contains HEAT-repeats

6047 U3 snoRNP protein, component of the small (ribosomal) subunit (SSU) processosome containing U3 snoRNA;
required for the biogenesis of18S rRNA

6138 GTPase required for synthesis of 40S ribosomal subunits and for processing the 35S pre-rRNA at sites A0, A1, and
A2; interacts with Rcl1p, which stimulates its GTPase and U3 snoRNA binding activities; has similarity to Tsr1p

6187 Essential 18S rRNA dimethylase (dimethyladenosine transferase), responsible for conserved m6(2)Am6(2)A dimethy-
lation in 3’-terminal loop of 18S rRNA, part of 90S and 40S pre-particles in nucleolus, involved in pre-ribosomal
RNA processing

6316 Essential conserved protein that is part of the 90S preribosome; required for production of 18S rRNA and small
ribosomal subunit; contains five consensus RNA-binding domains

6341 Protein involved in pre-rRNA processing, associated with U3 snRNP; component of small ribosomal subunit (SSU)
processosome; ortholog of the human U3-55k protein

6348 Nucleolar protein, forms a complex with Nop14p that mediates maturation and nuclear export of 40S ribosomal
subunits

7455 Constituent of small nucleolar ribonucleoprotein particles containing H/ACA-type snoRNAs, which are required for
pseudouridylation and processing of pre-18S rRNA

7608 Essential protein required for maturation of 18S rRNA; null mutant is sensitive to hydroxyurea and is delayed in
recovering from alpha-factor arrest; green fluorescent protein (GFP)-fusion protein localizes to the nucleolus

7650
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7 Putative regulatory subunit of Nem1p-Spo7p phosphatase holoenzyme, regulates nuclear growth by controlling
phospholipid biosynthesis, required for normal nuclear envelope morphology, premeiotic replication, and sporulation

14 Regulatory subunit A of the heterotrimeric protein phosphatase 2A, which also contains regulatory subunit Cdc55p
and either catalytic subunit Pph21p or Pph22p; required for cell morphogenesis and for transcription by RNA
polymerase III

33 GTPase, required for general translation initiation by promoting Met-tRNAiMet binding to ribosomes and ribosomal
subunit joining; homolog of bacterial IF2

69 Protein involved in bud-site selection, Bud14p-Glc7p complex is a cortical regulator of dynein; inhibitor of the actin
assembly factor Bnr1p (formin); diploid mutants display a random budding pattern instead of the wild-type bipolar
pattern

103 Cytoskeletal protein binding protein required for assembly of the cortical actin cytoskeleton; interacts with proteins
regulating actin dynamics and proteins required for endocytosis; found in the nucleus and cell cortex; has 3 SH3
domains

123 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl19Ap and has similarity to rat L19
ribosomal protein; rpl19a and rpl19b single null mutations result in slow growth, while the double null mutation is
lethal

131 B subunit of DNA polymerase alpha-primase complex, required for initiation of DNA replication during mitotic and
premeiotic DNA synthesis; also functions in telomere capping and length regulation

133 Alpha-adaptin, large subunit of the clathrin associated protein complex (AP-2); involved in vesicle mediated trans-
port

135 Major CTP synthase isozyme (see also URA8), catalyzes the ATP-dependent transfer of the amide nitrogen from
glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid
biosynthesis

147 Protein involved in G2/M phase progression and response to DNA damage, interacts with Rad53p; contains an
RNA recognition motif, a nuclear localization signal, and several SQ/TQ cluster domains; hyperphosphorylated in
response to DNA damage

168 Protein component of the small (40S) ribosomal subunit; identical to Rps8Bp and has similarity to rat S8 ribosomal
protein

188 Protein component of the large (60S) ribosomal subunit, has similarity to rat L32 ribosomal protein; overexpression
disrupts telomeric silencing

235 N-terminally acetylated protein component of the large (60S) ribosomal subunit, nearly identical to Rpl4Bp and
has similarity to E. coli L4 and rat L4 ribosomal proteins

252 Protein component of the small (40S) ribosomal subunit; identical to Rps11Ap and has similarity to E. coli S17 and
rat S11 ribosomal proteins

288 Mitochondrial C1-tetrahydrofolate synthase, involved in interconversion between different oxidation states
of tetrahydrofolate (THF); provides activities of formyl-THF synthetase, methenyl-THF cyclohydrolase, and
methylene-THF dehydrogenase

370 Prephenate dehydrogenase involved in tyrosine biosynthesis, expression is dependent on phenylalanine levels
376 Protein of unknown function involved in COPII vesicle formation; interacts with the Sec23p/Sec24p subcomplex;

overexpression suppresses the temperature sensitivity of a myo2 mutant; has similarity to S. pombe Mpd2
385 Protein component of the small (40S) ribosomal subunit; identical to Rps6Ap and has similarity to rat S6 ribosomal

protein
393 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps9Ap and has similarity to E. coli

S4 and rat S9 ribosomal proteins
395 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl21Bp and has similarity to rat L21

ribosomal protein
420 Protein required for oxidation of specific cysteine residues of the transcription factor Yap1p, resulting in the nuclear

localization of Yap1p in response to stress
426 Peroxisomal AMP-binding protein, localizes to both the peroxisomal peripheral membrane and matrix, expression

is highly inducible by oleic acid, similar to E. coli long chain acyl-CoA synthetase
464 GTPase-activating protein (RhoGAP) for Rho3p and Rho4p, possibly involved in control of actin cytoskeleton

organization
467 Mitochondrial serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; in-

volved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; reverse reaction generates
serine

471 Cytoplasmic pre-60S factor; required for the correct recycling of shuttling factors Alb1, Arx1 and Tif6 at the end
of the ribosomal large subunit biogenesis; involved in bud growth in the mitotic signaling network

482 Third-largest subunit of DNA polymerase II (DNA polymerase epsilon), required to maintain fidelity of chromosomal
replication and also for inheritance of telomeric silencing; mRNA abundance peaks at the G1/S boundary of the
cell cycle

627 Ribosomal protein 59 of the small subunit, required for ribosome assembly and 20S pre-rRNA processing; mutations
confer cryptopleurine resistance; nearly identical to Rps14Bp and similar to E. coli S11 and rat S14 ribosomal
proteins

780 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl12Bp; rpl12a rpl12b double mutant
exhibits slow growth and slow translation; has similarity to E. coli L11 and rat L12 ribosomal proteins

838 ATPase of the ATP-binding cassette (ABC) family involved in 40S and 60S ribosome biogenesis, has similarity to
Gcn20p; shuttles from nucleus to cytoplasm, physically interacts with Tif6p, Lsg1p

876 Protein component of the small (40S) ribosomal subunit; identical to Rps24Bp and has similarity to rat S24 ribo-
somal protein

904 Protein component of the small (40S) ribosomal subunit; identical to Rps8Ap and has similarity to rat S8 ribosomal
protein

943 Protein required for the hydroxylation of heme O to form heme A, which is an essential prosthetic group for
cytochrome c oxidase

993 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl14Ap and has similarity to rat L14
ribosomal protein

1007 Protein component of the small (40S) ribosomal subunit; overproduction suppresses mutations affecting RNA poly-
merase III-dependent transcription; has similarity to E. coli S10 and rat S20 ribosomal proteins

1025 Ribosomal protein L4 of the large (60S) ribosomal subunit, nearly identical to Rpl8Bp and has similarity to rat L7a
ribosomal protein; mutation results in decreased amounts of free 60S subunits
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1026 Putative RNA binding protein; involved in translational repression and found in cytoplasmic P bodies; found

associated with small nucleolar RNAs snR10 and snR11
1052 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl27Bp and has similarity to rat L27

ribosomal protein
1055 Subunit of N-terminal acetyltransferase NatA (Nat1p, Ard1p, Nat5p); acetylates many proteins and thus affects

telomeric silencing, cell cycle, heat-shock resistance, mating, and sporulation; human Ard1p levels are elevated in
cancer cells

1106 Hsp70 protein that interacts with Zuo1p (a DnaJ homolog) to form a ribosome-associated complex that binds the
ribosome via the Zuo1p subunit; also involved in pleiotropic drug resistance via sequential activation of PDR1 and
PDR5; binds ATP

1183 Protein component of the large (60S) ribosomal subunit, identical to Rpl42Ap and has similarity to rat L44; required
for propagation of the killer toxin-encoding M1 double-stranded RNA satellite of the L-A double-stranded RNA virus

1213 Protein involved in nuclear export of the large ribosomal subunit; acts as a Crm1p-dependent adapter protein for
export of nascent ribosomal subunits through the nuclear pore complex

1236 Alpha subunit of the heteromeric nascent polypeptide-associated complex (NAC) involved in protein sorting and
translocation, associated with cytoplasmic ribosomes

1246 Protein component of the small (40S) ribosomal subunit; identical to Rps4Ap and has similarity to rat S4 ribosomal
protein

1278 Protein of unknown function proposed to be involved in nuclear pore complex biogenesis and maintenance as well
as protein folding; has similarity to the mammalian BAG-1 protein

1280 Protein component of the large (60S) ribosomal subunit, identical to Rpl2Ap and has similarity to E. coli L2 and
rat L8 ribosomal proteins; expression is upregulated at low temperatures

1331 Protein component of the small (40S) ribosomal subunit; identical to Rps24Ap and has similarity to rat S24 ribo-
somal protein

1387 Component of the mitochondrial alpha-ketoglutarate dehydrogenase complex, which catalyzes a key step in the
tricarboxylic acid (TCA) cycle, the oxidative decarboxylation of alpha-ketoglutarate to form succinyl-CoA

1395 N-terminally acetylated protein component of the large (60S) ribosomal subunit, binds to 5.8 S rRNA; has similarity
to Rpl16Bp, E. coli L13 and rat L13a ribosomal proteins; transcriptionally regulated by Rap1p

1423
1465 Protein phosphatase involved in vegetative growth at low temperatures, sporulation, and glycogen accumulation;

transcription induced by low temperature and nitrogen starvation; member of the dual-specificity family of protein
phosphatases

1550 Nucleoside diphosphate kinase, catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usu-
ally ATP, to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme
intermediate

1618 Beta-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; binds clathrin; involved in clathrin-
dependent Golgi protein sorting

1626 Component of the GSE complex, which is required for proper sorting of amino acid permease Gap1p; required for
ribosomal small subunit export from nucleus; required for growth at low temperature

1663 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl17Bp and has similarity to E. coli
L22 and rat L17 ribosomal proteins; copurifies with the Dam1 complex (aka DASH complex)

1695 Phosphatidylinositol phosphate (PtdInsP) phosphatase involved in hydrolysis of PtdIns[4]P; transmembrane protein
localizes to ER and Golgi; involved in protein trafficking and processing, secretion, and cell wall maintenance

1765 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps21Bp and has similarity to rat S21
ribosomal protein

2104 Protein component of the large (60S) ribosomal subunit, identical to Rpl2Bp and has similarity to E. coli L2 and
rat L8 ribosomal proteins

2129 Protein that forms a heterotrimeric complex with Erp2p, Emp24p, and Erv25p; member, along with Emp24p and
Erv25p, of the p24 family involved in ER to Golgi transport and localized to COPII-coated vesicles

2134 Non-essential protein of unknown function; expression induced in response to heat stress
2156 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl19Bp and has similarity to rat L19

ribosomal protein; rpl19a and rpl19b single null mutations result in slow growth, while the double null mutation is
lethal

2218 Protein required for processing of 20S pre-rRNA in the cytoplasm, associates with pre-40S ribosomal particles
2233 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl31Bp and has similarity to rat L31

ribosomal protein; associates with the karyopherin Sxm1p; loss of both Rpl31p and Rpl39p confers lethality
2240 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl13Bp; not essential for viability; has

similarity to rat L13 ribosomal protein
2241 Protein component of the small (40S) ribosomal subunit; identical to Rps16Ap and has similarity to E. coli S9 and

rat S16 ribosomal proteins
2288 Ribosomal protein P1 beta, component of the ribosomal stalk, which is involved in interaction of translational

elongation factors with ribosome; accumulation is regulated by phosphorylation and interaction with the P2 stalk
component

2295 Protein component of the large (60S) ribosomal subunit, identical to Rpl35Ap and has similarity to rat L35 ribosomal
protein

2296 ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated formation vesicles in
intracellular trafficking within the Golgi; functionally interchangeable with Arf1p

2354 Essential phosphoprotein component (p150) of the COPII coat of secretory pathway vesicles, in complex with Sec13p;
required for ER-derived transport vesicle formation

2419 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl4Ap and has similarity to E. coli L4
and rat L4 ribosomal proteins

180



Continued from previous page.
2428 Nucleolar protein required for maturation of 18S rRNA, member of the eIF4A subfamily of DEAD-box ATP-

dependent RNA helicases
2432 Protein component of the small (40S) ribosomal subunit; identical to Rps11Bp and has similarity to E. coli S17 and

rat S11 ribosomal proteins
2471 Protein component of the small (40S) ribosomal subunit; has similarity to E. coli S15 and rat S13 ribosomal proteins
2489 Telomere end-binding and capping protein, plays a key role with Pol12p in linking telomerase action with completion

of lagging strand synthesis, and in a regulatory step required for telomere capping
2498 Essential iron-sulfur protein required for ribosome biogenesis and translation initiation; facilitates binding of a

multifactor complex (MFC) of translation initiation factors to the small ribosomal subunit; predicted ABC family
ATPase

2524 Protein of unknown function that associates with ribosomes; has a putative RNA binding domain
2602 DEAD-box protein required for efficient splicing of mitochondrial Group I and II introns; non-polar RNA helicase

that also facilities strand annealing
2604 Probable dephospho-CoA kinase (DPCK) that catalyzes the last step in coenzyme A biosynthesis; null mutant

lethality is complemented by E. coli coaE (encoding DPCK); detected in purified mitochondria in high-throughput
studies

2612 Protein with a role in ubiquinone (Coenzyme Q) biosynthesis, possibly functioning in stabilization of Coq7p; located
on the matrix face of the mitochondrial inner membrane; component of a mitochondrial ubiquinone-synthesizing
complex

2790 Ribosomal protein P2 beta, a component of the ribosomal stalk, which is involved in the interaction between
translational elongation factors and the ribosome; regulates the accumulation of P1 (Rpp1Ap and Rpp1Bp) in the
cytoplasm

2826 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl12Ap; rpl12a rpl12b double mutant
exhibits slow growth and slow translation; has similarity to E. coli L11 and rat L12 ribosomal proteins

2837 eIF3g subunit of the core complex of translation initiation factor 3 (eIF3), which is essential for translation
2855 Ribosomal protein 51 (rp51) of the small (40s) subunit; nearly identical to Rps17Ap and has similarity to rat S17

ribosomal protein
2858 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps18Bp and has similarity to E. coli

S13 and rat S18 ribosomal proteins
2879 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl27Ap and has similarity to rat L27

ribosomal protein
2957 Protein of unknown function that associates with ribosomes and has a putative RNA binding domain; interacts with

Tma22p; null mutant exhibits translation defects; has homology to human oncogene MCT-1
2982 Member of the PUF protein family, which is defined by the presence of Pumilio homology domains that confer RNA

binding activity; preferentially binds mRNAs encoding nucleolar ribosomal RNA-processing factors
2997 Protein involved in nucleolar integrity and processing of the pre-rRNA for the 60S ribosome subunit; transcript is

induced in response to cytotoxic stress but not genotoxic stress
2998 Protein component of the large (60S) ribosomal subunit, has similarity to rat L30 ribosomal protein; involved in

pre-rRNA processing in the nucleolus; autoregulates splicing of its transcript
2999 Ribosomal protein L30 of the large (60S) ribosomal subunit, nearly identical to Rpl24Bp and has similarity to rat

L24 ribosomal protein; not essential for translation but may be required for normal translation rate
3044 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl7Bp and has similarity to E. coli

L30 and rat L7 ribosomal proteins; contains a conserved C-terminal Nucleic acid Binding Domain (NDB2)
3067 Putative GTPase involved in 60S ribosomal subunit biogenesis; required for the release of Nmd3p from 60S subunits

in the cytoplasm
3071 Ribosomal protein of the large (60S) ribosomal subunit, has similarity to E. coli L15 and rat L27a ribosomal proteins;

may have peptidyl transferase activity; can mutate to cycloheximide resistance
3091 Protein component of the small (40S) subunit, essential for control of translational accuracy; phosphorylation by

C-terminal domain kinase I (CTDK-I) enhances translational accuracy; similar to E. coli S5 and rat S2 ribosomal
proteins

3103 N-terminally acetylated protein component of the large (60S) ribosomal subunit, nearly identical to Rpl1Ap and
has similarity to E. coli L1 and rat L10a ribosomal proteins; rpl1a rpl1b double null mutation is lethal

3115 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl9Bp and has similarity to E. coli L6
and rat L9 ribosomal proteins

3215 Nuclear protein that binds to and stabilizes the exoribonuclease Rat1p, required for pre-rRNA processing
3258
3259 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps25Bp and has similarity to rat S25

ribosomal protein
3266 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl26Ap and has similarity to E. coli

L24 and rat L26 ribosomal proteins; binds to 5.8S rRNA
3286
3313 Protein required for pre-rRNA processing; associated with the 90S pre-ribosome and 43S small ribosomal subunit

precursor; interacts with U3 snoRNA; deletion mutant has synthetic fitness defect with an sgs1 deletion mutant
3317 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl11Ap; involved in ribosomal as-

sembly; depletion causes degradation of proteins and RNA of the 60S subunit; has similarity to E. coli L5 and rat
L11

3334
3350 Ribosomal protein 28 (rp28) of the small (40S) ribosomal subunit, required for translational accuracy; nearly

identical to Rps23Bp and similar to E. coli S12 and rat S23 ribosomal proteins; deletion of both RPS23A and
RPS23B is lethal
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3384 GTP-binding protein of the ras superfamily required for bud site selection, morphological changes in response to

mating pheromone, and efficient cell fusion; localized to the plasma membrane; significantly similar to mammalian
Rap GTPases

3434 Cholinephosphate cytidylyltransferase, also known as CTP
3513 Plasma membrane ATP-binding cassette (ABC) transporter, multidrug transporter mediates export of many differ-

ent organic anions including oligomycin; similar to human cystic fibrosis transmembrane receptor (CFTR)
3517 Cytosolic ribosome-associated chaperone that acts, together with Ssz1p and the Ssb proteins, as a chaperone for

nascent polypeptide chains; contains a DnaJ domain and functions as a J-protein partner for Ssb1p and Ssb2p
3541 Integral membrane protein of the Golgi required for targeting of the Arf-like GTPase Arl3p to the Golgi; multicopy

suppressor of ypt6 null mutation
3616 Essential RNA-binding G protein effector of mating response pathway, mainly associated with nuclear envelope

and ER, interacts in mRNA-dependent manner with translating ribosomes via multiple KH domains, similar to
vertebrate vigilins

3661 Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the modification of the adenine
at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression

3713 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl17Ap and has similarity to E. coli
L22 and rat L17 ribosomal proteins

3726 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps22Bp and has similarity to E. coli
S8 and rat S15a ribosomal proteins

3727 Ribosomal protein 59 of the small subunit, required for ribosome assembly and 20S pre-rRNA processing; mutations
confer cryptopleurine resistance; nearly identical to Rps14Ap and similar to E. coli S11 and rat S14 ribosomal
proteins

3786 3-hydroxyanthranilic acid dioxygenase, required for the de novo biosynthesis of NAD from tryptophan via kynure-
nine; expression regulated by Hst1p

3884 Protein component of the small (40S) ribosomal subunit, the least basic of the non-acidic ribosomal proteins;
phosphorylated in vivo; essential for viability; has similarity to E. coli S7 and rat S5 ribosomal proteins

3906 Protein component of the small (40S) ribosomal subunit; mutation affects 20S pre-rRNA processing; identical to
Rps4Bp and has similarity to rat S4 ribosomal protein

3958 Protein of unknown function, required for cell growth and possibly involved in rRNA processing; mRNA is cell cycle
regulated

3968 Ribosomal protein L4 of the large (60S) ribosomal subunit, nearly identical to Rpl8Ap and has similarity to rat L7a
ribosomal protein; mutation results in decreased amounts of free 60S subunits

4000 Protein that regulates telomeric length; protects telomeric ends in a complex with Cdc13p and Stn1p
4019 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl15Bp and has similarity to rat L15

ribosomal protein; binds to 5.8 S rRNA
4065 Protein component of the large (60S) ribosomal subunit, responsible for joining the 40S and 60S subunits; regulates

translation initiation; has similarity to rat L10 ribosomal protein and to members of the QM gene family
4254 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps28Ap and has similarity to rat S28

ribosomal protein
4278 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps30Bp and has similarity to rat S30

ribosomal protein
4332 Conserved ribosomal protein P0 similar to rat P0, human P0, and E. coli L10e; shown to be phosphorylated on

serine 302
4336 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl26Bp and has similarity to E. coli

L24 and rat L26 ribosomal proteins; binds to 5.8S rRNA
4359 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps22Ap and has similarity to E. coli

S8 and rat S15a ribosomal proteins
4364 Elongase, involved in fatty acid and sphingolipid biosynthesis; synthesizes very long chain 20-26-carbon fatty acids

from C18-CoA primers; involved in regulation of sphingolipid biosynthesis
4398 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl31Ap and has similarity to rat L31

ribosomal protein; associates with the karyopherin Sxm1p; loss of both Rpl31p and Rpl39p confers lethality
4433 Ribosomal protein 10 (rp10) of the small (40S) subunit; nearly identical to Rps1Bp and has similarity to rat S3a

ribosomal protein
4440 Protein component of the large (60S) ribosomal subunit, has similarity to Rpl6Ap and to rat L6 ribosomal protein;

binds to 5.8S rRNA
4486 Ribosomal protein 51 (rp51) of the small (40s) subunit; nearly identical to Rps17Bp and has similarity to rat S17

ribosomal protein
4488 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps18Ap and has similarity to E. coli

S13 and rat S18 ribosomal proteins
4524 Serine esterase that deacylates exogenous lysophospholipids, homolog of human neuropathy target esterase (NTE);

mammalian NTE1 deacylates phosphatidylcholine to glycerophosphocholine
4528 Ribosomal protein 10 (rp10) of the small (40S) subunit; nearly identical to Rps1Ap and has similarity to rat S3a

ribosomal protein
4538 N-terminally acetylated protein component of the large (60S) ribosomal subunit, has similarity to Rpl6Bp and to

rat L6 ribosomal protein; binds to 5.8S rRNA
4722 G-protein beta subunit and guanine nucleotide dissociation inhibitor for Gpa2p; ortholog of RACK1 that inhibits

translation; core component of the small (40S) ribosomal subunit; represses Gcn4p in the absence of amino acid
starvation

4750 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl13Ap; not essential for viability;
has similarity to rat L13 ribosomal protein

4807 N-terminally acetylated protein component of the large (60S) ribosomal subunit, nearly identical to Rpl36Bp and
has similarity to rat L36 ribosomal protein; binds to 5.8 S rRNA
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4843 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps10Ap and has similarity to rat

ribosomal protein S10
4855 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl20Bp and has similarity to rat L18a

ribosomal protein
4917 Integral inner mitochondrial membrane protein with a role in maintaining mitochondrial nucleoid structure and

number; mutants exhibit an increased rate of mitochondrial DNA escape; shows some sequence similarity to exonu-
cleases

5013 N-terminally acetylated protein component of the large (60S) ribosomal subunit, binds to 5.8 S rRNA; has similarity
to Rpl16Ap, E. coli L13 and rat L13a ribosomal proteins; transcriptionally regulated by Rap1p

5040 Protein component of the small (40S) ribosomal subunit, nearly identical to Rps7Ap; interacts with Kti11p; deletion
causes hypersensitivity to zymocin; has similarity to rat S7 and Xenopus S8 ribosomal proteins

5056 Essential ATP-dependent RNA helicase of the DEAD-box protein family, involved in nonsense-mediated mRNA
decay and rRNA processing

5068 RNA-binding protein required for the assembly of box H/ACA snoRNPs and thus for pre-rRNA processing, forms
a complex with Shq1p and interacts with H/ACA snoRNP components Nhp2p and Cbf5p; similar to Gar1p

5122 Protein component of the small (40S) ribosomal subunit, has apurinic/apyrimidinic (AP) endonuclease activity;
essential for viability; has similarity to E. coli S3 and rat S3 ribosomal proteins

5151 Essential serine kinase involved in the processing of the 20S pre-rRNA into mature 18S rRNA; has similarity to
Rio1p

5171 Co-chaperone that stimulates the ATPase activity of Ssa1p, required for a late step of ribosome biogenesis; associated
with the cytosolic large ribosomal subunit; contains a J-domain; mutation causes defects in fluid-phase endocytosis

5175 Phosphatidylinositol transfer protein (PITP) controlled by the multiple drug resistance regulator Pdr1p, localizes to
lipid particles and microsomes, controls levels of various lipids, may regulate lipid synthesis, homologous to Pdr17p

5245 Protein component of the large (60S) ribosomal subunit, identical to Rpl18Ap and has similarity to rat L18 ribosomal
protein

5246 Protein component of the small (40S) ribosomal subunit, required for assembly and maturation of pre-40 S particles;
mutations in human RPS19 are associated with Diamond Blackfan anemia; nearly identical to Rps19Ap

5399 Ribosomal protein P2 alpha, a component of the ribosomal stalk, which is involved in the interaction between
translational elongation factors and the ribosome; regulates the accumulation of P1 (Rpp1Ap and Rpp1Bp) in the
cytoplasm

5400 Protein component of the small (40S) ribosomal subunit; has similarity to E. coli S19 and rat S15 ribosomal proteins
5480 Protein component of the large (60S) ribosomal subunit, identical to Rpl18Bp and has similarity to rat L18 ribosomal

protein; intron of RPL18A pre-mRNA forms stem-loop structures that are a target for Rnt1p cleavage leading to
degradation

5481 Protein component of the small (40S) ribosomal subunit, required for assembly and maturation of pre-40 S particles;
mutations in human RPS19 are associated with Diamond Blackfan anemia; nearly identical to Rps19Bp

5487 Primary rRNA-binding ribosomal protein component of the large (60S) ribosomal subunit, has similarity to E. coli
L23 and rat L23a ribosomal proteins; binds to 26S rRNA via a conserved C-terminal motif

5540 B-type regulatory subunit of protein phosphatase 2A (PP2A); homolog of the mammalian B’ subunit of PP2A
5574 Nuclear 5’ to 3’ single-stranded RNA exonuclease, involved in RNA metabolism, including rRNA and snRNA pro-

cessing as well as mRNA transcription termination
5582 Essential nuclear protein involved in proteasome maturation and synthesis of 40S ribosomal subunits; required for

cleavage of the 20S pre-rRNA to generate the mature 18S rRNA
5589 Protein component of the large (60S) ribosomal subunit, has similarity to E. coli L3 and rat L3 ribosomal proteins;

involved in the replication and maintenance of killer double stranded RNA virus
5622 Protein component of the small (40S) ribosomal subunit, nearly identical to Rps7Bp; interacts with Kti11p; deletion

causes hypersensitivity to zymocin; has similarity to rat S7 and Xenopus S8 ribosomal proteins
5705 Subunit of the APT subcomplex of cleavage and polyadenylation factor, may have a role in 3’ end formation of both

polyadenylated and non-polyadenylated RNAs
5724 Component of mRNP complexes associated with polyribosomes; implicated in secretion and nuclear segregation;

multicopy suppressor of BFA (Brefeldin A) sensitivity
5730 ATP-dependent DEAD (Asp-Glu-Ala-Asp)-box RNA helicase, required for translation initiation of all yeast mRNAs;

mutations in human DEAD-box DBY are a frequent cause of male infertility
5760 Ribosomal protein L37 of the large (60S) ribosomal subunit, nearly identical to Rpl33Ap and has similarity to rat

L35a; rpl33b null mutant exhibits normal growth while rpl33a rpl33b double null mutant is inviable
5819 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps10Bp and has similarity to rat

ribosomal protein S10
5839 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl20Ap and has similarity to rat L18a

ribosomal protein
5930
6002 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps9Bp and has similarity to E. coli

S4 and rat S9 ribosomal proteins
6006 COPII vesicle coat protein required for ER transport vesicle budding and autophagosome formation; Sec16p is

bound to the periphery of ER membranes and may act to stabilize initial COPII complexes; interacts with Sec23p,
Sec24p and Sec31p

6011 Protein component of the small (40S) ribosomal subunit; identical to Rps6Bp and has similarity to rat S6 ribosomal
protein

6020 Protein of unknown function; the authentic, non-tagged protein is detected in purified mitochondria in high-
throughput studies; null mutant displays elevated frequency of mitochondrial genome loss
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6064 N-terminally acetylated ribosomal protein L37 of the large (60S) ribosomal subunit, nearly identical to Rpl33Bp

and has similarity to rat L35a; rpl33a null mutant exhibits slow growth while rpl33a rpl33b double null mutant is
inviable

6119 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl7Ap and has similarity to E. coli
L30 and rat L7 ribosomal proteins; contains a conserved C-terminal Nucleic acid Binding Domain (NDB2)

6133 tRNA
6141 N-terminally acetylated protein component of the large (60S) ribosomal subunit, nearly identical to Rpl1Bp and

has similarity to E. coli L1 and rat L10a ribosomal proteins; rpl1a rpl1b double null mutation is lethal
6208 Protein with similarity to mammalian electron transfer flavoprotein complex subunit ETF-alpha; interacts with

frataxin, Yfh1p; null mutant displays elevated frequency of mitochondrial genome loss
6229 Cyclin associated with protein kinase Kin28p, which is the TFIIH-associated carboxy-terminal domain (CTD) kinase

involved in transcription initiation at RNA polymerase II promoters
6245 Translation initiation factor eIF-5; N-terminal domain functions as a GTPase-activating protein to mediate hydrol-

ysis of ribosome-bound GTP; C-terminal domain is the core of ribosomal preinitiation complex formation
6271 Protein required for maturation of mitochondrial and cytosolic Fe/S proteins, localizes to the mitochondrial inter-

membrane space, overexpression of ISA2 suppresses grx5 mutations
6290 Transcription factor TFIIB, a general transcription factor required for transcription initiation and start site selection

by RNA polymerase II
6299 Guanine nucleotide exchange factor (GEF) for Arf proteins; involved in vesicular transport; suppressor of ypt3

mutations; member of the Sec7-domain family
6306 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl11Bp; involved in ribosomal as-

sembly; depletion causes degradation of proteins and RNA of the 60S subunit; has similarity to E. coli L5 and rat
L11

6318
6393 Ski complex component and TPR protein, mediates 3’-5’ RNA degradation by the cytoplasmic exosome; null mutants

have superkiller phenotype of increased viral dsRNAs and are synthetic lethal with mutations in 5’-3’ mRNA decay
6437 Protein component of the large (60S) ribosomal subunit, has similarity to rat L29 ribosomal protein; not essential

for translation, but required for proper joining of the large and small ribosomal subunits and for normal translation
rate

6438 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl36Ap and has similarity to rat L36
ribosomal protein; binds to 5.8 S rRNA

7246 Protein of unknown that associates with ribosomes; null mutant exhibits translation defects, altered polyribosome
profiles, and resistance to the translation inhibitor anisomcyin

7376

184



Table B.3: Example given in Figure 3.4 a). Of all those proteins found in
the community at log(λ) = 0, the proteins found in the blue community at
the partition at log(λ) = 0.5. Continued on next page.

23 Essential nuclear protein, constituent of 66S pre-ribosomal particles; required for maturation of 25S and 5.8S rRNAs;
required for maintenance of M1 satellite double-stranded RNA of the L-A virus

48 Oleate-activated transcription factor, acts alone and as a heterodimer with Pip2p; activates genes involved in beta-
oxidation of fatty acids and peroxisome organization and biogenesis

183 Protein component of the large (60S) ribosomal subunit, identical to Rpl23Bp and has similarity to E. coli L14 and
rat L23 ribosomal proteins

346 Essential nucleolar protein, putative DEAD-box RNA helicase required for maintenance of M1 dsRNA virus; involved
in biogenesis of large (60S) ribosomal subunits

391 Putative protein of unknown function; expression is reduced in a gcr1 null mutant; GFP-fusion protein localizes to
the vacuole; expression pattern and physical interactions suggest a possible role in ribosome biogenesis

446
559 AdoMet-dependent methyltransferase involved in rRNA processing and 60S ribosomal subunit maturation; methy-

lates G2922 in the tRNA docking site of the large subunit rRNA and in the absence of snR52, U2921; suppressor of
PAB1 mutants

569 Catabolic L-serine (L-threonine) deaminase, catalyzes the degradation of both L-serine and L-threonine; required
to use serine or threonine as the sole nitrogen source, transcriptionally induced by serine and threonine

644 Acyl-CoA
668 WD-repeat protein involved in ribosome biogenesis; may interact with ribosomes; required for maturation and

efficient intra-nuclear transport or pre-60S ribosomal subunits, localizes to the nucleolus
804 Constituent of 66S pre-ribosomal particles, involved in 60S ribosomal subunit biogenesis
808 GTPase that associates with nuclear 60S pre-ribosomes, required for export of 60S ribosomal subunits from the

nucleus
879
928 Protein constituent of 66S pre-ribosomal particles, contributes to processing of the 27S pre-rRNA

1080 Mitochondrial ribosome recycling factor, essential for mitochondrial protein synthesis and for the maintenance of
the respiratory function of mitochondria

1094 Essential protein that interacts with proteasome components and has a potential role in proteasome substrate
specificity; also copurifies with 66S pre-ribosomal particles

1108 Constituent of 66S pre-ribosomal particles, required for ribosomal large subunit maturation; functionally redundant
with Ssf2p; member of the Brix family

1127 Essential component of the Rix1 complex (with Rix1p and Ipi3p) that is required for processing of ITS2 sequences
from 35S pre-rRNA; Rix1 complex associates with Mdn1p in pre-60S ribosomal particles

1130 Nucleolar protein involved in the assembly and export of the large ribosomal subunit; constituent of 66S pre-
ribosomal particles; contains a sigma(70)-like motif, which is thought to bind RNA

1180
1240 Essential component of the Rix1 complex (Rix1p, Ipi1p, Ipi3p) that is required for processing of ITS2 sequences

from 35S pre-rRNA; Rix1 complex associates with Mdn1p in pre-60S ribosomal particles
1492 Protein involved in mRNA turnover and ribosome assembly, localizes to the nucleolus
1497 Nucleolar protein required for the normal accumulation of 25S and 5.8S rRNAs, associated with the 27SA2 pre-

ribosomal particle; proposed to be involved in the biogenesis of the 60S ribosomal subunit
1504 Protein involved in an early, nucleolar step of 60S ribosomal subunit biogenesis; essential for cell growth and

replication of killer M1 dsRNA virus; contains four beta-transducin repeats
1565 Essential protein, constituent of 66S pre-ribosomal particles; interacts with proteins involved in ribosomal biogenesis

and cell polarity; member of the SURF-6 family
1655 Essential protein required for the maturation of 25S rRNA and 60S ribosomal subunit assembly, localizes to the

nucleolus; constituent of 66S pre-ribosomal particles
1659 Protein possibly involved in a post-Golgi secretory pathway; required for the transport of nitrogen-regulated amino

acid permease Gap1p from the Golgi to the cell surface
1732 Putative ATP-dependent RNA helicase of the DEAD-box family involved in ribosomal biogenesis; essential for

growth under anaerobic conditions
1789 Essential protein involved in the processing of pre-rRNA and the assembly of the 60S ribosomal subunit; interacts

with ribosomal protein L11; localizes predominantly to the nucleolus; constituent of 66S pre-ribosomal particles
1839 Low-affinity amino acid permease, may act to supply the cell with amino acids as nitrogen source in nitrogen-poor

conditions; transcription is induced under conditions of sulfur limitation; plays a role in regulating Ty1 transposition
1894 Putative ATP-dependent RNA helicase, nucleolar protein required for synthesis of 60S ribosomal subunits at a late

step in the pathway; sediments with 66S pre-ribosomes in sucrose gradients
1897 Nuclear protein involved in asymmetric localization of ASH1 mRNA; binds double-stranded RNA in vitro; con-

stituent of 66S pre-ribosomal particles
2189 Putative ATP-dependent RNA helicase of the DEAD-box protein family, constituent of 66S pre-ribosomal particles;

essential protein involved in ribosome biogenesis
2327 Bifunctional enzyme containing both alcohol dehydrogenase and glutathione-dependent formaldehyde dehydrogenase

activities, functions in formaldehyde detoxification and formation of long chain and complex alcohols, regulated by
Hog1p-Sko1p

2467 Constituent of 66S pre-ribosomal particles, required for large (60S) ribosomal subunit biogenesis; involved in nuclear
export of pre-ribosomes; required for maintenance of dsRNA virus; homolog of human CAATT-binding protein
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2494 Essential evolutionarily conserved nucleolar protein necessary for biogenesis of 60S ribosomal subunits and processing

of pre-rRNAs to mature rRNAs, associated with several distinct 66S pre-ribosomal particles
2508 Shuttling pre-60S factor; involved in the biogenesis of ribosomal large subunit biogenesis; interacts directly with

Alb1; responsible for Tif6 recycling defects in absence of Rei1; associated with the ribosomal export complex
2720 Protein required for ribosomal large subunit maturation, functionally redundant with Ssf1p; member of the Brix

family
2769 Essential protein involved in nuclear export of Mss4p, which is a lipid kinase that generates phosphatidylinositol

4,5-biphosphate and plays a role in actin cytoskeleton organization and vesicular transport
2794 Subunit of the structure-specific Mms4p-Mus81p endonuclease that cleaves branched DNA; involved in DNA repair,

replication fork stability, and joint molecule formation/resolution during meiotic recombination; helix-hairpin-helix
protein

2820 Component of the pre-60S pre-ribosomal particle; required for cell viability under standard (aerobic) conditions but
not under anaerobic conditions

2904 Pumilio-homology domain protein that binds ASH1 mRNA at PUF consensus sequences in the 3’ UTR and represses
its translation, resulting in proper asymmetric localization of ASH1 mRNA

3079 Constituent of 66S pre-ribosomal particles, involved in 60S ribosomal subunit biogenesis
3088 RNA helicase in the DEAH-box family, functions in both RNA polymerase I and polymerase II transcript

metabolism, involved in release of the lariat-intron from the spliceosome
3335 Component of several different pre-ribosomal particles; forms a complex with Ytm1p and Erb1p that is required for

maturation of the large ribosomal subunit; required for exit from G¡sub¿0¡/sub¿ and the initiation of cell proliferation
3440 Phosphoserine phosphatase of the phosphoglycerate pathway, involved in serine and glycine biosynthesis, expression

is regulated by the available nitrogen source
3477 Highly conserved nuclear protein required for actin cytoskeleton organization and passage through Start, plays a

critical role in G1 events, binds Nap1p, also involved in 60S ribosome biogenesis
3586 ATP-dependent 3’-5’ RNA helicase, involved in nuclear RNA quality control both as a component of the TRAMP

complex and in TRAMP independent processes; member of the Dead-box family of helicases
3658 Shuttling pre-60S factor; involved in the biogenesis of ribosomal large subunit; interacts directly with Arx1p; re-

sponsible for Tif6p recycling defects in absence of Rei1p
3667 Putative protein of unknown function; the authentic non-tagged protein is detected in highly purified mitochondria;

null mutant is viable, displays severe respiratory growth defect and elevated frequency of mitochondrial genome loss
3802 Nucleolar protein required for normal metabolism of the rRNA primary transcript, proposed to be involved in

ribosome biogenesis
3931 Nucleolar DEAD-box protein required for ribosome assembly and function, including synthesis of 60S ribosomal

subunits; constituent of 66S pre-ribosomal particles
3957 Putative ATPase of the AAA family, required for export of pre-ribosomal large subunits from the nucleus; distributed

between the nucleolus, nucleoplasm, and nuclear periphery depending on growth conditions
3992 Protein that forms a nuclear complex with Noc2p that binds to 66S ribosomal precursors to mediate their intranu-

clear transport; also binds to chromatin to promote the association of DNA replication factors and replication
initiation

3999 Essential protein with similarity to Rpl24Ap and Rpl24Bp, associated with pre-60S ribosomal subunits and required
for ribosomal large subunit biogenesis

4064 Protein involved in bud-site selection; diploid mutants display a random budding pattern instead of the wild-type
bipolar pattern

4096 Huge dynein-related AAA-type ATPase (midasin), forms extended pre-60S particle with the Rix1 complex (Rix1p-
Ipi1p-Ipi3p), may mediate ATP-dependent remodeling of 60S subunits and subsequent export from nucleoplasm to
cytoplasm

4126 mRNA-binding protein expressed during iron starvation; binds to a sequence element in the 3’-untranslated regions
of specific mRNAs to mediate their degradation; involved in iron homeostasis

4186 Protein with WD-40 repeats involved in rRNA processing; associates with trans-acting ribosome biogenesis factors;
similar to beta-transducin superfamily

4211 Protein with a likely role in ribosomal maturation, required for accumulation of wild-type levels of large (60S)
ribosomal subunits; binds to the helicase Dbp6p in pre-60S ribosomal particles in the nucleolus

4223 TLC1 RNA-associated factor involved in telomere length regulation as the recruitment subunit of the telomerase
holoenzyme, has a possible role in activating Est2p-TLC1-RNA bound to the telomere

4266 ATP-dependent RNA helicase of the DEAD-box family involved in biogenesis of the 60S ribosomal subunit
4317 Protein component of the large (60S) ribosomal subunit, has similarity to rat L38 ribosomal protein
4389 ATPase of the CDC48/PAS1/SEC18 (AAA) family, forms a hexameric complex; may be involved in degradation of

aberrant mRNAs
4419 Cytoplasmic protein of unknown function; ubiquitinated protein with similarity to the human ring finger motif

protein, RNF10; predicted to encode a DNA-3-methyladenine glycosidase II that catalyzes hydrolysis of alkylated
DNA

4441 Peptidyl-prolyl cis-trans isomerase (PPIase) (proline isomerase) localized to the nucleus; catalyzes isomerization of
proline residues in histones H3 and H4, which affects lysine methylation of those histones

4539 Nucleolar peptidyl-prolyl cis-trans isomerase (PPIase); FK506 binding protein; phosphorylated by casein kinase II
(Cka1p-Cka2p-Ckb1p-Ckb2p) and dephosphorylated by Ptp1p

4637
4652 Constituent of 66S pre-ribosomal particles, forms a complex with Nop7p and Ytm1p that is required for matura-

tion of the large ribosomal subunit; required for maturation of the 25S and 5.8S ribosomal RNAs; homologous to
mammalian Bop1

4703 Peripheral GTPase of the mitochondrial inner membrane, essential for respiratory competence, likely functions in
assembly of the large ribosomal subunit, has homologs in plants and animals
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4728 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl15Ap and has similarity to rat L15

ribosomal protein; binds to 5.8 S rRNA
4738 Essential nuclear protein involved in early steps of ribosome biogenesis; physically interacts with the ribosomal

protein Rpl3p
4903 ATP-dependent RNA helicase; localizes to both the nuclear periphery and nucleolus; highly enriched in nuclear pore

complex fractions; constituent of 66S pre-ribosomal particles
4947 Nucleolar protein with similarity to large ribosomal subunit L7 proteins; constituent of 66S pre-ribosomal particles;

plays an essential role in processing of precursors to the large ribosomal subunit RNAs
4983 Protein involved in the synthesis of N-acetylglucosaminyl phosphatidylinositol (GlcNAc-PI), the first intermediate

in the synthesis of glycosylphosphatidylinositol (GPI) anchors; homologous to the human PIG-H protein
5005 Probable RNA m(5)C methyltransferase, essential for processing and maturation of 27S pre-rRNA and large ribo-

somal subunit biogenesis; localized to the nucleolus; constituent of 66S pre-ribosomal particles
5054 Constituent of 66S pre-ribosomal particles, involved in 60S ribosomal subunit biogenesis; localizes to both nucleolus

and cytoplasm
5119 Nucleolar protein found in preribosomal complexes; contains an RNA recognition motif (RRM)
5126 Essential component of the Rix1 complex (Rix1p, Ipi1p, Ipi3p) that is required for processing of ITS2 sequences

from 35S pre-rRNA; highly conserved and contains WD40 motifs; Rix1 complex associates with Mdn1p in pre-60S
ribosomal particles

5174 Elongin A, F-box protein that forms a heterodimer with Elc1p and is required for ubiquitin-dependent degredation
of the RNA Polymerase II subunit RPO21; subunit of the Elongin-Cullin-Socs (ECS) ligase complex

5336 Putative GTPase that associates with pre-60S ribosomal subunits in the nucleolus and is required for their nuclear
export and maturation

5401 Nucleolar protein involved in pre-25S rRNA processing and biogenesis of large 60S ribosomal subunit; contains an
RNA recognition motif (RRM); binds to Ebp2; similar to Nop13p and Nsr1p

5437 Nucleolar protein, constituent of 66S pre-ribosomal particles; depletion leads to defects in rRNA processing and a
block in the assembly of large ribosomal subunits; possesses a sigma(70)-like RNA-binding motif

5504 Nucleolar protein required for 60S ribosomal subunit biogenesis
5531 DNA ligase required for nonhomologous end-joining (NHEJ), forms stable heterodimer with required cofactor Lif1p,

interacts with Nej1p; involved in meiosis, not essential for vegetative growth
5606 Origin-binding F-box protein that forms an SCF ubiquitin ligase complex with Skp1p and Cdc53p; plays a role in

DNA replication, involved in invasive and pseudohyphal growth
5693 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps28Bp and has similarity to rat S28

ribosomal protein
5732 Protein that forms a nucleolar complex with Mak21p that binds to 90S and 66S pre-ribosomes, as well as a nuclear

complex with Noc3p that binds to 66S pre-ribosomes; both complexes mediate intranuclear transport of ribosomal
precursors

5767 Folylpolyglutamate synthetase, catalyzes extension of the glutamate chains of the folate coenzymes, required for
methionine synthesis and for maintenance of mitochondrial DNA

5778 Protein of unknown function that associates with ribosomes
5798 Constituent of 66S pre-ribosomal particles, forms a complex with Nop7p and Erb1p that is required for maturation

of the large ribosomal subunit; has seven C-terminal WD repeats
5820 Essential protein that binds ribosomal protein L11 and is required for nuclear export of the 60S pre-ribosomal

subunit during ribosome biogenesis; mouse homolog shows altered expression in Huntington’s disease model mice
5964 Nucleolar protein, essential for processing and maturation of 27S pre-rRNA and large ribosomal subunit biogenesis;

constituent of 66S pre-ribosomal particles; contains four RNA recognition motifs (RRMs)
6014 Putative GTPase that associates with free 60S ribosomal subunits in the nucleolus and is required for 60S ribosomal

subunit biogenesis; constituent of 66S pre-ribosomal particles; member of the ODN family of nucleolar G-proteins
6052 Protein component of the large (60S) ribosomal subunit with similarity to E. coli L18 and rat L5 ribosomal proteins;

binds 5S rRNA and is required for 60S subunit assembly
6067 Nucleolar protein; involved in biogenesis of the 60S subunit of the ribosome; interacts with rRNA processing factors

Cbf5p and Nop2p; null mutant is viable but growth is severely impaired
6129 SET-domain lysine-N-methyltransferase, catalyzes the formation of dimethyllysine residues on the large ribsomal

subunit protein L23a (RPL23A and RPL23B)
6132 Nucleolar protein required for 60S ribosome subunit biogenesis, constituent of 66S pre-ribosomal particles; physically

interacts with Nop8p and the exosome subunit Rrp43p
6180 Mu1-like medium subunit of the clathrin-associated protein complex (AP-1); binds clathrin; involved in clathrin-

dependent Golgi protein sorting
6220 Constituent of 66S pre-ribosomal particles, has similarity to human translation initiation factor 6 (eIF6); may be

involved in the biogenesis and or stability of 60S ribosomal subunits
6221 Guanine nucleotide dissociation stimulator for Sec4p, functions in the post-Golgi secretory pathway; binds zinc,

found both on membranes and in the cytosol
6249
6347 Nucleolar protein, constituent of pre-60S ribosomal particles; required for proper processing of the 27S pre-rRNA

at the A3 and B1 sites to yield mature 5.8S and 25S rRNAs
6365 Cyclin (Bur2p)-dependent protein kinase that functions in transcriptional regulation; phosphorylates the carboxy-

terminal domain of Rpo21p and the C-terminal repeat domain of Spt5p; regulated by Cak1p
6373 Essential protein of unknown function; interacts with proteins involved in RNA processing, ribosome biogenesis,

ubiquitination and demethylation; tagged protein localizes to nucleus and nucleolus; similar to WDR55, a human
WD repeat protein

7259
28857
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6 Mitochondrial protein of unknown function
95 Nonfunctional protein with homology to IMP dehydrogenase; probable pseudogene, located close to the telomere; is

not expressed at detectable levels; YAR073W and YAR075W comprise a continuous reading frame in some strains
of S. cerevisiae

167
215 Cytoplasmic inorganic pyrophosphatase (PPase), homodimer that catalyzes the rapid exchange of oxygens from Pi

with water, highly expressed and essential for viability, active-site residues show identity to those from E. coli PPase
224 Galactokinase, phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose

catabolism; expression regulated by Gal4p
225 Uracil permease, localized to the plasma membrane; expression is tightly regulated by uracil levels and environmental

cues
238 Nuclear SAM-dependent mono- and asymmetric arginine dimethylating methyltransferase that modifies hnRNPs,

including Npl3p and Hrp1p, thus facilitating nuclear export of these proteins; required for viability of npl3 mutants
242 Chitin synthase II, requires activation from zymogenic form in order to catalyze the transfer of N-acetylglucosamine

(GlcNAc) to chitin; required for the synthesis of chitin in the primary septum during cytokinesis
248 Protein involved in the assembly of the mitochondrial succinate dehydrogenase complex; putative chaperone
253 RNA polymerase I enhancer binding protein; DNA binding protein which binds to genes transcribed by both RNA

polymerase I and RNA polymerase II; required for termination of RNA polymerase I transcription
262 Ubiquitin-specific protease that specifically disassembles unanchored ubiquitin chains; involved in fructose-1,6-

bisphosphatase (Fbp1p) degradation; similar to human isopeptidase T
283 eIF3a subunit of the core complex of translation initiation factor 3 (eIF3), essential for translation; part of a

subcomplex (Prt1p-Rpg1p-Nip1p) that stimulates binding of mRNA and tRNA(i)Met to ribosomes
347 Polypeptide release factor (eRF1) in translation termination; mutant form acts as a recessive omnipotent suppressor;

methylated by Mtq2p-Trm112p in ternary complex eRF1-eRF3-GTP; mutation of methylation site confers resistance
to zymocin

352 Protein required for normal prospore membrane formation; interacts with Gip1p, which is the meiosis-specific
regulatory subunit of the Glc7p protein phosphatase; expressed specifically in spores and localizes to the prospore
membrane

357 Diaminohydroxyphoshoribosylaminopyrimidine deaminase; catalyzes the second step of the riboflavin biosynthesis
pathway

363 Microsomal beta-keto-reductase; contains oleate response element (ORE) sequence in the promoter region; mutants
exhibit reduced VLCFA synthesis, accumulate high levels of dihydrosphingosine, phytosphingosine and medium-
chain ceramides

517 Poly(A+) RNA-binding protein, involved in the export of mRNAs from the nucleus to the cytoplasm; similar to
Hrb1p and Npl3p; also binds single-stranded telomeric repeat sequence in vitro

542 Cytoplasmic RNA-binding protein that associates with translating ribosomes; involved in heme regulation of Hap1p
as a component of the HMC complex, also involved in the organization of actin filaments; contains a La motif

742 Nucleotide pyrophosphatase/phosphodiesterase family member; mediates extracellular nucleotide phosphate hydrol-
ysis along with Npp1p and Pho5p; activity and expression enhanced during conditions of phosphate starvation

760 Translation elongation factor eIF-5A, previously thought to function in translation initiation; similar to and func-
tionally redundant with Anb1p; structural homolog of bacterial EF-P; undergoes an essential hypusination modifi-
cation

818 Microtubule-binding protein that together with Kar9p makes up the cortical microtubule capture site and delays
the exit from mitosis when the spindle is oriented abnormally

827 Gamma subunit of the translation initiation factor eIF2, involved in the identification of the start codon; binds
GTP when forming the ternary complex with GTP and tRNAi-Met

832 Histone chaperone for Htz1p/H2A-H2B dimer; required for the stabilization of the Chz1p-Htz1-H2B complex; has
overlapping function with Nap1p; null mutant displays weak sensitivity to MMS and benomyl; contains a highly
conserved CHZ motif

865 Conserved nuclear RNA-binding protein; specifically binds to transcribed chromatin in a THO- and RNA-dependent
manner, genetically interacts with shuttling hnRNP NAB2; overproduction suppresses transcriptional defect caused
by hpr1 mutation

902 Ubiquitin-conjugating enzyme involved in ER-associated protein degradation; located at the cytosolic side of the ER
membrane; tail region contains a transmembrane segment at the C-terminus; substrate of the ubiquitin-proteasome
pathway

949 Subunit of cohesin loading factor (Scc2p-Scc4p), a complex required for the loading of cohesin complexes onto chro-
mosomes; involved in establishing sister chromatid cohesion during double-strand break repair via phosphorylated
histone H2AX

956 Mitochondrial inner membrane insertase, mediates the insertion of both mitochondrial- and nuclear-encoded proteins
from the matrix into the inner membrane, interacts with mitochondrial ribosomes; conserved from bacteria to
animals

968 Aminophospholipid translocase (flippase) that localizes primarily to the plasma membrane; contributes to endocy-
tosis, protein transport and cell polarity; type 4 P-type ATPase

1073 DNA helicase involved in rDNA replication and Ty1 transposition; relieves replication fork pauses at telomeric
regions; structurally and functionally related to Pif1p

1151 Cytochrome c lysine methyltransferase, trimethylates residue 72 of apo-cytochrome c (Cyc1p) in the cytosol; not
required for normal respiratory growth

1159 Mitochondrial outer membrane protein with similarity to Tom70p; probable minor component of the TOM (translo-
case of outer membrane) complex responsible for recognition and import of mitochondrially directed proteins

1197 Protein implicated in Mms22-dependent DNA repair during S phase, DNA damage induces phosphorylation by
Mec1p at one or more SQ/TQ motifs; interacts with Mms22p and Slx4p; has four BRCT domains; has a role in
regulation of Ty1 transposition

1259 Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, expression is induced by my-
cophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation

1300 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation
and elongation and in mRNA degradation

1305 Microsomal cytochrome b reductase, not essential for viability; also detected in mitochondria; mutation in conserved
NADH binding domain of the human ortholog results in type I methemoglobinemia
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1341 Zinc knuckle protein, involved in nuclear RNA quality control as a component of the TRAMP complex; stimulates

the poly(A) polymerase activity of Pap2p in vitro; functionally redundant with Air2p
1391 Component of the RAM signaling network that is involved in regulation of Ace2p activity and cellular morphogenesis,

interacts with protein kinase Cbk1p and also with Kic1p
1399 Protein that associates with ribosomes; putative metalloprotease
1440 Cytoplasmic RNA-binding protein, contains an RNA recognition motif (RRM); may have a role in mRNA transla-

tion, as suggested by genetic interactions with genes encoding proteins involved in translational initiation
1447 Subunit of DNA primase, which is required for DNA synthesis and double-strand break repair
1489 N-terminally acetylated protein component of the large (60S) ribosomal subunit, nearly identical to Rpl14Bp and

has similarity to rat L14 ribosomal protein; rpl14a csh5 double null mutant exhibits synthetic slow growth
1523 Protein involved in iron metabolism in mitochondria; similar to NifU, which is a protein required for the maturation

of the Fe/S clusters of nitrogenase in nitrogen-fixing bacteria
1539 Protein that associates with ribosomes; homolog of translationally controlled tumor protein; green fluorescent pro-

tein (GFP)-fusion protein localizes to the cytoplasm and relocates to the mitochondrial outer surface upon oxidative
stress

1558
1848 Putative protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria

in high-throughput studies
1930 Basic helix-loop-helix (bHLH) transcription factor of the myc-family; binds cooperatively with Pho2p to the PHO5

promoter; function is regulated by phosphorylation at multiple sites and by phosphate availability
2145
2161 Essential subunit of the cohesin complex required for sister chromatid cohesion in mitosis and meiosis; apoptosis

induces cleavage and translocation of a C-terminal fragment to mitochondria; expression peaks in S phase
2224 Mitochondrial NADP-specific isocitrate dehydrogenase, catalyzes the oxidation of isocitrate to alpha-ketoglutarate;

not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes
2227 Mitochondrial translational activator of the COB mRNA; membrane protein that interacts with translating ribo-

somes, acts on the COB mRNA 5’-untranslated leader
2239 Ribosomal stalk protein P1 alpha, involved in the interaction between translational elongation factors and the

ribosome; accumulation of P1 in the cytoplasm is regulated by phosphorylation and interaction with the P2 stalk
component

2263 Nuclear protein that plays a role in the function of the Smc5p-Rhc18p complex
2334 Zinc knuckle protein, involved in nuclear RNA quality control as a component of the TRAMP complex; stimulates

the poly(A) polymerase activity of Pap2p in vitro; functionally redundant with Air1p
2341 Homocitrate synthase isozyme, catalyzes the condensation of acetyl-CoA and alpha-ketoglutarate to form homoci-

trate, which is the first step in the lysine biosynthesis pathway; highly similar to the other isozyme, Lys21p
2350 Protein component of the large (60S) ribosomal subunit, identical to Rpl35Bp and has similarity to rat L35 ribosomal

protein
2407 Protein of unknown function, member of the DUP380 subfamily of conserved, often subtelomerically-encoded pro-

teins; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies
2476 Ubiquitin isopeptidase, required for recycling ubiquitin from proteasome-bound ubiquitinated intermediates, acts at

the late endosome/prevacuolar compartment to recover ubiquitin from ubiquitinated membrane proteins en route
to the vacuole

2518 Putative alanine transaminase (glutamic pyruvic transaminase)
2642 Homoaconitase, catalyzes the conversion of homocitrate to homoisocitrate, which is a step in the lysine biosynthesis

pathway
2757 Putative GPI-anchored aspartic protease, located in the cytoplasm and endoplasmic reticulum
2758 Mitochondrial inner membrane protein required for assembly of the F0 sector of mitochondrial F1F0 ATP synthase,

which is a large, evolutionarily conserved enzyme complex required for ATP synthesis
2759 Protein involved in the transport of cell wall components from the Golgi to the cell surface; required for bud growth
2789 Nuclear protein that binds to RNA and to Mex67p, required for export of poly(A)+ mRNA from the nucleus; member

of the REF (RNA and export factor binding proteins) family; another family member, Yra2p, can substitute for
Yra1p function

2801 Mitochondrial inner membrane protein required for normal mitochondrial morphology, may be involved in fission of
the inner membrane; forms a homo-oligomeric complex

2823
2923 RNA binding protein that associates with polysomes; proposed to be involved in regulating mRNA translation;

involved in the copper-dependent mineralization of copper sulfide complexes on cell surface in cells cultured in
copper salts

2935 Protein involved in transcription; interacts with RNA polymerase II subunits Rpb2p, Rpb3, and Rpb11p; has
similarity to human RPAP1

2985 Arginyl-tRNA-protein transferase, catalyzes post-translational conjugation of arginine to the amino termini of ac-
ceptor proteins which are then subject to degradation via the N-end rule pathway

3017 Translation initiation factor eIF4G, subunit of the mRNA cap-binding protein complex (eIF4F) that also contains
eIF4E (Cdc33p); associates with the poly(A)-binding protein Pab1p, also interacts with eIF4A (Tif1p); homologous
to Tif4631p

3049
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3157 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps26Bp and has similarity to rat S26

ribosomal protein
3206 Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional ac-

tivator and global regulator of respiratory gene expression; contains sequences sufficient for both complex assembly
and DNA binding

3356 Asparagine synthetase, isozyme of Asn1p; catalyzes the synthesis of L-asparagine from L-aspartate in the asparagine
biosynthetic pathway

3380 Ribosomal protein L30 of the large (60S) ribosomal subunit, nearly identical to Rpl24Ap and has similarity to rat
L24 ribosomal protein; not essential for translation but may be required for normal translation rate

3394 Translation initiation factor eIF4G, subunit of the mRNA cap-binding protein complex (eIF4F) that also contains
eIF4E (Cdc33p); associates with the poly(A)-binding protein Pab1p, also interacts with eIF4A (Tif1p); homologous
to Tif4632p

3417 Cytoplasmic tyrosyl-tRNA synthetase, required for cytoplasmic protein synthesis; interacts with positions 34 and
35 of the tRNATyr anticodon; mutations in human ortholog YARS are associated with Charcot-Marie-Tooth (CMT)
neuropathies

3436 Cytoplasmic trifunctional enzyme C1-tetrahydrofolate synthase, involved in single carbon metabolism and required
for biosynthesis of purines, thymidylate, methionine, and histidine

3570 Putative nucleolar DEAD box RNA helicase; high-copy number suppression of a U14 snoRNA processing mutant
suggests an involvement in 18S rRNA synthesis

3610 Subunit of the multiprotein cohesin complex required for sister chromatid cohesion in mitotic cells; also required,
with Rec8p, for cohesion and recombination during meiosis; phylogenetically conserved SMC chromosomal ATPase
family member

3653 Endoplasmic reticulum (ER) resident protein required for ER exit of the high-affinity phosphate transporter Pho84p,
specifically required for packaging of Pho84p into COPII vesicles

3725 Protein component of the large (60S) ribosomal subunit, has similarity to rat L39 ribosomal protein; required for
ribosome biogenesis; loss of both Rpl31p and Rpl39p confers lethality; also exhibits genetic interactions with SIS1
and PAB1

3765 Beta-adaptin, large subunit of the clathrin associated protein complex (AP-2); involved in vesicle mediated trans-
port; similar to mammalian beta-chain of the clathrin associated protein complex

3819 Small subunit of the clathrin-associated adaptor complex AP-2, which is involved in protein sorting at the plasma
membrane; related to the sigma subunit of the mammalian plasma membrane clathrin-associated protein (AP-2)
complex

3828 Protein of unknown function, essential for growth under standard (aerobic) conditions but not under anaerobic
conditions

3855 Protein component of the large (60S) ribosomal subunit, identical to Rpl43Ap and has similarity to rat L37a
ribosomal protein

3950 Mitochondrial matrix protein involved in biogenesis of the iron-sulfur (Fe/S) cluster of Fe/S proteins, isa1 deletion
causes loss of mitochondrial DNA and respiratory deficiency; depletion reduces growth on nonfermentable carbon
sources

4012 Essential protein involved in 60S ribosome maturation; ortholog of the human protein (SBDS) responsible for
autosomal recessive Shwachman-Bodian-Diamond Syndrome; highly conserved across archae and eukaryotes

4140 Protein required for optimal translation under nutrient stress; involved in TOR signaling pathway; binds G4 quadru-
plex and purine motif triplex nucleic acid; acts with Cdc13p to maintain telomere structure

4182 Dual function protein involved in translation initiation as a substoichiometric component (eIF3j) of translation
initiation factor 3 (eIF3) and required for processing of 20S pre-rRNA; binds to eIF3 subunits Rpg1p and Prt1p
and 18S rRNA

4322 Component of the exomer complex, which also contains Csh6p, Bch1p, Bch2p, and Bud7p and is involved in export
of selected proteins, such as chitin synthase Chs3p, from the Golgi to the plasma membrane

4325 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps25Ap and has similarity to rat S25
ribosomal protein

4363 GDP/GTP exchange protein (GEP) for Rho1p and Rho2p; mutations are synthetically lethal with mutations in
rom1, which also encodes a GEP

4380 Protein component of the small (40S) ribosomal subunit; nearly identical to Rps29Bp and has similarity to rat S29
and E. coli S14 ribosomal proteins

4422 Presumed helicase required for RNA polymerase II transcription termination and processing of RNAs; homolog of
Senataxin which causes Ataxia-Oculomotor Apraxia 2 and a dominant form of amyotrophic lateral sclerosis

4424 Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family
in S. cerevisiae, constitutively expressed

4427 Protein with a potential role in pre-rRNA processing
4479 Asn rich cytoplasmic protein that contains RGG motifs; high-copy suppressor of group II intron-splicing defects of a

mutation in MRS2 and of a conditional mutation in POL1 (DNA polymerase alpha); possible role in mitochondrial
mRNA splicing

4520 Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family
in S. cerevisiae, constitutively expressed

4537 Lipid-binding protein, localized to the bud via specific mRNA transport; non-tagged protein detected in a phospho-
rylated state in mitochondria; GFP-fusion protein localizes to the cell periphery; C-termini of Tcb1p, Tcb2p and
Tcb3p interact

4648
4725 Putative integral membrane E3 ubiquitin ligase; acts with Asi2p and Asi3p to ensure the fidelity of SPS-sensor

signalling by maintaining the dormant repressed state of gene expression in the absence of inducing signals
4754 eIF3i subunit of the core complex of translation initiation factor 3 (eIF3), which is essential for translation
4873 Translation initiation factor eIF1A, essential protein that forms a complex with Sui1p (eIF1) and the 40S ribosomal

subunit and scans for the start codon; C-terminus associates with Fun12p (eIF5B); N terminus interacts with eIF2
and eIF3

4880 Mitochondrial inorganic pyrophosphatase, required for mitochondrial function and possibly involved in energy gen-
eration from inorganic pyrophosphate

4926 eIF3c subunit of the eukaryotic translation initiation factor 3 (eIF3), involved in the assembly of preinitiation
complex and start codon selection
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4949 Poly(A+) RNA-binding protein, involved in the export of mRNAs from the nucleus to the cytoplasm; similar to

Gbp2p and Npl3p
4953 Putative integral membrane E3 ubiquitin ligase; acts with Asi1p and Asi2p to ensure the fidelity of SPS-sensor

signalling by maintaining the dormant repressed state of gene expression in the absence of inducing signals
4961 Poly (A)+ RNA-binding protein, abundant mRNP-component protein that binds mRNA and is required for stability

of many mRNAs; component of glucose deprivation induced stress granules, involved in P-body-dependent granule
assembly

4968 Protein that binds to Fpr1p, conferring rapamycin resistance by competing with rapamycin for Fpr1p binding;
accumulates in the nucleus upon treatment of cells with rapamycin; has similarity to D. melanogaster shuttle craft
and human NFX1

5006 Subunit of tRNA (1-methyladenosine) methyltransferase with Gcd14p, required for the modification of the adenine
at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression

5107 Cytoplasmic GTPase involved in biogenesis of the 60S ribosome; has similarity to translation elongation factor 2
(Eft1p and Eft2p)

5168 Protein of unknown function; overexpression antagonizes the suppression of splicing defects by spp382 mutants;
green fluorescent protein (GFP)-fusion protein localizes to both the cytoplasm and the nucleus

5188 Translation initiation factor eIF1; component of a complex involved in recognition of the initiator codon; modulates
translation accuracy at the initiation phase

5206 Catalytic subunit of DNA polymerase (II) epsilon, a chromosomal DNA replication polymerase that exhibits proces-
sivity and proofreading exonuclease activity; also involved in DNA synthesis during DNA repair; interacts extensively
with Mrc1p

5243 Non-canonical poly(A) polymerase, involved in nuclear RNA quality control as a component of the TRAMP complex;
catalyzes polyadenylation of rRNA precursors; overlapping functions with Pap2p

5324 Para hydroxybenzoate
5334 Ubiquitin protease cofactor, forms deubiquitination complex with Ubp3p that coregulates anterograde and retro-

grade transport between the endoplasmic reticulum and Golgi compartments; null is sensitive to brefeldin A
5393 Mitochondrial glutamyl-tRNA synthetase, predicted to be palmitoylated
5475 Non-canonical poly(A) polymerase, involved in nuclear RNA quality control as a component of the TRAMP complex;

catalyzes polyadenylation of unmodified tRNAs, and snoRNA and rRNA precursors; overlapping functions with
Trf5p

5483 Subunit of cleavage factor I, a five-subunit complex required for the cleavage and polyadenylation of pre-mRNA 3’
ends; RRM-containing heteronuclear RNA binding protein and hnRNPA/B family member that binds to poly (A)
signal sequences

5499 Cytoplasmic mRNA cap binding protein and translation initiation factor eIF4E; the eIF4E-cap complex is re-
sponsible for mediating cap-dependent mRNA translation via interactions with translation initiation factor eIF4G
(Tif4631p or Tif4632p)

5543 Protein with a role in 5’-end processing of mitochondrial RNAs, located in the mitochondrial membrane
5741 Putative protein of unknown function; the authentic protein is detected in highly purified mitochondria in high-

throughput studies; null mutant displays reduced frequency of mitochondrial genome loss
5887 High-affinity cyclic AMP phosphodiesterase, component of the cAMP-dependent protein kinase signaling system,

protects the cell from extracellular cAMP, contains readthrough motif surrounding termination codon
5888 eIF3b subunit of the core complex of translation initiation factor 3 (eIF3), essential for translation; part of a

subcomplex (Prt1p-Rpg1p-Nip1p) that stimulates binding of mRNA and tRNA(i)Met to ribosomes
5907 Transcriptional repressor involved in the control of multidrug resistance; negatively regulates expression of the

PDR5 gene; member of the Gal4p family of zinc cluster proteins
6125 Protein kinase involved in regulating diverse events including vesicular trafficking, DNA repair, and chromosome

segregation; binds the CTD of RNA pol II; homolog of mammalian casein kinase 1delta (CK1delta)
6148 UDP-glucose
6247 Protein component of the large (60S) ribosomal subunit, identical to Rpl43Bp and has similarity to rat L37a

ribosomal protein; null mutation confers a dominant lethal phenotype
6289 Putative protein of unknown function; subunit of the ASTRA complex (Rvb1p, Rvb2p, Tra1p, Tti1p, Tti2, Asa1p

and Tra1p) which is part of the chromatin remodeling machinery
6336 Ribosomal protein 28 (rp28) of the small (40S) ribosomal subunit, required for translational accuracy; nearly

identical to Rps23Ap and similar to E. coli S12 and rat S23 ribosomal proteins; deletion of both RPS23A and
RPS23B is lethal

6349 Asparagine synthetase, isozyme of Asn2p; catalyzes the synthesis of L-asparagine from L-aspartate in the asparagine
biosynthetic pathway

6367 Translation initiation factor eIF-4B, has RNA annealing activity; contains an RNA recognition motif and binds to
single-stranded RNA

6379 Second largest subunit of DNA polymerase II (DNA polymerase epsilon), required for normal yeast chromosomal
replication; expression peaks at the G1/S phase boundary; potential Cdc28p substrate

7385
7603 Component of the RNA polymerase II general transcription and DNA repair factor TFIIH; involved in transcription

initiation and in nucleotide-excision repair; homolog of Chlamydomonas reinhardtii REX1-S protein involved in
DNA repair
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Table B.5: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in the pink community at
log(λ) = 0.75.

189 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme

316 General transcriptional co-repressor, acts together with Tup1p; also acts as part of a transcriptional co-activator
complex that recruits the SWI/SNF and SAGA complexes to promoters; can form the prion [OCT+]

397 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

457 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

677 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; involved in glucose repression

680 General repressor of transcription, forms complex with Cyc8p, involved in the establishment of repressive chromatin
structure through interactions with histones H3 and H4, appears to enhance expression of some genes

824 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

1083 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; general transcription factor involved in telomere maintenance

1100 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

2163 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

2716 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; target of the global repressor Tup1p

2851 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for stable association of Srb10p-Srb11p kinase; essential for transcriptional
regulation

2993 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for basal and activated transcription; direct target of Cyc8p-Tup1p transcrip-
tional corepressor

3095 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; involved in telomere maintenance; conserved with other metazoan MED31 subunits

3119 Component of the RNA polymerase II mediator complex, which is required for transcriptional activation and also
has a role in basal transcription

3336 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; involved in telomere maintenance

4061 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for glucose repression, HO repression, RME1 repression and sporulation

4466 Basic leucine zipper (bZIP) transcription factor required for oxidative stress tolerance; activated by H2O2 through
the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; mediates resistance to
cadmium

4718 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential protein

4970 Cyclin-like component of the RNA polymerase II holoenzyme, involved in phosphorylation of the RNA polymerase
II C-terminal domain; involved in glucose repression and telomere maintenance

5180 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; contributes to both postive and negative transcriptional regulation; dispensible for basal
transcription

5293 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; component of the Med9/10 module; required for regulation of RNA polymerase II activity

5411 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; affects transcription by acting as target of activators and repressors

5495 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

5539 Dubious opening reading frame unlikely to encode a protein, based on available experimental and comparative
sequence data; partially overlaps the uncharacterized gene YOR012C; null mutant displays increased levels of spon-
taneous Rad52 foci

5666 Transcriptional repressor and activator; involved in repression of flocculation-related genes, and activation of stress
responsive genes; negatively regulated by cAMP-dependent protein kinase A subunit Tpk2p

5700 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

5963 Cyclin-dependent protein kinase, component of RNA polymerase II holoenzyme; involved in phosphorylation of the
RNA polymerase II C-terminal domain; involved in glucose repression

6050 Subunit of TFIID, TFIIF, INO80, SWI/SNF, and NuA3 complexes, involved in RNA polymerase II transcription
initiation and in chromatin modification; contains a YEATS domain

6169 DNA-binding transcription factor required for the activation of the GAL genes in response to galactose; repressed
by Gal80p and activated by Gal3p

6272 Putative class I histone deacetylase (HDAC) with sequence similarity to Hda1p, Rpd3p, Hos2p, and Hos3p; deletion
results in increased histone acetylation at rDNA repeats; interacts with the Tup1p-Ssn6p corepressor complex

6274 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

6372 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for transcriptional activation and has a role in basal transcription
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Table B.6: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in the green community at
log(λ) = 0.75.

285 Subunit of the SAGA transcriptional regulatory complex, involved in proper assembly of the complex; also present
as a C-terminally truncated form in the SLIK/SALSA transcriptional regulatory complex

402 Subunit (90 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in
chromatin modification

516 Probable subunit of SAGA histone acetyltransferase complex
638 TFIID subunit (150 kDa), involved in RNA polymerase II transcription initiation
678 Protein of unknown function, putative transcriptional regulator; proposed to be a Ada Histone acetyltransferase

complex component; GFP tagged protein is localized to the cytoplasm and nucleus
735 Basic leucine zipper (bZIP) transcriptional activator of amino acid biosynthetic genes in response to amino acid

starvation; expression is tightly regulated at both the transcriptional and translational levels
817 Long chain fatty acyl-CoA synthetase; accepts a wider range of acyl chain lengths than Faa1p, preferring C9
950 TATA-binding protein, general transcription factor that interacts with other factors to form the preinitiation com-

plex at promoters, essential for viability
966 Nucleosome remodeling factor that functions in regulation of transcription elongation; contains a chromo domain,

a helicase domain and a DNA-binding domain; component of both the SAGA and SLIK complexes
1141 Subunit of SAGA and NuA4 histone acetyltransferase complexes; interacts with acidic activators (e.g., Gal4p)

which leads to transcription activation; similar to human TRRAP, which is a cofactor for c-Myc mediated oncogenic
transformation

1221 Transcription factor, involved in regulating multidrug resistance and oxidative stress response; forms a heterodimer
with Pdr1p; contains a Zn(II)2Cys6 zinc finger domain that interacts with a pleiotropic drug resistance element in
vitro

2552 Subunit (61/68 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and
in chromatin modification, similar to histone H2A

2553 Transcription factor that activates transcription of genes expressed at the M/G1 phase boundary and in G1 phase;
localization to the nucleus occurs during G1 and appears to be regulated by phosphorylation by Cdc28p kinase

2574 Subunit (145 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in
chromatin modification

2583 Transcriptional regulator involved in glucose repression of Gal4p-regulated genes; component of transcriptional
adaptor and histone acetyltransferase complexes, the ADA complex, the SAGA complex, and the SLIK complex

2624 Carbon source-responsive zinc-finger transcription factor, required for transcription of the glucose-repressed gene
ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization

2800 Subunit of the SAGA and SAGA-like transcriptional regulatory complexes, interacts with Spt15p to activate tran-
scription of some RNA polymerase II-dependent genes, also functions to inhibit transcription at some promoters

2856 Transcription coactivator, component of the ADA and SAGA transcriptional adaptor/HAT (histone acetyltrans-
ferase) complexes

2981 Zinc cluster protein that is a master regulator involved in recruiting other zinc cluster proteins to pleiotropic drug
response elements (PDREs) to fine tune the regulation of multidrug resistance genes

3034 Subunit of SAGA histone acetyltransferase complex; involved in formation of the preinitiation complex assembly at
promoters; null mutant displays defects in premeiotic DNA synthesis

3080 Subunit (60 kDa) of TFIID and SAGA complexes, involved in transcription initiation of RNA polymerase II and in
chromatin modification, similar to histone H4

3506 TFIID subunit (145 kDa), involved in RNA polymerase II transcription initiation, has histone acetyltransferase
activity, involved in promoter binding and G1/S progression

4045 Subunit of the SAGA transcriptional regulatory complex but not present in SAGA-like complex SLIK/SALSA,
required for SAGA-mediated inhibition at some promoters

4477 TFIID subunit (40 kDa), involved in RNA polymerase II transcription initiation, similar to histone H3 with atypical
histone fold motif of Spt3-like transcription factors

4564 TFIID subunit (19 kDa), involved in RNA polymerase II transcription initiation, similar to histone H4 with atypical
histone fold motif of Spt3-like transcription factors

4582 TFIID subunit (65 kDa), involved in RNA polymerase II transcription initiation
4607 TFIID subunit (48 kDa), involved in RNA polymerase II transcription initiation; potential Cdc28p substrate
4609
4621 Protein that binds Sin3p in a two-hybrid assay; contains a Zn(II)2Cys6 zinc finger domain characteristic of DNA-

binding proteins; computational analysis suggests a role in regulation of expression of genes encoding transporters
4836 Ubiquitin-specific protease that is a component of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) acetylation complex;

required for SAGA-mediated deubiquitination of histone H2B
4840 TFIID subunit (67 kDa), involved in RNA polymerase II transcription initiation
4849 Subunit (17 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in

chromatin modification, similar to histone H3
5433 Nuclear pore-associated protein, forms a complex with Sac3p that is involved in transcription and in mRNA export

from the nucleus; contains a PAM domain implicated in protein-protein binding
5508 Subunit of the SAGA transcriptional regulatory complex, involved in maintaining the integrity of the complex
5549 Subunit of the Ada histone acetyltransferase complex, required for structural integrity of the complex
5932 TFIID subunit (47 kDa), involved in promoter binding and RNA polymerase II transcription initiation
5968 Integral subunit of SAGA histone acetyltransferase complex, regulates transcription of a subset of SAGA-regulated

genes, required for the Ubp8p association with SAGA and for H2B deubiquitylation
6175 Adaptor protein required for structural integrity of the SAGA complex, a histone acetyltransferase-coactivator

complex that is involved in global regulation of gene expression through acetylation and transcription functions
28510 Protein involved in mRNA export coupled transcription activation and elongation; component of both the SAGA

histone acetylase complex and TREX-2, and interacts with RNAPII
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Table B.7: Example given in Figures 3.4 b). Of the proteins found in the
community at log(λ) = 0.5, the proteins in neither the pink nor the green
community at log(λ) = 0.75.

223 UDP-glucose-4-epimerase, catalyzes the interconversion of UDP-galactose and UDP-D-glucose in galactose
metabolism; also catalyzes the conversion of alpha-D-glucose or alpha-D-galactose to their beta-anomers

598 Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate, peroxisomal
isozyme involved in glyoxylate cycle; expression is controlled by Rtg1p and Rtg2p transcription factors

1770 TFIIE small subunit, involved in RNA polymerase II transcription initiation
2266 Serine/threonine protein kinase, subunit of the transcription factor TFIIH; involved in transcription initiation at

RNA polymerase II promoters
2779 Protein similar to Ashbya gossypii sporulation-specific chitinase
3221 Sensor of mitochondrial dysfunction; regulates the subcellular location of Rtg1p and Rtg3p, transcriptional activa-

tors of the retrograde (RTG) and TOR pathways; Rtg2p is inhibited by the phosphorylated form of Mks1p
3484 Histone acetyltransferase, acetylates N-terminal lysines on histones H2B and H3; catalytic subunit of the ADA and

SAGA histone acetyltransferase complexes; founding member of the Gcn5p-related N-acetyltransferase superfamily
3629 Outward-rectifier potassium channel of the plasma membrane with two pore domains in tandem, each of which

forms a functional channel permeable to potassium; carboxy tail functions to prevent inner gate closures; target of
K1 toxin

4103 Mitogen-activated protein kinase involved in osmoregulation via three independent osmosensors; mediates the re-
cruitment and activation of RNA Pol II at Hot1p-dependent promoters; localization regulated by Ptp2p and Ptp3p

4305 Protein involved in shmoo formation and bipolar bud site selection; homologous to Spa2p, localizes to sites of
polarized growth in a cell cycle dependent- and Spa2p-dependent manner, interacts with MAPKKs Mkk1p, Mkk2p,
and Ste7p

5011 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl9Ap and has similarity to E. coli L6
and rat L9 ribosomal proteins

5111 Basic leucine zipper (bZIP) transcription factor of the ATF/CREB family, forms a complex with Tup1p and Ssn6p
to both activate and repress transcription; cytosolic and nuclear protein involved in osmotic and oxidative stress
responses

5452
6037 Trichostatin A-insensitive homodimeric histone deacetylase (HDAC) with specificity in vitro for histones H3, H4,

H2A, and H2B; similar to Hda1p, Rpd3p, Hos1p, and Hos2p; deletion results in increased histone acetylation at
rDNA repeats

6043 Subunit of TFIIH and nucleotide excision repair factor 3 complexes, involved in transcription initiation, required
for nucleotide excision repair, similar to 52 kDa subunit of human TFIIH

6260 Subunit of TFIIH complex, involved in transcription initiation, similar to 34 kDa subunit of human TFIIH; interacts
with Ssl1p

7251 Ubiquitin-like protein modifier, may function in modification of Sph1p and Hbt1p, functionally complemented by
the human or S. pombe ortholog; mechanism of Hub1p adduct formation not yet clear

7603 Component of the RNA polymerase II general transcription and DNA repair factor TFIIH; involved in transcription
initiation and in nucleotide-excision repair; homolog of Chlamydomonas reinhardtii REX1-S protein involved in
DNA repair
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Table B.8: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in the pink community at
log(λ) = 1.6.

189 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme

397 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

677 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; involved in glucose repression

824 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

1083 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; general transcription factor involved in telomere maintenance

1100 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

2163 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

2716 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; target of the global repressor Tup1p

2851 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for stable association of Srb10p-Srb11p kinase; essential for transcriptional
regulation

2993 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for basal and activated transcription; direct target of Cyc8p-Tup1p transcrip-
tional corepressor

3095 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; involved in telomere maintenance; conserved with other metazoan MED31 subunits

3119 Component of the RNA polymerase II mediator complex, which is required for transcriptional activation and also
has a role in basal transcription

3336 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation; involved in telomere maintenance

4061 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for glucose repression, HO repression, RME1 repression and sporulation

4466 Basic leucine zipper (bZIP) transcription factor required for oxidative stress tolerance; activated by H2O2 through
the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; mediates resistance to
cadmium

4718 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential protein

5180 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; contributes to both postive and negative transcriptional regulation; dispensible for basal
transcription

5293 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; component of the Med9/10 module; required for regulation of RNA polymerase II activity

5411 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; affects transcription by acting as target of activators and repressors

5495 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

5539 Dubious opening reading frame unlikely to encode a protein, based on available experimental and comparative
sequence data; partially overlaps the uncharacterized gene YOR012C; null mutant displays increased levels of spon-
taneous Rad52 foci

5700 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

5963 Cyclin-dependent protein kinase, component of RNA polymerase II holoenzyme; involved in phosphorylation of the
RNA polymerase II C-terminal domain; involved in glucose repression

6274 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

6372 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for transcriptional activation and has a role in basal transcription
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Table B.9: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in the green community at
log(λ) = 1.6.

285 Subunit of the SAGA transcriptional regulatory complex, involved in proper assembly of the complex; also present
as a C-terminally truncated form in the SLIK/SALSA transcriptional regulatory complex

516 Probable subunit of SAGA histone acetyltransferase complex
966 Nucleosome remodeling factor that functions in regulation of transcription elongation; contains a chromo domain,

a helicase domain and a DNA-binding domain; component of both the SAGA and SLIK complexes
2574 Subunit (145 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in

chromatin modification
2583 Transcriptional regulator involved in glucose repression of Gal4p-regulated genes; component of transcriptional

adaptor and histone acetyltransferase complexes, the ADA complex, the SAGA complex, and the SLIK complex
2800 Subunit of the SAGA and SAGA-like transcriptional regulatory complexes, interacts with Spt15p to activate tran-

scription of some RNA polymerase II-dependent genes, also functions to inhibit transcription at some promoters
2856 Transcription coactivator, component of the ADA and SAGA transcriptional adaptor/HAT (histone acetyltrans-

ferase) complexes
3034 Subunit of SAGA histone acetyltransferase complex; involved in formation of the preinitiation complex assembly at

promoters; null mutant displays defects in premeiotic DNA synthesis
4045 Subunit of the SAGA transcriptional regulatory complex but not present in SAGA-like complex SLIK/SALSA,

required for SAGA-mediated inhibition at some promoters
4609
4836 Ubiquitin-specific protease that is a component of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) acetylation complex;

required for SAGA-mediated deubiquitination of histone H2B
4849 Subunit (17 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in

chromatin modification, similar to histone H3
5508 Subunit of the SAGA transcriptional regulatory complex, involved in maintaining the integrity of the complex
5968 Integral subunit of SAGA histone acetyltransferase complex, regulates transcription of a subset of SAGA-regulated

genes, required for the Ubp8p association with SAGA and for H2B deubiquitylation
6175 Adaptor protein required for structural integrity of the SAGA complex, a histone acetyltransferase-coactivator

complex that is involved in global regulation of gene expression through acetylation and transcription functions
28510 Protein involved in mRNA export coupled transcription activation and elongation; component of both the SAGA

histone acetylase complex and TREX-2, and interacts with RNAPII

Table B.10: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in the orange community at
log(λ) = 1.6.

402 Subunit (90 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and in
chromatin modification

638 TFIID subunit (150 kDa), involved in RNA polymerase II transcription initiation
3506 TFIID subunit (145 kDa), involved in RNA polymerase II transcription initiation, has histone acetyltransferase

activity, involved in promoter binding and G1/S progression
4477 TFIID subunit (40 kDa), involved in RNA polymerase II transcription initiation, similar to histone H3 with atypical

histone fold motif of Spt3-like transcription factors
4564 TFIID subunit (19 kDa), involved in RNA polymerase II transcription initiation, similar to histone H4 with atypical

histone fold motif of Spt3-like transcription factors
4582 TFIID subunit (65 kDa), involved in RNA polymerase II transcription initiation
4607 TFIID subunit (48 kDa), involved in RNA polymerase II transcription initiation; potential Cdc28p substrate
4840 TFIID subunit (67 kDa), involved in RNA polymerase II transcription initiation
5932 TFIID subunit (47 kDa), involved in promoter binding and RNA polymerase II transcription initiation

196



Table B.11: Example given in Figures 3.4 b). Of the proteins found in
the community at log(λ) = 0.5, the proteins in neither the pink, green nor
orange communities at log(λ) = 1.6.

223 UDP-glucose-4-epimerase, catalyzes the interconversion of UDP-galactose and UDP-D-glucose in galactose
metabolism; also catalyzes the conversion of alpha-D-glucose or alpha-D-galactose to their beta-anomers

316 General transcriptional co-repressor, acts together with Tup1p; also acts as part of a transcriptional co-activator
complex that recruits the SWI/SNF and SAGA complexes to promoters; can form the prion [OCT+]

457 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; essential for transcriptional regulation

598 Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate, peroxisomal
isozyme involved in glyoxylate cycle; expression is controlled by Rtg1p and Rtg2p transcription factors

678 Protein of unknown function, putative transcriptional regulator; proposed to be a Ada Histone acetyltransferase
complex component; GFP tagged protein is localized to the cytoplasm and nucleus

680 General repressor of transcription, forms complex with Cyc8p, involved in the establishment of repressive chromatin
structure through interactions with histones H3 and H4, appears to enhance expression of some genes

735 Basic leucine zipper (bZIP) transcriptional activator of amino acid biosynthetic genes in response to amino acid
starvation; expression is tightly regulated at both the transcriptional and translational levels

817 Long chain fatty acyl-CoA synthetase; accepts a wider range of acyl chain lengths than Faa1p, preferring C9
950 TATA-binding protein, general transcription factor that interacts with other factors to form the preinitiation com-

plex at promoters, essential for viability
1141 Subunit of SAGA and NuA4 histone acetyltransferase complexes; interacts with acidic activators (e.g., Gal4p)

which leads to transcription activation; similar to human TRRAP, which is a cofactor for c-Myc mediated oncogenic
transformation

1221 Transcription factor, involved in regulating multidrug resistance and oxidative stress response; forms a heterodimer
with Pdr1p; contains a Zn(II)2Cys6 zinc finger domain that interacts with a pleiotropic drug resistance element in
vitro

1770 TFIIE small subunit, involved in RNA polymerase II transcription initiation
2266 Serine/threonine protein kinase, subunit of the transcription factor TFIIH; involved in transcription initiation at

RNA polymerase II promoters
2552 Subunit (61/68 kDa) of TFIID and SAGA complexes, involved in RNA polymerase II transcription initiation and

in chromatin modification, similar to histone H2A
2553 Transcription factor that activates transcription of genes expressed at the M/G1 phase boundary and in G1 phase;

localization to the nucleus occurs during G1 and appears to be regulated by phosphorylation by Cdc28p kinase
2624 Carbon source-responsive zinc-finger transcription factor, required for transcription of the glucose-repressed gene

ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization
2779 Protein similar to Ashbya gossypii sporulation-specific chitinase
2981 Zinc cluster protein that is a master regulator involved in recruiting other zinc cluster proteins to pleiotropic drug

response elements (PDREs) to fine tune the regulation of multidrug resistance genes
3080 Subunit (60 kDa) of TFIID and SAGA complexes, involved in transcription initiation of RNA polymerase II and in

chromatin modification, similar to histone H4
3221 Sensor of mitochondrial dysfunction; regulates the subcellular location of Rtg1p and Rtg3p, transcriptional activa-

tors of the retrograde (RTG) and TOR pathways; Rtg2p is inhibited by the phosphorylated form of Mks1p
3484 Histone acetyltransferase, acetylates N-terminal lysines on histones H2B and H3; catalytic subunit of the ADA and

SAGA histone acetyltransferase complexes; founding member of the Gcn5p-related N-acetyltransferase superfamily
3629 Outward-rectifier potassium channel of the plasma membrane with two pore domains in tandem, each of which

forms a functional channel permeable to potassium; carboxy tail functions to prevent inner gate closures; target of
K1 toxin

4103 Mitogen-activated protein kinase involved in osmoregulation via three independent osmosensors; mediates the re-
cruitment and activation of RNA Pol II at Hot1p-dependent promoters; localization regulated by Ptp2p and Ptp3p

4305 Protein involved in shmoo formation and bipolar bud site selection; homologous to Spa2p, localizes to sites of
polarized growth in a cell cycle dependent- and Spa2p-dependent manner, interacts with MAPKKs Mkk1p, Mkk2p,
and Ste7p

4621 Protein that binds Sin3p in a two-hybrid assay; contains a Zn(II)2Cys6 zinc finger domain characteristic of DNA-
binding proteins; computational analysis suggests a role in regulation of expression of genes encoding transporters

4970 Cyclin-like component of the RNA polymerase II holoenzyme, involved in phosphorylation of the RNA polymerase
II C-terminal domain; involved in glucose repression and telomere maintenance

5011 Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl9Ap and has similarity to E. coli L6
and rat L9 ribosomal proteins

5111 Basic leucine zipper (bZIP) transcription factor of the ATF/CREB family, forms a complex with Tup1p and Ssn6p
to both activate and repress transcription; cytosolic and nuclear protein involved in osmotic and oxidative stress
responses

5433 Nuclear pore-associated protein, forms a complex with Sac3p that is involved in transcription and in mRNA export
from the nucleus; contains a PAM domain implicated in protein-protein binding

5452
5549 Subunit of the Ada histone acetyltransferase complex, required for structural integrity of the complex
5666 Transcriptional repressor and activator; involved in repression of flocculation-related genes, and activation of stress

responsive genes; negatively regulated by cAMP-dependent protein kinase A subunit Tpk2p
6037 Trichostatin A-insensitive homodimeric histone deacetylase (HDAC) with specificity in vitro for histones H3, H4,

H2A, and H2B; similar to Hda1p, Rpd3p, Hos1p, and Hos2p; deletion results in increased histone acetylation at
rDNA repeats

6043 Subunit of TFIIH and nucleotide excision repair factor 3 complexes, involved in transcription initiation, required
for nucleotide excision repair, similar to 52 kDa subunit of human TFIIH

6050 Subunit of TFIID, TFIIF, INO80, SWI/SNF, and NuA3 complexes, involved in RNA polymerase II transcription
initiation and in chromatin modification; contains a YEATS domain

6169 DNA-binding transcription factor required for the activation of the GAL genes in response to galactose; repressed
by Gal80p and activated by Gal3p

6260 Subunit of TFIIH complex, involved in transcription initiation, similar to 34 kDa subunit of human TFIIH; interacts
with Ssl1p

6272 Putative class I histone deacetylase (HDAC) with sequence similarity to Hda1p, Rpd3p, Hos2p, and Hos3p; deletion
results in increased histone acetylation at rDNA repeats; interacts with the Tup1p-Ssn6p corepressor complex

7251 Ubiquitin-like protein modifier, may function in modification of Sph1p and Hbt1p, functionally complemented by
the human or S. pombe ortholog; mechanism of Hub1p adduct formation not yet clear

7603 Component of the RNA polymerase II general transcription and DNA repair factor TFIIH; involved in transcription
initiation and in nucleotide-excision repair; homolog of Chlamydomonas reinhardtii REX1-S protein involved in
DNA repair
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Appendix C

Examples of community

membership following individual

proteins

The proteins found in some of the communities discussed in Section 3.9. For each

of the five proteins selected as examples in that section, we illustrate the proteins

they co-occur with in some example communities. Protein numbers are the SGD

identification numbers (Saccharomyces Genome Database, www.yeastgenome.org,

[53]), the short descriptions are given on the SGD website.
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Table C.1: From Figure 3.13: Protein 514 (YCL008C), component of the
ESCRT-I complex, which is involved in ubiquitin-dependent sorting of
proteins into the endosome, log(λ) = 2 in the A network

.

177
514 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;

homologous to the mouse and human Tsg101 tumor susceptibility gene; mutants exhibit a Class E Vps phenotype
661 Forkhead transcription factor that drives S-phase specific expression of genes involved in chromosome segregation,

spindle dynamics, and budding; suppressor of calmodulin mutants with specific SPB assembly defects; telomere
maintenance role

1485 Class E Vps protein of the ESCRT-III complex, required for sorting of integral membrane proteins into lumenal
vesicles of multivesicular bodies, and for delivery of newly synthesized vacuolar enzymes to the vacuole, involved in
endocytosis

1524 One of four subunits of the endosomal sorting complex required for transport III (ESCRT-III); forms an ESCRT-III
subcomplex with Did4p; involved in the sorting of transmembrane proteins into the multivesicular body (MVB)
pathway

2894 Cytoplasmic and vacuolar membrane protein involved in late endosome to vacuole transport; required for normal
filament maturation during pseudohyphal growth; may function in targeting cargo proteins for degradation; interacts
with Vta1p

3438 ESCRT-I subunit required to stabilize oligomers of the ESCRT-I core complex (Stp22p, Vps28p, Srn2p), which is
involved in ubiquitin-dependent sorting of proteins into the endosome; deletion mutant is sensitive to rapamycin
and nystatin

3708 Vacuolar carboxypeptidase yscS; expression is induced under low-nitrogen conditions
3863 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome
4015 One of four subunits of the endosomal sorting complex required for transport III (ESCRT-III); involved in the

sorting of transmembrane proteins into the multivesicular body (MVB) pathway; recruited from the cytoplasm to
endosomal membranes

4109 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;
suppressor of rna1-1 mutation; may be involved in RNA export from nucleus

4171 Multivesicular body (MVB) protein involved in endosomal protein sorting; regulates Vps4p activity by promoting
its oligomerization; has an N-terminal Vps60- and Did2- binding domain, a linker region, and a C-terminal Vps4p
binding domain

4409 Component of the ESCRT-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domain which
is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endosome

4682 Myristoylated subunit of ESCRTIII, the endosomal sorting complex required for transport of transmembrane pro-
teins into the multivesicular body pathway to the lysosomal/vacuolar lumen; cytoplasmic protein recruited to
endosomal membranes

5923 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endo-
some; appears to be functionally related to SNF7; involved in glucose derepression

5986 Component of the ESCRT-I complex (Stp22p, Srn2p, Vps28p, and Mvb12p), which is involved in ubiquitin-
dependent sorting of proteins into the endosome; conserved C-terminal domain interacts with ESCRT-III subunit
Vps20p

6005 Cytoplasmic class E vacuolar protein sorting (VPS) factor that coordinates deubiquitination in the multivesicular
body (MVB) pathway by recruiting Doa4p to endosomes

6377 AAA-ATPase involved in multivesicular body (MVB) protein sorting, ATP-bound Vps4p localizes to endosomes and
catalyzes ESCRT-III disassembly and membrane release; ATPase activity is activated by Vta1p; regulates cellular
sterol metabolism

6435 Class E protein of the vacuolar protein-sorting (Vps) pathway; binds Vps4p and directs it to dissociate ESCRT-III
complexes; forms a functional and physical complex with Ist1p; human ortholog may be altered in breast tumors
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Table C.2: From Figure 3.13: Protein 514 (YCL008C), log(λ) = 1 in the P
network

.

401
466 Protein of unknown function; the authentic, non-tagged protein is detected in purified mitochondria in high-

throughput studies; null mutant displays elevated frequency of mitochondrial genome loss
514 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;

homologous to the mouse and human Tsg101 tumor susceptibility gene; mutants exhibit a Class E Vps phenotype
554
783
800
894 Protein that associates with the INO80 chromatin remodeling complex under low-salt conditions
923
930

1019 Transcriptional repressor involved in response to pH and in cell wall construction; required for alkaline pH-stimulated
haploid invasive growth and sporulation; activated by proteolytic processing; similar to A. nidulans PacC

1485 Class E Vps protein of the ESCRT-III complex, required for sorting of integral membrane proteins into lumenal
vesicles of multivesicular bodies, and for delivery of newly synthesized vacuolar enzymes to the vacuole, involved in
endocytosis

1524 One of four subunits of the endosomal sorting complex required for transport III (ESCRT-III); forms an ESCRT-III
subcomplex with Did4p; involved in the sorting of transmembrane proteins into the multivesicular body (MVB)
pathway

2476 Ubiquitin isopeptidase, required for recycling ubiquitin from proteasome-bound ubiquitinated intermediates, acts at
the late endosome/prevacuolar compartment to recover ubiquitin from ubiquitinated membrane proteins en route
to the vacuole

2698
2894 Cytoplasmic and vacuolar membrane protein involved in late endosome to vacuole transport; required for normal

filament maturation during pseudohyphal growth; may function in targeting cargo proteins for degradation; interacts
with Vta1p

2949
3227 Protein of unknown function; highly induced in zinc-depleted conditions and has increased expression in NAP1

deletion mutants
3354
3438 ESCRT-I subunit required to stabilize oligomers of the ESCRT-I core complex (Stp22p, Vps28p, Srn2p), which is

involved in ubiquitin-dependent sorting of proteins into the endosome; deletion mutant is sensitive to rapamycin
and nystatin

3592 Zinc-regulated transcription factor, binds to zinc-responsive promoter elements to induce transcription of certain
genes in the presence of zinc; regulates its own transcription; contains seven zinc-finger domains

3863 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome
4015 One of four subunits of the endosomal sorting complex required for transport III (ESCRT-III); involved in the

sorting of transmembrane proteins into the multivesicular body (MVB) pathway; recruited from the cytoplasm to
endosomal membranes

4063 Protein that inhibits Doa4p deubiquitinating activity; contributes to ubiquitin homeostasis by regulating the con-
version of free ubiquitin chains to ubiquitin monomers by Doa4p; GFP-fusion protein localizes to endosomes

4109 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;
suppressor of rna1-1 mutation; may be involved in RNA export from nucleus

4171 Multivesicular body (MVB) protein involved in endosomal protein sorting; regulates Vps4p activity by promoting
its oligomerization; has an N-terminal Vps60- and Did2- binding domain, a linker region, and a C-terminal Vps4p
binding domain

4409 Component of the ESCRT-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domain which
is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endosome

4682 Myristoylated subunit of ESCRTIII, the endosomal sorting complex required for transport of transmembrane pro-
teins into the multivesicular body pathway to the lysosomal/vacuolar lumen; cytoplasmic protein recruited to
endosomal membranes

5209 Protein with a positive role in the multivesicular body sorting pathway; functions and forms a complex with Did2p;
recruitment to endosomes is mediated by the Vps2p-Vps24p subcomplex of ESCRT-III; also interacts with Vps4p

5801 Protein involved in proteolytic activation of Rim101p in response to alkaline pH; PalA/AIP1/Alix family member;
interaction with the ESCRT-III subunit Snf7p suggests a relationship between pH response and multivesicular body
formation

5923 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endo-
some; appears to be functionally related to SNF7; involved in glucose derepression

5986 Component of the ESCRT-I complex (Stp22p, Srn2p, Vps28p, and Mvb12p), which is involved in ubiquitin-
dependent sorting of proteins into the endosome; conserved C-terminal domain interacts with ESCRT-III subunit
Vps20p

6005 Cytoplasmic class E vacuolar protein sorting (VPS) factor that coordinates deubiquitination in the multivesicular
body (MVB) pathway by recruiting Doa4p to endosomes

6377 AAA-ATPase involved in multivesicular body (MVB) protein sorting, ATP-bound Vps4p localizes to endosomes and
catalyzes ESCRT-III disassembly and membrane release; ATPase activity is activated by Vta1p; regulates cellular
sterol metabolism

6435 Class E protein of the vacuolar protein-sorting (Vps) pathway; binds Vps4p and directs it to dissociate ESCRT-III
complexes; forms a functional and physical complex with Ist1p; human ortholog may be altered in breast tumors
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Table C.3: From Figure 3.13: Protein 514 (YCL008C), log(λ) = 2 in the P
network

.

514 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;
homologous to the mouse and human Tsg101 tumor susceptibility gene; mutants exhibit a Class E Vps phenotype

3438 ESCRT-I subunit required to stabilize oligomers of the ESCRT-I core complex (Stp22p, Vps28p, Srn2p), which is
involved in ubiquitin-dependent sorting of proteins into the endosome; deletion mutant is sensitive to rapamycin
and nystatin

3863 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome
4109 Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome;

suppressor of rna1-1 mutation; may be involved in RNA export from nucleus
4409 Component of the ESCRT-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domain which

is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endosome
4682 Myristoylated subunit of ESCRTIII, the endosomal sorting complex required for transport of transmembrane pro-

teins into the multivesicular body pathway to the lysosomal/vacuolar lumen; cytoplasmic protein recruited to
endosomal membranes

5923 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endo-
some; appears to be functionally related to SNF7; involved in glucose derepression

5986 Component of the ESCRT-I complex (Stp22p, Srn2p, Vps28p, and Mvb12p), which is involved in ubiquitin-
dependent sorting of proteins into the endosome; conserved C-terminal domain interacts with ESCRT-III subunit
Vps20p
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Table C.4: From Figure 3.14 a): Protein 2 (YAL002W), Membrane-
associated protein that interacts with Vps21p to facilitate soluble vacuolar
protein localization; component of the CORVET complex; required for lo-
calization and trafficking of the CPY sorting receptor; contains RING
finger motif, log(λ) = 1 in the A network

.

2 Membrane-associated protein that interacts with Vps21p to facilitate soluble vacuolar protein localization; compo-
nent of the CORVET complex; required for localization and trafficking of the CPY sorting receptor; contains RING
finger motif

12 Endosomal SNARE related to mammalian syntaxin 8
146 Peripheral membrane protein required for vesicular transport between ER and Golgi and for the ’priming’ step in

homotypic vacuole fusion, part of the cis-SNARE complex; has similarity to alpha-SNAP
284 ATPase required for the release of Sec17p during the ’priming’ step in homotypic vacuole fusion and for ER to Golgi

transport; homolog of the mammalian NSF
335 Protein involved in vacuolar assembly, essential for autophagy and the cytoplasm-to-vacuole pathway
404 Protein containing SH3-domains, involved in establishing cell polarity and morphogenesis; functions as a scaffold

protein for complexes that include Cdc24p, Ste5p, Ste20p, and Rsr1p
492 Mu3-like subunit of the clathrin associated protein complex (AP-3); functions in transport of alkaline phosphatase

to the vacuole via the alternate pathway
1003 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP, which is required for nucleotide, histidine,

and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes
1679 Vesicle membrane protein (v-SNARE) with acyltransferase activity; involved in trafficking to and within the Golgi,

endocytic trafficking to the vacuole, and vacuolar fusion; membrane localization due to prenylation at the carboxy-
terminus

2235 Vacuolar protein that plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine
nucleotide exchange on small guanosine triphosphatase Ypt7p

2487 Vacuolar membrane protein that is a subunit of the homotypic vacuole fusion and vacuole protein sorting (HOPS)
complex; essential for membrane docking and fusion at the Golgi-to-endosome and endosome-to-vacuole stages of
protein transport

2597 Hydrophilic protein involved in vesicle trafficking between the ER and Golgi; SM (Sec1/Munc-18) family protein
that binds the tSNARE Sed5p and stimulates its assembly into a trans-SNARE membrane-protein complex

2672 Palmitoyl transferase involved in protein palmitoylation; acts as a negative regulator of pheromone response path-
way; required for endocytosis of pheromone receptors; involved in cell shape control; contains ankyrin repeats

2731 Multivalent adaptor protein that facilitates vesicle-mediated vacuolar protein sorting by ensuring high-fidelity vesicle
docking and fusion, which are essential for targeting of vesicles to the endosome; required for vacuole inheritance

2903 Component of CORVET tethering complex; cytoplasmic protein required for the sorting and processing of soluble
vacuolar proteins, acidification of the vacuolar lumen, and assembly of the vacuolar H+-ATPase

2906 Membrane glycoprotein v-SNARE involved in retrograde transport from the Golgi to the ER; required for N- and
O-glycosylation in the Golgi but not in the ER; forms a complex with the cytosolic Tip20p

3063 Protein of the Sec1p/Munc-18 family, essential for vacuolar protein sorting; required for the function of Pep12p
and the early endosome/late Golgi SNARE Tlg2p; essential for fusion of Golgi-derived vesicles with the prevacuolar
compartment

3066 Essential SNARE protein localized to the ER, involved in retrograde traffic from the Golgi to the ER; forms a
complex with the SNAREs Sec22p, Sec20p and Ufe1p

3092 Protein required for fusion of cvt-vesicles and autophagosomes with the vacuole; associates, as a complex with
Ccz1p, with a perivacuolar compartment; potential Cdc28p substrate

3113 Peripheral membrane protein required for fusion of COPI vesicles with the ER, prohibits back-fusion of COPII
vesicles with the ER, may act as a sensor for vesicles at the ER membrane; interacts with Sec20p

3180 Component of the vacuole SNARE complex involved in vacuolar morphogenesis; SNAP-25 homolog; functions with
a syntaxin homolog Vam3p in vacuolar protein trafficking

3493 Beta3-like subunit of the yeast AP-3 complex; functions in transport of alkaline phosphatase to the vacuole via the
alternate pathway; exists in both cytosolic and peripherally associated membrane-bound pools

3561 Small subunit of the clathrin-associated adaptor complex AP-3, which is involved in vacuolar protein sorting; related
to the sigma subunit of the mammalian clathrin AP-3 complex; suppressor of loss of casein kinase 1 function

4083 v-SNARE component of the vacuolar SNARE complex involved in vesicle fusion; inhibits ATP-dependent Ca(2+)
transport activity of Pmc1p in the vacuolar membrane

4138 Component of CORVET tethering complex; vacuolar peripheral membrane protein that promotes vesicular dock-
ing/fusion reactions in conjunction with SNARE proteins, required for vacuolar biogenesis

4388 ATP-binding protein that is a subunit of the HOPS complex and the CORVET tethering complex; essential for
membrane docking and fusion at both the Golgi-to-endosome and endosome-to-vacuole stages of protein transport

4432 Protein of unknown function proposed to be involved in protein secretion; interacts with Dsl1p and localizes to the
ER and nuclear envelope

4460 GTPase; GTP-binding protein of the rab family; required for homotypic fusion event in vacuole inheritance, for
endosome-endosome fusion, similar to mammalian Rab7

4810 Protein involved in cis-Golgi membrane traffic; v-SNARE that interacts with two t-SNARES, Sed5p and Pep12p;
required for multiple vacuolar sorting pathways

4844 Component of CORVET tethering complex; peripheral vacuolar membrane protein required for protein trafficking
and vacuole biogenesis; interacts with Pep7p

5202 Peripheral membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that
interacts with coatomer, the major component of the COPI vesicle protein coat; also interacts with Cin5p and
Sec39p

5560 Ankyrin repeat-containing protein similar to Akr1p; member of a family of putative palmitoyltransferases containing
an Asp-His-His-Cys-cysteine rich (DHHC-CRD) domain; possibly involved in constitutive endocytosis of Ste3p

5562 Target membrane receptor (t-SNARE) for vesicular intermediates traveling between the Golgi apparatus and the
vacuole; controls entry of biosynthetic, endocytic, and retrograde traffic into the prevacuolar compartment; syntaxin

5601 t-SNARE required for ER membrane fusion and vesicular traffic, integral membrane protein that constitutes with
Sec20p and Use1p the trimeric acceptor for R/v-SNAREs on Golgi-derived vesicles at the ER; part of Dsl1p complex

5632 Syntaxin-related protein required for vacuolar assembly; functions with Vam7p in vacuolar protein trafficking; mem-
ber of the syntaxin family of proteins

5697 Sphingoid long-chain base kinase, responsible for synthesis of long-chain base phosphates, which function as signaling
molecules, regulates synthesis of ceramide from exogenous long-chain bases, localizes to the Golgi and late endosomes

5966 Subunit of the vacuole fusion and protein sorting HOPS complex and the CORVET tethering complex; part of the
Class C Vps complex essential for membrane docking and fusion at Golgi-to-endosome and endosome-to-vacuole
protein transport stages

6116 Delta adaptin-like subunit of the clathrin associated protein complex (AP-3); functions in transport of alkaline
phosphatase to the vacuole via the alternate pathway, suppressor of loss of casein kinase 1 function
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Table C.5: From Figure 3.14 a): Protein 2 (YAL002W), log(λ) = 2 in the A
network

.

2 Membrane-associated protein that interacts with Vps21p to facilitate soluble vacuolar protein localization; compo-
nent of the CORVET complex; required for localization and trafficking of the CPY sorting receptor; contains RING
finger motif

335 Protein involved in vacuolar assembly, essential for autophagy and the cytoplasm-to-vacuole pathway
2235 Vacuolar protein that plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine

nucleotide exchange on small guanosine triphosphatase Ypt7p
2487 Vacuolar membrane protein that is a subunit of the homotypic vacuole fusion and vacuole protein sorting (HOPS)

complex; essential for membrane docking and fusion at the Golgi-to-endosome and endosome-to-vacuole stages of
protein transport

2903 Component of CORVET tethering complex; cytoplasmic protein required for the sorting and processing of soluble
vacuolar proteins, acidification of the vacuolar lumen, and assembly of the vacuolar H+-ATPase

3180 Component of the vacuole SNARE complex involved in vacuolar morphogenesis; SNAP-25 homolog; functions with
a syntaxin homolog Vam3p in vacuolar protein trafficking

4083 v-SNARE component of the vacuolar SNARE complex involved in vesicle fusion; inhibits ATP-dependent Ca(2+)
transport activity of Pmc1p in the vacuolar membrane

4138 Component of CORVET tethering complex; vacuolar peripheral membrane protein that promotes vesicular dock-
ing/fusion reactions in conjunction with SNARE proteins, required for vacuolar biogenesis

4388 ATP-binding protein that is a subunit of the HOPS complex and the CORVET tethering complex; essential for
membrane docking and fusion at both the Golgi-to-endosome and endosome-to-vacuole stages of protein transport

4460 GTPase; GTP-binding protein of the rab family; required for homotypic fusion event in vacuole inheritance, for
endosome-endosome fusion, similar to mammalian Rab7

4810 Protein involved in cis-Golgi membrane traffic; v-SNARE that interacts with two t-SNARES, Sed5p and Pep12p;
required for multiple vacuolar sorting pathways

4844 Component of CORVET tethering complex; peripheral vacuolar membrane protein required for protein trafficking
and vacuole biogenesis; interacts with Pep7p

5632 Syntaxin-related protein required for vacuolar assembly; functions with Vam7p in vacuolar protein trafficking; mem-
ber of the syntaxin family of proteins

5966 Subunit of the vacuole fusion and protein sorting HOPS complex and the CORVET tethering complex; part of the
Class C Vps complex essential for membrane docking and fusion at Golgi-to-endosome and endosome-to-vacuole
protein transport stages

Table C.6: From Figure 3.14 b): Protein 9 (YAL011W), Protein of unknown
function, component of the SWR1 complex, which exchanges histone vari-
ant H2AZ (Htz1p) for chromatin-bound histone H2A; required for forma-
tion of nuclear-associated array of smooth endoplasmic reticulum known
as karmellae, log(λ) = 1.75 in the A network

.

9 Protein of unknown function, component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for
chromatin-bound histone H2A; required for formation of nuclear-associated array of smooth endoplasmic reticulum
known as karmellae

435 Protein of unknown function, component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for
chromatin-bound histone H2A

2742 Swi2/Snf2-related ATPase that is the structural component of the SWR1 complex, which exchanges histone variant
H2AZ (Htz1p) for chromatin-bound histone H2A

2893 Htz1p-binding component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for chromatin-
bound histone H2A; required for vacuolar protein sorting

3234 Component of the Swr1p complex that incorporates Htz1p into chromatin; component of the NuA4 histone acetyl-
transferase complex

3617 Nuclear actin-related protein involved in chromatin remodeling, component of chromatin-remodeling enzyme com-
plexes

4075 Actin-related protein that binds nucleosomes; a component of the SWR1 complex, which exchanges histone variant
H2AZ (Htz1p) for chromatin-bound histone H2A

4377 Protein of unknown function, component of the Swr1p complex that incorporates Htz1p into chromatin
4391 Protein involved in transcription initiation at TATA-containing promoters; associates with the basal transcription

factor TFIID; contains two bromodomains; corresponds to the C-terminal region of mammalian TAF1; redundant
with Bdf2p

4505 Nucleosome-binding component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for
chromatin-bound histone H2A; required for vacuolar protein sorting

5051 Subunit of both the NuA4 histone H4 acetyltransferase complex and the SWR1 complex, may function to antagonize
silencing near telomeres; interacts directly with Swc4p, has homology to human leukemogenic protein AF9, contains
a YEATS domain

5372 Histone variant H2AZ, exchanged for histone H2A in nucleosomes by the SWR1 complex; involved in transcriptional
regulation through prevention of the spread of silent heterochromatin
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Table C.7: From Figure 3.14 b): Protein 9 (YAL011W), log(λ) = 2.25 in the
A network

.

9 Protein of unknown function, component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for
chromatin-bound histone H2A; required for formation of nuclear-associated array of smooth endoplasmic reticulum
known as karmellae

435 Protein of unknown function, component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for
chromatin-bound histone H2A

2742 Swi2/Snf2-related ATPase that is the structural component of the SWR1 complex, which exchanges histone variant
H2AZ (Htz1p) for chromatin-bound histone H2A

2893 Htz1p-binding component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for chromatin-
bound histone H2A; required for vacuolar protein sorting

4075 Actin-related protein that binds nucleosomes; a component of the SWR1 complex, which exchanges histone variant
H2AZ (Htz1p) for chromatin-bound histone H2A

4377 Protein of unknown function, component of the Swr1p complex that incorporates Htz1p into chromatin
4505 Nucleosome-binding component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for

chromatin-bound histone H2A; required for vacuolar protein sorting
5051 Subunit of both the NuA4 histone H4 acetyltransferase complex and the SWR1 complex, may function to antagonize

silencing near telomeres; interacts directly with Swc4p, has homology to human leukemogenic protein AF9, contains
a YEATS domain

Table C.8: From Figure 3.14 c): Protein 14 (YAL016W), Regulatory sub-
unit A of the heterotrimeric protein phosphatase 2A, which also contains
regulatory subunit Cdc55p and either catalytic subunit Pph21p or Pph22p;
required for cell morphogenesis and for transcription by RNA polymerase
III, log(λ) = 1.5 in the A network

.

14 Regulatory subunit A of the heterotrimeric protein phosphatase 2A, which also contains regulatory subunit Cdc55p
and either catalytic subunit Pph21p or Pph22p; required for cell morphogenesis and for transcription by RNA
polymerase III

1117 Protein with carboxyl methyl esterase activity that may have a role in demethylation of the phosphoprotein phos-
phatase catalytic subunit; also identified as a small subunit mitochondrial ribosomal protein

2292 Catalytic subunit of protein phosphatase 2A, functionally redundant with Pph22p; methylated at C terminus; forms
alternate complexes with several regulatory subunits; involved in signal transduction and regulation of mitosis

2347 Catalytic subunit of protein phosphatase 2A, functionally redundant with Pph21p; methylated at C terminus; forms
alternate complexes with several regulatory subunits; involved in signal transduction and regulation of mitosis

3158 Non-essential regulatory subunit B of protein phosphatase 2A, which has multiple roles in mitosis and protein
biosynthesis; involved in regulation of mitotic exit; found in the nucleus of most cells, also at the bud neck and at
the bud tip

3393 Putative component of the protein phosphatase type 2A complex
4577 Protein that interacts with silencing proteins at the telomere, involved in transcriptional silencing; implicated in

the mitotic exit network through regulation of Cdc14p localization; paralog of Zds1p
5540 B-type regulatory subunit of protein phosphatase 2A (PP2A); homolog of the mammalian B’ subunit of PP2A
5599 Component of the spindle checkpoint, involved in sensing lack of tension on mitotic chromosomes; protects cen-

tromeric Rec8p at meiosis I; required for accurate chromosomal segregation at meiosis II and for mitotic chromosome
stability

5688 Zn2-Cys6 zinc-finger transcription factor that activates genes involved in multidrug resistance; paralog of Yrm1p,
acting on an overlapping set of target genes

6073 Activator of the phosphotyrosyl phosphatase activity of PP2A,peptidyl-prolyl cis/trans-isomerase; regulates G1
phase progression, the osmoresponse, microtubule dynamics; subunit of the Tap42p-Pph21p-Rrd2p complex

Table C.9: From Figure 3.14 c): Protein 14 (YAL016W), log(λ) = 1.3 in the
P network

.

14 Regulatory subunit A of the heterotrimeric protein phosphatase 2A, which also contains regulatory subunit Cdc55p
and either catalytic subunit Pph21p or Pph22p; required for cell morphogenesis and for transcription by RNA
polymerase III

22 Putative GDP/GTP exchange factor required for mitotic exit at low temperatures; acts as a guanine nucleotide
exchange factor (GEF) for Tem1p, which is a key regulator of mitotic exit; physically associates with Ras2p-GTP

200
1201 Protein required for proper cell fusion and cell morphology; functions in a complex with Kel2p to negatively regulate

mitotic exit, interacts with Tem1p and Lte1p; localizes to regions of polarized growth; potential Cdc28p substrate
3470 Protein that functions in a complex with Kel1p to negatively regulate mitotic exit, interacts with Tem1p and Lte1p;

localizes to regions of polarized growth; potential Cdc28p substrate
3899 Protein of unknown function, green fluorescent protein (GFP)-fusion protein localizes to the vacuolar membrane
5540 B-type regulatory subunit of protein phosphatase 2A (PP2A); homolog of the mammalian B’ subunit of PP2A
5876 Tubulin folding factor D involved in beta-tubulin (Tub2p) folding; isolated as mutant with increased chromosome

loss and sensitivity to benomyl
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Table C.10: From Figure 3.14 d): Protein 19 (YAL021C), component of the
CCR4-NOT transcriptional complex, which is involved in regulation of
gene expression; component of the major cytoplasmic deadenylase, which
is involved in mRNA poly(A) tail shortening, log(λ) = 1 in the A network

.

19 Component of the CCR4-NOT transcriptional complex, which is involved in regulation of gene expression; compo-
nent of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening

433 Glucosidase II catalytic subunit required for normal cell wall synthesis; mutations in rot2 suppress tor2 mutations,
and are synthetically lethal with rot1 mutations

689 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

870 Subunit of the CCR4-NOT complex, which has roles in transcription regulation, mRNA degradation, and post-
transcriptional modifications; with Ubc4p, ubiquitinates nascent polypeptide-associated complex subunits and his-
tone demethyase Jhd2p

1236 Alpha subunit of the heteromeric nascent polypeptide-associated complex (NAC) involved in protein sorting and
translocation, associated with cytoplasmic ribosomes

1300 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation
and elongation and in mRNA degradation

2324 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

2629 Glucosidase II beta subunit, forms a complex with alpha subunit Rot2p, involved in removal of two glucose residues
from N-linked glycans during glycoprotein biogenesis in the ER

2660 Beta3 subunit of the heterotrimeric nascent polypeptide-associated complex which binds ribosomes via its beta-
subunits in close proximity to nascent polypeptides; interacts with Caf130p of the CCR4-NOT complex; similar to
human BTF3

3146 Member of the Puf family of RNA-binding proteins; binds to mRNAs encoding chromatin modifiers and spindle
pole body components; involved in longevity, maintenance of cell wall integrity, and sensitivity to and recovery from
pheromone arrest

3366 Part of the evolutionarily-conserved CCR4-NOT transcriptional regulatory complex involved in controlling mRNA
initiation, elongation, and degradation

3772
4748 Protein of unknown function; interacts with both the Reg1p/Glc7p phosphatase and the Snf1p kinase
5232 Evolutionarily conserved subunit of the CCR4-NOT complex involved in controlling mRNA initiation, elongation

and degradation; binds Cdc39p
5335 RNase of the DEDD superfamily, subunit of the Ccr4-Not complex that mediates 3’ to 5’ mRNA deadenylation
5958 Subunit beta1 of the nascent polypeptide-associated complex (NAC) involved in protein targeting, associated with

cytoplasmic ribosomes; enhances DNA binding of the Gal4p activator; homolog of human BTF3b
6276 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation

and elongation and in mRNA degradation

Table C.11: From Figure 3.14 d): Protein 19 (YAL021C), log(λ) = 1.5 in the
A network

.

19 Component of the CCR4-NOT transcriptional complex, which is involved in regulation of gene expression; compo-
nent of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening

689 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

870 Subunit of the CCR4-NOT complex, which has roles in transcription regulation, mRNA degradation, and post-
transcriptional modifications; with Ubc4p, ubiquitinates nascent polypeptide-associated complex subunits and his-
tone demethyase Jhd2p

1300 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation
and elongation and in mRNA degradation

2324 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

2660 Beta3 subunit of the heterotrimeric nascent polypeptide-associated complex which binds ribosomes via its beta-
subunits in close proximity to nascent polypeptides; interacts with Caf130p of the CCR4-NOT complex; similar to
human BTF3

3146 Member of the Puf family of RNA-binding proteins; binds to mRNAs encoding chromatin modifiers and spindle
pole body components; involved in longevity, maintenance of cell wall integrity, and sensitivity to and recovery from
pheromone arrest

3366 Part of the evolutionarily-conserved CCR4-NOT transcriptional regulatory complex involved in controlling mRNA
initiation, elongation, and degradation

3772
5232 Evolutionarily conserved subunit of the CCR4-NOT complex involved in controlling mRNA initiation, elongation

and degradation; binds Cdc39p
5335 RNase of the DEDD superfamily, subunit of the Ccr4-Not complex that mediates 3’ to 5’ mRNA deadenylation
6276 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation

and elongation and in mRNA degradation
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Table C.12: From Figure 3.14 d): Protein 19 (YAL021C), log(λ) = 1.5 in the
P network

.

19 Component of the CCR4-NOT transcriptional complex, which is involved in regulation of gene expression; compo-
nent of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening

147 Protein involved in G2/M phase progression and response to DNA damage, interacts with Rad53p; contains an
RNA recognition motif, a nuclear localization signal, and several SQ/TQ cluster domains; hyperphosphorylated in
response to DNA damage

689 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

870 Subunit of the CCR4-NOT complex, which has roles in transcription regulation, mRNA degradation, and post-
transcriptional modifications; with Ubc4p, ubiquitinates nascent polypeptide-associated complex subunits and his-
tone demethyase Jhd2p

1236 Alpha subunit of the heteromeric nascent polypeptide-associated complex (NAC) involved in protein sorting and
translocation, associated with cytoplasmic ribosomes

1300 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation
and elongation and in mRNA degradation

2324 Component of the CCR4-NOT complex, which has multiple roles in regulating mRNA levels including regulation of
transcription and destabilizing mRNAs by deadenylation; basal transcription factor

2383 Putative RNA binding protein and partially redundant Whi3p homolog that regulates the cell size requirement for
passage through Start and commitment to cell division

2466 Ubiquitin-conjugating enzyme that mediates selective degradation of short-lived, abnormal, or excess proteins,
including histone H3; central component of the cellular stress response; expression is heat inducible

2660 Beta3 subunit of the heterotrimeric nascent polypeptide-associated complex which binds ribosomes via its beta-
subunits in close proximity to nascent polypeptides; interacts with Caf130p of the CCR4-NOT complex; similar to
human BTF3

2851 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for stable association of Srb10p-Srb11p kinase; essential for transcriptional
regulation

3324 Ser/Thr kinase involved in transcription and stress response; functions as part of a network of genes in exit from
mitosis; localization is cell cycle regulated; activated by Cdc15p during the exit from mitosis

3366 Part of the evolutionarily-conserved CCR4-NOT transcriptional regulatory complex involved in controlling mRNA
initiation, elongation, and degradation

5035 Protein of unknown function, mediates sensitivity to salt stress; interacts physically with the splicing factor Msl1p
and also displays genetic interaction with MSL1

5141 RNA binding protein that sequesters CLN3 mRNA in cytoplasmic foci; cytoplasmic retention factor for Cdc28p
and associated cyclins; regulates cell fate and dose-dependently regulates the critical cell size required for passage
through Start

5232 Evolutionarily conserved subunit of the CCR4-NOT complex involved in controlling mRNA initiation, elongation
and degradation; binds Cdc39p

5335 RNase of the DEDD superfamily, subunit of the Ccr4-Not complex that mediates 3’ to 5’ mRNA deadenylation
5958 Subunit beta1 of the nascent polypeptide-associated complex (NAC) involved in protein targeting, associated with

cytoplasmic ribosomes; enhances DNA binding of the Gal4p activator; homolog of human BTF3b
6276 Subunit of the CCR4-NOT complex, which is a global transcriptional regulator with roles in transcription initiation

and elongation and in mRNA degradation

Table C.13: From Figure 3.14 d): Protein 19 (YAL021C), log(λ) = 2.2 in the
P network

.

19 Component of the CCR4-NOT transcriptional complex, which is involved in regulation of gene expression; compo-
nent of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening

1866 Part of the evolutionarily-conserved CCR4-NOT transcriptional regulatory complex involved in controlling mRNA
initiation, elongation, and degradation; putative ABC ATPase; interacts with Ssn2p, Ssn3p, and Ssn8p

2851 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA
polymerase II holoenzyme; required for stable association of Srb10p-Srb11p kinase; essential for transcriptional
regulation

3011 General transcription elongation factor TFIIS, enables RNA polymerase II to read through blocks to elongation by
stimulating cleavage of nascent transcripts stalled at transcription arrest sites
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Appendix D

Alternative sequence similarity

scores for inferring interactions
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Figure D.1: As for Figure 4.3 A and B, but with different scales for the
y-axes. We show the results of inferring interactions from S. cerevisiae (SC), C.
elegans, D. melanogaster (DM), H. sapiens (HS), S, Pombe (SP), and M. musculus
(MM) to the first four of those species. (A) Number of correct interolog inferences
across species, for different blastp E-value cut-offs. (B) Fraction of all inferences
that are observed in the interactions of the target species, Os,t.
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Figure D.2: As for Figure 4.3, but using thresholds of percentage sequence
identity (pid) rather than thresholds on E-value. We show the results of
inferring interactions from S. cerevisiae (SC), C. elegans, D. melanogaster (DM),
H. sapiens (HS), S, Pombe (SP), and M. musculus (MM) to the first four of those
species. (A) Number of correct interolog inferences across species. (B) Fraction of all
inferences that are observed in the interactions of the target species, Os,t. (C) The
Bayes Factor L that an inference is correct.
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Figure D.3: As for Figure 4.3 A and B, but using thresholds of the joint
similarity measure JE =

√

(Eval(A, A′)Eval(B, B′)), rather than a threshold
on the definition of homology. We show the results of inferring interactions from
S. cerevisiae (SC), C. elegans, D. melanogaster (DM), H. sapiens (HS), S, Pombe
(SP), and M. musculus (MM) to the first four of those species. (A) Number of
correct interolog inferences across species. (B) Fraction of all inferences that are
observed in the interactions of the target species, Os,t. The Bayes Factor measure
L does not generalise straightforwardly for joint sequence-similarity measures. Note
that blastp rounds all E-values of 10−180 and below down to 0. In order to see the
behaviour of these hits, we replace all hits with an E-value of 0 with an E-value of
10−180, and this explains the ‘kink’ seen in this figure.
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Figure D.4: As for Figure 4.14, but for using percentage sequence identity
(pid) rather than E-value. Inferences within a species: ‘one-same’ inferences (left)
dominate ‘both-different’ inferences (right). For inferences within S. cerevisiae (SC),
C. elegans (CE), D. melanogaster (DM), and H. sapiens (HS), (A) the number of
correct inferences, (B) the fraction of inferences observed to be correct Os,t, and (C)
the Bayes Factor L that the inferences are correct. We consider a given inferred inter-
action to be inferred from the ‘closest’ interaction (see the main text for a definition
and discussion).
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Figure D.5: As for Figure 4.14 A and B, but using thresholds of the joint
similarity measure JE =

√

(Eval(A, A′)Eval(B, B′)), rather than a threshold
on the definition of homology. Inferences within a species: ‘one-same’ inferences
(left) dominate ‘both-different’ inferences (right). For inferences within S. cerevisiae
(SC), C. elegans (CE), D. melanogaster (DM), and H. sapiens (HS), (A) the number
of correct inferences, (B) the fraction of inferences observed to be correct Os,t.
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and annotation of proteins from whole genomes in 2005. Nucleic Acids Research,

34(Database issue):169–172, 2006.

[214] M. Michaut, S. Kerrien, L. Montecchi-Palazzi, C. Cassier-Chauvat, F. Chauvat,

J.-C. Aude, P. Legrain, and H. Hermjakob. InteroPORC: an automated tool to

predict highly conserved protein interaction networks. BMC Bioinformatics, 9

(Suppl 10)(P1), 2008.

[215] M. Middendorf, E. Ziv, and C. Wiggins. Inferring network mechanisms: The

Drosophila melanogaster protein interaction network. Proceedings of the Na-

tional Academy of Sciences, 102(9):3192–3197, 2004.

[216] S. Mika and B. Rost. Protein-protein interactions more conserved within species

than across species. PLoS Computational Biology, 2(7):e79, 2006.

240



[217] J. P. Miller, R. S. Lo, A. Ben-Hur, C. Desmarais, I. Stagljar, W. S. Noble,

and S. Fields. Large-scale identification of yeast integral membrane protein

interactions. Proceedings of the National Academy of Sciences, 102(34):12123–

12128, 2005.

[218] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.

Network motifs: Simple building blocks of complex networks. Science, 298

(5594):824–827, 2002.

[219] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, and U. Alon. Response to Com-

ment on “Network Motifs: Simple Building Blocks of Complex Networks” and

“Superfamilies of Evolved and Designed Networks”. Science, 305(5687):1107,

2004.

[220] J. Mintseris and Z. Weng. Structure, function, and evolution of transient and

obligate protein-protein interactions. Proceedings of the National Academy of

Sciences, 102(31):10930–10935, 2005.

[221] I. S. Moreira, P. A. Fernandes, and M. J. Ramos. Hot spots–a review of the

protein-protein interface determinant amino-acid residues. Proteins, 68(4):803–

812, 2007.

[222] E. Morett, J. O. Korbel, E. Rajan, G. Saab-Rincon, L. Olvera, M. Olvera,

S. Schmidt, B. Snel, and P. Bork. Systematic discovery of analogous enzymes

in thiamin biosynthesis. Nature Biotechnology, 21(7):790–795, 2003.

[223] D. A. Morrison. The Timetree of Life. Systematic Biology, 58(4):461–462, 2009.

[224] S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris. GeneMA-

NIA: a real-time multiple association network integration algorithm for predict-

ing gene function. Genome Biology, 9(Suppl 1):S4, 2008.

241



[225] F. Mousson, A. Kolkman, W. W. M. P. Pijnappel, H. T. M. Timmers, and

A. J. R. Heck. Quantitative proteomics reveals regulation of dynamic compo-

nents within TATA-binding protein (TBP) transcription complexes. Molecular

& Cellular Proteomics, 7(5):845–852, 2008.

[226] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela. Commu-

nity structure in time-dependent, multiscale, and multiplex networks. Science,

328(5980):876–878, 2010.

[227] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a struc-

tural classification of proteins database for the investigation of sequences and

structures. Journal of Molecular Biology, 247(4):536–540, 1995.

[228] S. Navlakha and C. Kingsford. Network archaeology: Uncovering ancient

networks from present-day interactions. PLoS Computational Biology, 7(4):

e1001119, 2011.

[229] N. L. Nehrt, W. T. Clark, P. Radivojac, and M. W. Hahn. Testing the ortholog

conjecture with comparative functional genomic data from mammals. PLoS

Computational Biology, 7(6):e1002073, 2011.

[230] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters, 89

(20):208701, 2002.

[231] M. E. J. Newman. The structure and function of complex networks. SIAM

Review, 45:167–256, 2003.

[232] M. E. J. Newman. Detecting community structure in networks. The European

Physical Journal B, 38:321–330, 2004.

[233] M. E. J. Newman. Finding community structure in networks using the eigen-

vectors of matrices. Physical Review E, 74(3):36104, 2006.

242



[234] M. E. J. Newman. The physics of networks. Physics Today, 61(11):33–38, 2008.

[235] M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.

[236] M. E. J. Newman and M. Girvan. Finding and evaluating community structure

in networks. Physical Review E, 69(2):26113, 2004.

[237] D. Noble. Modeling the heart–from genes to cells to the whole organ. Science,

295(5560):1678–1682, 2002.

[238] K. P. O’Brien, M. Remm, and E. L. L. Sonnhammer. Inparanoid: a compre-

hensive database of eukaryotic orthologs. Nucleic Acids Research, 33(suppl 1):

D476–D480, 2005.

[239] Y. Ofran and B. Rost. Analysing six types of protein-protein interfaces. Journal

of Molecular Biology, 325(2):377–387, 2003.

[240] C. A. Orengo and J. M. Thornton. Protein families and their evolution-a struc-

tural perspective. Annual Review Biochemistry, 74:867–900, 2005.

[241] A. A. Orr. The genetic theory of adaptation: a brief history. Nature Reviews

Genetics, 6(2):119–127, 2005.

[242] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The

use of gene clusters to infer functional coupling. Proceedings of the National

Academy of Sciences, 96(6):2896–2901, 1999.

[243] P. Pagel, P. Wong, and D. Frishman. A domain interaction map based on

phylogenetic profiling. Journal of Molecular Biology, 344(5):1331–1346, 2004.

[244] C. Pál, B. Papp, and M. J. Lercher. An integrated view of protein evolution.

Nature Reviews Genetics, 7(5):337–348, 2006.

243
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