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Abstract

This report presents a new implementation and extension to the Plastic Self

Organising Map (PSOM) algorithm proposed by Lang [8]. The main aims of the

project are to implement the algorithm in Matlab with adequate commentary to

enable further development, to reduce the ‘black-box’ status of the algorithm and

parameters and to use the algorithm to classify radar data supplied by THALES

Aerospace.

We successfully provide a Matlab implementation of the general PSOM algo-

rithm and suggest several modifications to improve results. In particular we give

an adaptation of the PSOM that we apply to the THALES radar data, and suggest

extra features to help classify this specific data set.

We test the PSOM’s continually learning behaviour on several different data

sets, including benchmark sets (demonstrating non-stationary data) and data sets

from THALES. The benchmark data sets displaying required features are created

as part of the project, and can be generated with random distributions while

retaining the important characteristics.

We document systematic experiments done on these data sets - to assess nec-

essary parameters, and where possible to specify optimal values. The tests are

also assessed for quality of classification and demonstration of the benefits of the

modifications.

The new algorithm shows drastically improved results when the modifications

are included, and gives a good classification on the THALES data set.

Finally we discuss where more work can be done in this area. Several different

lines of enquiry are presented, including further adjustments to facilitate classi-

fication of the THALES data set, more modifications for the PSOM algorithm,

and ways to implement the PSOM differently in order to set the work on a more

rigorous foundation.
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1 Introduction

1.1 Motivation

In many different situations there is a need to classify data into classes or patterns,

based on common features of some sort. Much of neural computing development has

been motivated by this need. Our human senses and brains prove excellent at recognising

patterns in situations where the data is readily accessible, but there are clearly situa-

tions where the sheer amount of data or dimensions make human classification not only

difficult, but impractical. This motivates the vast and swiftly growing area of pattern

recognition of which this project will merely focus on a very small part [1], [2].

Narrowing the field of view considerably we consider sets of data that exhibit non-

stationary behaviour. By non-stationary we mean where classes that we wish to recog-

nise actually change over time, and possibly appear or disappear. This can pose funda-

mental problems for systems not designed for such an environment [8]. In a stationary

environment the most efficient method remains for a system to be ‘trained’ in some way

to recognise certain classes, and then the system will hopefully recognise any repeated

instances of similar classes. Primary examples of these are neural networks, which are

electronic structures designed to model in some way part of the function of the human

brain [1]. They typically consist of ‘neurons’ (nodes) containing some ability to process

data and ‘weights’ (links) containing some information on relationships between neurons.

Haykin offers this general definition [4],

A Neural Network is a massively parallel distributed processor made up of

simple processing units which has a natural propensity for storing experiential

knowledge and making it available for use.

Defining our terms more precisely, we say a stationary data set is one where the

class means and variances do not change over time [8], and a non-stationary data set

is one where either the means or variances do change, and the number of classes may

change. In this project we focus on the latter aspect, that is, we will not be considering

data where the class means drift over time, rather that new classes may appear, and

old classes may need to be forgotten. In fact, the algorithm proposed would certainly
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be able to take account of drift, and does do this as a matter of course, but we will not

concentrate on that property in this study.

Static neural networks are designed for use on stationary data, and they do not work

well in non-stationary environments, [8]. A key problem is that information is needed a

priori. That is, a training period is needed to set the topology of the network and give

example patterns to recognise. If new classes appear after the training period they will

not be recognised in the same way as others that have been trained for, and if classes

disappear from the data they will still be stored in the network, taking up valuable

space. For an example of the problems encountered when using inappropriate clustering

techniques see Appendix B, where we compare the results from a k-means clustering

approach.

The self organising map (SOM), first developed by Kohonen [6], is an example of a

so-called static Neural Network, which exhibits the above problems when used on non-

stationary data. We discuss the working in more detail in the next section, but it is

important to note here why an extension is needed. In our particular example of radar

data (from THALES) we have a non-stationary situation. If an algorithm is classifying

radar data in real time, then you ideally want to be able to handle new and unseen types

of signals as they appear, without having to retrain your system. A dynamic Neural

Network aims to do exactly this. Lang offers this definition to differentiate a new type

of Neural Network, [8],

A dynamic Neural Network (DNN) is a Neural Network that can alter its

own topology to accept novelty within a non-stationary signal space.

To summarise, in many situations (including the radar data from THALES) it is an

essential feature of a classification system to be able to adapt and learn new classes (and

forget old ones) as it runs, without retraining. The plastic self organising map (PSOM)

presented in this project is one possible solution to this problem.

1.2 The Self Organising Map

In order to explain the working of the Plastic Self Organising Map a brief description of

the simple Self Organising Map (SOM), often called a Kohonen Map [6], will be useful.
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Kohonen’s 1990 article [7] contains a useful review of these concepts - here we present

an overview using descriptions that are more in keeping with what follows in the rest of

the project.

We initialise the feature map (the network that will organise itself into a format

representing the data structure), by assigning each node in the map a random ‘weight

vector’ of equal dimension to the input data we are using. Each node is connected to

its neighbours by a link, and the aim is for neighbouring nodes in the feature map to be

identified with vectors that are ‘nearby’ in the input data. If the feature map is one or

two dimensional then we will produce a reduced dimensionality map that incorporates

much of the clustering and structure information of the original data.

The algorithm works as follows:

1. Initialise - by assigning all nodes a random weight vector (this could be done in

several different, and potentially significant ways - see [1] p.115-116 for a discus-

sion).

2. Present an input u - from the data set, picked at random or in a pre-assigned

order.

3. Calculate distances - by computing the Euclidean distance from the input vector

to each weight vector at the nodes.

4. Select minimum distance - i.e. find the ‘closest’ node in the network (the focus -

xf )

5. Update weight vectors - The focus node and nodes in the neighbourhood (the xjs)

are changed by the following equation,

xj → xj + η(t)γ(t)(u− xj) (1.1)

where η(t) is the ‘learning rate’, and γ(t) is the ‘neighbourhood function’.

6. Go back to step 2 unless all data has been used, in which case stop.
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The key step is step 5, where the network is adjusted. The equation has the simple

effect of making the node in question (xj) more like the input. How much more like

the input is decided by η(t) and γ(t). The learning rate (0 < η(t) < 1) is a function

that decreases in time and determines how drastically to adjust the node, while the

neighbourhood function γ(t) determines how big the ‘neighbourhood’ is, and effects a

different learning rate at different points in the neighbourhood. We will use it to decrease

the size of the neighbourhood over time.

Examples of possible η(t) and γ(t) are (from [3] and [4])

η(t) = η0 exp

(
− t
τ

)
, (1.2)

γ(t) = exp

(
−‖xf − xj‖2

2σ2(t)

)
, (1.3)

with constants set as

η0 = 0.1, (1.4)

τ = 1000, (1.5)

where σ(t) is a monotonically decreasing function of time.

An important feature is that a ‘training period’ is built in to these functions. The

learning rate reduces as time goes on, so that early on drastic changes are produced in

the weight vectors, but later, as the map is hopefully becoming more representative, the

learning rate decreases and smaller adjustments are made, until the map does not change.

At this point the ‘training period’ is over. In parallel, the size of the neighbourhood

decreases, so that early changes affect a large portion of the map, while later only small

changes are made, close to the focus. These effects create a rough ordering of the map

at an early stage, and then provide a fine tuning at the end.

The SOM provides a simple way to represent a data structure, but it will not change

its behaviour after the training period is over. If we require classification in real time,

and the ability to accept hitherto unseen patterns we have to retrain the whole map. It

is not enough to simply increase the learning rate again, as this would almost certainly

corrupt any structure already present. All the required patterns need to be present

during the training phase for this to be a successful classification algorithm.
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2 The Plastic Self Organising Map

The PSOM is an attempt to extend the basic ideas of the SOM to a situation where new

patterns are able to be incorporated during the algorithm’s running. In the process, the

working of the PSOM has changed significantly from its ancestor (the SOM), and the

algorithm is perhaps best thought of as a new process rather than a simple extension of

the SOM.

We first summarise Lang’s description of the PSOM, and explain how we imple-

mented the algorithm in Matlab for this project. Following this we explain the changes

made during this project and the reasoning behind them. Frequent references are made

to Lang’s thesis [8] for ease of comparison by those who wish to do so.

The PSOM consists of a network of neurons (nodes) and links, which will change

over the course of the algorithm. Each neuron, xj, is identified with a vector (the weight

vector), of the same dimension as the input space. Each link, cij, is a scalar representing

the ‘size’ of the link between xi and xj. If no link exists between the two then the value

of cij is zero. The aim of the algorithm, as it works through the data, is to represent

clusters of similar input data by a cluster of neurons with similar vectors, and with

neurons connected by links. Eventually we will aim to create a graph where each data

cluster is represented by a disconnected subgraph in our network.

The links actually represent both the distance between two neurons, and how recently

these neurons have been updated (the ‘age’ of the link). This is one of the most significant

differences when compared with other network clustering devices (like the SOM).

2.1 Lang’s Algorithm

Figure 1 is a flowchart of the PSOM algorithm, slightly updated from Lang’s [8] to in-

clude the details of assigning a class to each data input , hence providing the classification

- the whole point of the algorithm.

It is stressed that what follows is Lang’s work, explained here to make this project

self-contained, and to give insight on the changes we make to the algorithm.
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Figure 1: Flowchart of PSOM Algorithm
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2.1.1 Parameters

We proceed by explaining each step and discussing relevant details of the implemen-

tation. It is worth noting that what follows will be partially specific to this Matlab

implementation of the PSOM. We will need to use several parameters that Lang in-

troduced, and we reuse his conventions so that threshold parameters are labelled with

as (and subscripts) while scaling and incremental parameters use bs [8]. While these

parameters will be the subject of much discussion, and this nomenclature may no longer

be most appropriate, we will use the same convention for ease of comparison. Table 1

shows the details of the parameters as used by Lang1. We have clarified some of the

descriptions, but left the names unchanged. See Table 2 in Section 2.3.1 for our revised

set of parameters.

Parameter Name Purpose Range
an Node

Building
Parameter

The focus-input distance threshold
after which a new group of neurons
will be created.

[0, 1]

acl Cluster
Threshold

Threshold for neighbouring neu-
rons to be considered ‘near’.

[0, 1]

ar Maximum
Link
Length

Ageing threshold, links longer than
this will be removed

Lang uses [1, 100]

bc Neuron
Update
Parameter

Either positive or negative depend-
ing on acl. Set algorithmically.

±0.01

ba Link
Ageing
Parameter

How much links are aged each it-
eration (additive)

[0, 1]

bv Focus
Update
Parameter

How much to make the focus like
the input

[0, 1]

Table 1: Parameters used in Lang’s PSOM [8]

1Lang does not include the parameter bv in his list of important parameters, but mentions it in
passing while describing the algorithm. We include it here since it proves to have drastic effects on the
algorithm’s performance
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2.1.2 Step-by-Step

Refer to Figure 1 to see the whole process with each step numbered as in the following

description.

0) Set-up

The data we wish to classify must be presented as an q × dim matrix, where q is the

number of signals to classify and dim is the dimension of the data. That is - the data

signals are read as rows of a matrix one by one. The data must be normalised so all

values lie in (0, 1) ([8] p. 41). This is in order that each dimension of the data set

is treated equally, otherwise when calculating Euclidean distances any dimension with

larger numerical ranges would be treated with greater importance. Normalising solves

this problem, but requires that maximum and minimum values are known for each

dimension of the data. At this stage it is worth noting that a different normalisation, or

weighting dimensions differently, will significantly alter the operation of the algorithm

and may in fact be a useful way to add emphasis to certain dimensions. We revisit this

discussion in section 5.3.

1) Initialise

We define our network in this implementation by keeping track of a list of neurons, and

the links between them. The link matrix L, where

Lij =

{
cij if a link exists between nodes i and j
0 if no link exists,

(2.1)

holds all information about the link locations and lengths. L will be a symmetric matrix,

and we choose to implement the full matrix rather than just one half for ease of access.

This means that whenever a link length changes we restate the change on the opposite

side of the matrix.

Neurons are recorded as a row of the n × dim matrix X, where n is the number of

neurons and dim is the dimension of the input space, as before. In this way each neuron

is labelled as xj for some j, and we will also assign a class number to every neuron,

which labels it as part of a particular class.
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The network is initialised with a group of nodes with random vectors, each given the

same initial class number. In this implementation we choose a random point in the input

space, create a node there, and then create two more nodes at random small deviations

from this point. We then connect the two deviations to the initial random node with

links equal to their Euclidean distance. Lang discusses several options for initialising

the network, and suggests this version as the most useful. In practice it does not appear

to matter to any great extent, as this group will tend to disappear over time anyway.

See Section 5.1 for other suggestions.

2) Accept Input

This step involves simply taking a row of the input data set and presenting it to the

algorithm. We will refer to this input vector as u.

3) Find Focus

We calculate which of the neurons in the network is most similar to u by looking for

the shortest Euclidean distance between it and each neuron - that is, the 2-norm of the

difference in the vectors (and we will use ‖ · ‖ to denote the 2-norm unless otherwise

stated). The closest neuron is called the focus and is labelled xf (Lang uses z). The

distance from focus to input we denote d. We find the index of the focus neuron, f , as

follows, ,

f = arg min
j
{‖u− xj‖}, (2.2)

so d = ‖u− xf‖ = min
j
{‖u− xj‖}, (2.3)

where arg minj is an instruction to return the value of j that gives the minimum result.

4) Check Size of d

The crucial step in the algorithm is to check the size of d. If d < an (the node building

parameter or threshold) then we conclude that the input is like enough to the focus and

we proceed to update the focus accordingly. If d ≥ an we decide that no neuron in the

network is sufficiently close to the input and we create a new group of neurons.
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5a) & 6a) Focus and Neighbourhood Update: d < an

In this case we first adjust the focus to be more like the input using

xf → xf + bv(u− xf ). (2.4)

Here Lang arbitrarily sets bv to 0.9 and leaves this constant throughout the rest of the

algorithm. We then update the ‘neighbourhood’ of the focus - by ‘neighbourhood’ we

mean those neurons that are directly connected to the focus. Lang’s algorithm uses two

steps: first updating the links, then using the link lengths to update the neurons. The

new link lengths are simply recalculated as the Euclidean distance from each neighbour

to the new focus. Lang also uses the multiplier ar (and sets this equal to 100), which

seems to be only useful to make the link lengths easily rounded to integers between 0

and ar in order that they may be written on network diagrams more easily. The new

link length is given by

cfj = ar‖xf − xj‖, (2.5)

remembering to adjust the symmetric other side of our L matrix when doing this.

Having updated the link lengths we now use them to update the neuron vectors

themselves. Lang’s method does this by using the acl parameter to decide whether

neurons should be pulled towards the focus or pushed away. He does this using

xj → xj + bccfj(u− xj)

where bc =

{
0.01 if ‖xf − xj‖ < acl

−0.01 if ‖xf − xj‖ > acl.
(2.6)

The bc value obscures the simplicity of this process. Simply, if the neighbour is at

a Euclidean distance of less than acl the update will make the neighbour more like the

input, by an amount proportional to that distance. If the distance is greater than acl

then the update will make the neighbour less like the input, by a factor proportional to

that distance. A consequence of this is that distant neighbours will be pushed away a

large amount, due to their distance being large (see Section 2.2.3 for discussion of this

point). The bc parameter seems to only play the role of undoing the ar multiplication
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from (2.5) (it is set equal to ± 1
ar

[8] p. 39), while also changing sign to facilitate the

pushing or pulling of the neuron.

Note that the value of cfj is not necessarily the same as the Euclidean distance

‖xf − xj‖ - it also takes account of the ageing process, detailed in step 7.

In summary, the aim of this part of the algorithm is to make the focus and its closest

neighbours more like the input - so that the network learns to be more like the incoming

data - while separating them from any neighbours that are too far away. The parameter

acl determines which neighbours are considered to be close.

Figure 2 shows the network finding a focus close to an example input, and performing

the neighbourhood update. These diagrams should be treated as an aid to understanding

Figure 2: The left diagram shows the initial network with a notional input. The right
shows the update process (dashed circles are the original positions of the neurons).

and can necessarily only represent a two-dimensional data set, but they are useful to

show the behaviour of the various neurons.

The input data is classified by simply returning the class number of the focus. Lang

mentions at a different stage that any neurons that end up in the close neighbourhood

(less than acl) will have their class number reassigned to be the same as the focus. This

means that groups of neurons with different classes can merge into one, thereby giving

the network the opportunity to remove unnecessary classes by combining them with a

useful one.
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5b) & 6b) Create new group: d ≥ an

Alternatively (this is the step that allows the algorithm to remain dynamic) if d ≥ an,

then we conclude that no neuron in the network represents the input data sufficiently

well, and we create a new group of neurons. Lang is somewhat vague about the details,

saying only that ‘a group of neurons is created with vectors similar to the input, and

attached to the focus.’ [8] p. 38. In this implementation we choose to create a new

neuron with identical vector to the input, and then create two other neurons with a

small random deviation from this. Each of the new neurons is connected to the other

new neurons, and also to the focus (possibly very distant). There are many possible

ways of implementing this that stay within Lang’s description. For example, only one of

the new neurons could be connected to the focus, or they could be connected to points

other than the focus. This highlights the need for further experimentation - see Section

5.1 for some discussion of this. Figure 3 shows the creation of a new group of neurons

in the chosen manner.

Figure 3: Again the left diagram is the starting network, this time with a distant input,
the right shows the new group of neurons connected to the focus.

The new neurons are given a new unused class number, and the input data is classified

with this new number.
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7) Age Links

After processing the input following one of the two paths above we age all links in the

network. Lang achieves this by adding a small amount - parameter ba - to each link:

cij → cij + ba. (2.7)

Links that have not been updated in the focus-neighbourhood update for some time

get progressively older. In this way we can detect which areas of the graph have not

seen an input for some time.

8) Remove Old Links

After the ageing process we check for any links that are longer than parameter ar, and

remove them. This represents the removal of links that connect very distant neurons,

and links connecting neurons that have not seen any similar input for a long time. This

is the process by which disconnected subgraphs are created.

9) Remove Isolated Neurons

Finally, we check if we have isolated any neurons by removing all their links. If so, we

remove the neuron from the network. This will occur when a cluster’s links become very

‘old’, and are removed one by one. When neurons are left unconnected we will remove

them

Now return to step (2) and repeat with the next row of the input data matrix.

2.1.3 Discussion

Lang introduced six parameters that completely control the working of the algorithm.

The question remains of how to choose them effectively. Here we summarise Lang’s

suggested heuristics and include some discussion, bearing in mind his qualifying remark

that his parameters are not necessarily optimal - [8] p. 41.

• an - after normalisation of the data (if one already has the data and class infor-

mation in advance) one can calculate the maximum radius of the classes. This is

the distance from the notional centre of the class to the furthermost point of the
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class. Then we must simply ensure that an is set just larger than the largest class

radius. ([8] p. 41)

• acl - Lang states that the clustering threshold should then be set smaller than an

- he suggests that an appropriate value, which he obtains empirically, is 80% of an

([8] p. 41).

• ar - the value Lang states in his description is 100, ([8] p. 39), but then he uses

a value of 90 in his tests ([8] p. 56). 100 was chosen in order to give (rounded)

integer link lengths for display purposes ([8] p. 39).

• bc - this is a simple compensator for the ar parameter ([8] p. 39), and appears to

be generally equal to 1
ar

.

• bv - Lang states that he chose the focus update parameter as bv = 0.9 ([8] p. 38).

No further comment is given.

• ba - the ageing parameter is given as typically 0.01 at first, but he uses 0.3 later in

the tests. He later discusses a heuristic to choose this. Discussion of this heuristic

follows.

Lang explains that the ageing parameter ba can be chosen if we know some informa-

tion about the input data - namely the longest gap between presentations of the same

class. We obviously do not want the network to forget patterns between presentations,

so if we know the longest likely time we have to wait we can set the ageing parameter

accordingly. For a given neuron xj we can calculate how long it will remain in the

network if it is not updated, Lang calls this the ‘temporal persistence’ - tj. We need to

know the length, csj, of the shortest link connected to it. Then, (as in [8])

tj =
(ar − csj)

ba
. (2.8)

In words this is simply finding the difference between the shortest link and the maximum

link length, and dividing by the ageing amount to see how many iterations will pass

before this link disappears. Rearranging gives

ba =
(ar − csj)

tj
, (2.9)
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and if we substitute in our longest time between presentations for the temporal persis-

tence then we have a measure of the maximum value of ba. Any higher and the network

will forget classes between presentations ([8] p. 170).

In the next section we discuss some modifications to the algorithm and parameter

choices before presenting a new algorithm with these modifications included.

2.2 Changes to Algorithm and Parameters

Here we discuss and lay out in detail the modifications we made to Lang’s algorithm

during this project. In the next section we present our complete algorithm.

2.2.1 Parameter Choice/Reduction

The parameters are an obvious target for improvement. Lang himself says that it should

be possible to remove or combine some of them. We here suggest some changes - for

evidence as to what constitute effective values, see the discussion and numerical testing

in Section 3.

Changing ar and bc

In our opinion a confusing feature in the algorithm is the use of ar = 100. The links at

some stage all start as measuring Euclidean distance in the normalised [0, 1]dim space

(recalling that dim is the dimension of the input data), and Lang states that he uses

ar = 100, and scales up all the links lengths by this amount in order to be able to display

link lengths as integers. If there is no need to display the links in this way then we may

as well not bother scaling up the links by any amount. This would alter the link update

equation (2.5) by removing the need for the ar, and the link update simply becomes a

restating of the Euclidean distance,

cfj = ‖xf − xj‖. (2.10)

The neuron update equation (2.6) is also simplified, and there is no need for the bc

parameter to cancel out the ar from (2.5). The equation becomes

xj →
{

xj + cfj(u− xj) if ‖xf − xj‖ < acl,
xj − cfj(u− xj) if ‖xf − xj‖ > acl.

(2.11)
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This leaves the ar purely as a measure of maximum link length, and no longer tied

up with display purposes. Lang’s value of 100 becomes equivalent to 1, which still seems

a sensible value to choose for now - any links longer than 1 in [0, 1]dim space are likely to

be overly long for any clustering purpose - at least for small dim, where the maximum

link length is initially physically limited to
√
dim.

The role of bc is revealed as nothing more than a scaling device, and is not (as

implied by the description in Table 1) a parameter determining how drastically neurons

are updated. From (2.11) we can see that the device controlling the extent to which

neighbouring neurons are made closer to the input is purely the link length cfj, so that

close neurons are changed less than further ones (still within our clustering threshold

acl). As a consequence there is a space for a new parameter - one that acts in the same

way as bv acts for the focus, but for the neighbourhood neurons. See Section 5.2 on

ideas for further work and a more detailed discussion of this idea.

Choosing acl

It is not altogether clear what the exact role of the acl parameter is. It seems to function

in a similar way to an in choosing which neurons are within a ‘clustering zone’ of some

sort, and Lang’s comment of choosing acl to be about 80% of an emphasises this. Our

numerical tests in Section 3 attempt to justify a choice of this parameter, but it is worth

asking the question here: Does this need to be a different parameter from an? Can we

reduce the number of parameters by combining acl with an?

Choosing ba

See Section 2.2.2 on changing the ageing method for a discussion of this parameter.

Choosing bv

In early runs of our implementation of Lang’s algorithm we observed our network be-

having erratically and rapidly moving neurons around the space as inputs arrived. One

reason for this was the high value of bv at 0.9. This means that when a close focus has

been identified (with an) it will immediately be moved 90% of the way towards the in-

put vector. Setting bv to a lower value produced a more gradual shifting of neurons and
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seemed to help reduce apparently erratic behaviour of the neurons during the algorithm.

In practice, we used a value of around 0.2 from here onwards. See the numerical tests

in Section 3 for evidence of this behaviour.

2.2.2 Ageing Method

Lang ages the links in the algorithm by adding a small amount, ba, at every iteration.

Thus, if they are never reset to their Euclidean distances they will eventually disappear

when they reach the maximum link length ar and are removed by the algorithm. This

is done by addition but an alternative is to use a multiplicative approach. Using a

multiplier larger than 1 (e.g. 1.01) we will have links that age exponentially. This will

accelerate the removal of old links and perhaps improve performance when lots of links

are present (e.g. in the presence of noise).

If this method is used then the link ageing process is

cij → cijba. (2.12)

The equations for temporal persistence used to set the ba parameter will also change.

A given neuron xj with shortest link of length csj will disappear when the link’s length

becomes equal (or greater than) to ar - that is it will happen at the earliest when

csjb
tj
a = ar, (2.13)

recalling that tj is the temporal persistence (i.e. the number of iterations until the

neuron is removed). This gives

ba =

(
ar

csj

) 1
tj

, (2.14)

so that

tj =
log ar

csj

log ba
. (2.15)
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2.2.3 Neuron Pushing

In step 6a of the algorithm (the neighbourhood update) we can see that the aim is to

pull neurons within the clustering threshold (the ‘near’ ones) closer to the input, and to

separate from neurons that are still connected but outside the clustering threshold (the

‘far’ ones). Lang’s method achieves this by actually updating the vectors of both near

and far neighbours, in proportion with the length of the link to the focus, but crucially

changing the direction of the far ones (see equations (2.6) and (2.11)). This particular

method has a clear disadvantage: the near neurons are updated a small amount (because

their links are short), but the far ones are changed by large amounts (and moved away

from the focus). Potentially very dissimilar neurons are therefore affected massively,

and moved large distances across the space (see section 2.2.4 on neurons going ‘out of

bounds’). This has the effect of seriously distorting neurons that are connected to the

current focus but not within the cluster threshold. The whole purpose of these neurons

is to adjust themselves to become more like input vectors. If they are pushed around in

this way then we lose any usefulness of their previous adjustments. All that is actually

needed is an emphasis of the separation between the near and far neurons in order to

aid the clustering process.

A simple remedy is to not change the far neighbours at all, and rely on the near

neighbours’ movement to create the separation. This has the advantage of only causing

a change in one cluster of neurons (the one with the focus), and leaving all other neurons

unchanged.

This would change the neuron update equation from (2.11) to

xj →
{

xj + cfj(u− xj) if ‖xf − xj‖ < acl,
xj if ‖xf − xj‖ > acl.

(2.16)

However, we can still aid the clustering by pushing far neurons away in a different

manner. After all, link length is a measure of similarity in some sense, despite the fact

that it combines a measure of age and distance in the same number. We can simply

extend the link length from the focus to these far neurons, thereby accomplishing a

similar result without distorting their weight vectors themselves. Currently we reset the

link lengths of all neighbours to be their Euclidean distance. In the new scheme we do
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this only for the near neighbours, while we perform an extra ageing iteration on the links

to the far neighbours to emphasise their ‘distance’. We can do this by changing the link

update equation (2.10) to be

cfj →
{
‖xf − xj‖ if ‖xf − xj‖ < acl

cfjba if ‖xf − xj‖ > acl
(2.17)

Clearly there are many possible algorithmic variations, and there are many that

would be interesting to investigate in the future. See Section 5 for more discussion of

such ideas.

2.2.4 Neurons ‘Out Of Bounds’

As a result of the phenomenon of ‘neuron pushing’ discussed in section 2.2.3 it is entirely

possible that neurons are adjusted to have values outside of the [0, 1] range for each

dimension. This is clearly undesirable since they cannot represent any of the incoming

normalised data. A preliminary fix to this involves testing for any neuron values outside

the range [0, 1] and removing them (and their links). The result of this is that if classes

migrate out of bounds then they are removed and a new class is created next time an

input arrives. We found it necessary to have this change in place before any useful results

could be produced from the original algorithm, but after the changes we implement in

Section 2.2.3 this situation should never occur. However we leave the code in as a

safeguard.

2.2.5 Using Old Classes

When an input arrives that justifies the creation of a new group of neurons we assign

a new and unused class number to it (and the new neurons). If however the input is

an instance of a class that the network has ‘forgotten’ (either it has aged enough to be

deleted, or been ‘pushed’ out of bounds) then it would be better to restart the old class,

rather than create a new one. Otherwise the data from one input class will be spread

over (at least) two algorithm classes. If we can achieve this effect then even a poorly

functioning PSOM (which keeps forgetting classes) can still classify correctly. To do this

we need to somehow keep track of all the classes the algorithm is using, and check if any

old ones can be reused, before creating a brand new one.
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There are a number of ways to implement this: we could store the average weight

vector of all neurons in the class, thereby representing the current ‘position’ of the class,

or we could store the mean position of all input vectors that have been assigned to the

class, which would result in an overall general position of the vectors associated with

each class.

We chose to use the second of these options, in order to incorporate the most infor-

mation about the class. This involves creating several new class variables in order to

keep track of the classes over the course of the algorithm: the overall mean, standard

deviation, number of entries, and the current state of existence of the class; present,

forgotten or combined with another class. After each classification of a signal each one

of these variables is updated. In order to calculate the standard deviation on the fly we

record the total sum-squared of each class as well. For the existence state use a value

of 0 if the class still exists in the network, −1 if the class has been forgotten (see step 9

of the algorithm in Section 2.1.2), and if the last remaining neuron in a class has been

combined with a different class (step 6a - the neighbourhood update) we record that

class number.

These class variables (implemented as classmean, classstd, classno, classexit,

and classsq) provide a useful way to keep track of the clusters recognised in the running

of the algorithm and also give an easy way to test the final results against known classes

in the input data.

We implement these re-occurring classes by checking through the classmeans of every

‘old’ (i.e. classexit 6= 0) class and comparing them with the current input vector. We

find the closest old class and check if the distance to it is less than the maximum standard

deviation in it. If so, then we assume that we are seeing a re-occurrence and use the

old class number. If no old class matches the input closely enough we will go ahead and

create a new class.

Again there are decisions to be made as to exactly how tolerant to be with these

re-occurrences.
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2.3 New Algorithm

Here we summarise our new implementation of the algorithm. See the previous section

for the motivation for each of the changes we make. Figure 4 shows the algorithm with

updated steps to reuse old classes (see section 2.2.5). Also refer to Appendix C for

the pseudo-code for this algorithm. The algorithm as presented represents the best of

current modifications - but there remain further options to test. These are detailed in

Section 5. Any steps that are identical to the original algorithm are discussed in Section

2.1. The numbering of the steps is also identical to the original version for comparison

purposes.

2.3.1 Parameters

Table 2 gives a suggested set of parameter values, which we have reduced in both number

and complexity. Note than acl is now identical to an, bc has been removed, and the other

parameters have clear heuristics to choose them (see Section 2.2.1 on choosing parameters

and Section 3 on numerical testing). We hope that a reduced number of parameters will

make the PSOM algorithm more transparent and more easily adjustable.

Parameter Name Purpose Values
an Cluster

Threshold
The focus-input distance threshold
after which a new group of neurons
will be created.

[0, 1] - we use 0.14

ar Maximum
Link
Length

Ageing threshold, links longer than
this will be removed

≈ 1

ba Link
Ageing
Parameter

How much links are aged each it-
eration (multiplicative)

≈ 1 but > 1

bv Focus
Update
Parameter

How much to make the focus like
the input

[0, 1] - we use 0.2

Table 2: Parameters used in the modified PSOM
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Figure 4: Flowchart of modified PSOM Algorithm
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2.3.2 Step-by-Step - Modifications

5a) & 6a) Focus and Neighbourhood Update - d < an

When d < an the focus is updated in the same way as before,

xf → xf + bv(u− xf ). (2.18)

but the bv parameter is set to about 0.2, a much lower value than before (see 3.3.1). The

neighbourhood is updated by first calculating which neighbours are ‘near’ and ‘far’ using

the Euclidean distance and the an threshold (no acl this time). We update the links of

the near neighbours, setting them equal to their Euclidean distance from the focus, while

the far neighbours’ links are left as they were but aged by one more iteration. From

(2.17), we get

cfj →
{
‖xf − xj‖ if ‖xf − xj‖ < an,
cfjba if ‖xf − xj‖ > an.

(2.19)

Having updated the link lengths we now use them to update the neuron vectors.

Near neighbouring neurons are drawn closer, in proportion to their link length, while

far neighbours are left alone. From (2.16) we get

xj →
{

xj + cfj(u− xj) if ‖xf − xj‖ < acl,
xj if ‖xf − xj‖ > acl.

(2.20)

If a neuron with a different class number is identified as a near neighbour its class number

will be reassigned to that of the focus.

Figure 5 shows the network finding a focus close to an example input, and performing

the neighbourhood update. Compare with Figure 2 to see the differences.

Classification of the input data is given as before by returning the class number of

the focus.

4b), 5b), 5c) and 6b) - New group of neurons - d ≥ an

Having identified an input a long way from any neuron, we first compare the input to

a list of old classes that have been forgotten by the algorithm. If one of these classes

is sufficiently close then we will reuse that class number, rather than generating a new
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Figure 5: The left diagram shows the initial network with a notional input. The right
shows the update process (dashed circles are the original positions of the neurons).

one. The current algorithm decides this by looking at the Euclidean distance between

the class means of the old classes and the input vector. If the distance to the closest

class is less than the maximum standard deviation (each dimension’s standard deviation

is recorded) within the dimensions of that class then we decide that the input signal is

a re-occurrence of the old class, and assign that class number to the input. We then

create a new group of neurons as before, but allocate them this reused class number.

If the shortest distance to the old classes is not within the standard deviation then

we assume that we are seeing a new class, and create a new group of neurons as before,

incrementing the class number to create a new class.

7) Age Links

This is now done multiplicatively, so all links are made older using

cij → cijba ∀i, j < n (2.21)
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3 Numerical Experiments

In this section we present results of our systematic numerical experiments on the algo-

rithms, using a variety of data.

3.1 Test Data Sets

We first explain the data we use to test the algorithm. It is important to demonstrate

correct functioning of the algorithm on several types of data. For example, one of the

key features of the PSOM that give it an advantage over the SOM and other static

neural networks is its ability to deal with new classes of data, and to forget obsolete

ones. Accordingly we describe five classes of data we would be like to be able to classify,

similar to Lang’s tests in [8].

1) Regular, frequently occurring data: obviously the algorithm must be able to handle

such ‘ordinary’ data.

2) Stopping data - similar to class 1, but which stops occurring at some point. We

want the network to be able to eventually forget about this class.

3) Infrequent but still regular data - less frequent then class 1.

4) Irregular data, which occurs at random intervals.

5) Late starting data - again similar to class 1, but this time the class appears at

some point mid way through the algorithm.

In addition to these five we will use a sixth class for adding noise to the data set

to test if the algorithm still functions in noisy environments. Table 3 shows how many

inputs we will use from each class.

For visualisation purposes we generate the test data in three dimensions, but any

other number of dimensions will still work. For each class we pick a random point in

[0, 1]3, and generate random vectors of the correct dimension using the randn command.

This creates normally distributed random data with mean zero and standard deviation

one. We scale the points by multiplying by a factor (we use 0.03 here) and then add
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Class Number Name Occurrences
1 Regular 500
2 Stopping 200
3 Infrequent 100
4 Irregular 100
5 Late Starting 100
6 Noise 0

TOTAL 1000

Table 3: Amount of signals in each class for test data set.

the centre point for the class. This creates a normally distributed cluster of points at a

random location with standard deviation 0.03.

Having done this for each class we then allocate the order of the data. To acheive

this we create a 500× 15) matrix, and each set of 3 columns will contain entries for one

of the 5 classes. We allocate the regular class (1) to every row in the first three columns

of the matrix while the stopping class will occupy the first 200 rows of the second three

columns. The infrequent data we allocate to every 5th row in the third set of three

columns, while the irregular data is assigned to random rows throughout the fourth set

of three columns. Finally the late starting class data is written in the last 100 rows of

the last 3 columns. If the matrix is read from left to right in collections of threes across

each row, and zeros are ignored, we have the required order of the data. By reshaping

the matrix and removing all zero rows we achieve a data set with the classes occurring

as desired. Figure 6 shows the incoming order of the data.

Each time the code is run the classes will be located in a different position in [0, 1]3

space, and in order to standardise part of the tests we chose a particular set of data as

a benchmark data set. Figure 7 shows a 3-D visualisation of the benchmark data, and

from this we can judge approximately the maximum radius of the clusters to be about

0.14 and so the parameter an is set at this value by default when running on these data

sets. It can also be seen that this particular data set has clearly-defined clusters that

are well separated in the input space. Naturally there is no guarantee that randomly

generated data sets will always have this property.
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Figure 6: The order data arrives from the classes, in this case there is no noise added

3.2 Measuring Performance

There are several ways we can measure the performance of the algorithm and we detail

them here.

At every iteration of the algorithm we calculate what we will call the recognition

error. This is the Euclidean distance between the input vector and the focus - denoted

as d in Section 2.1.2. It provides a useful measure of how successfully the current neurons

represent the incoming data. A large recognition error suggests that the input signal is

unlike anything in the current network.

To gain insight into the efficiency of the process we record the number of links and

the number of nodes in the network. If these remain constant over a long period of time

it suggests that the network is correctly representing the data (i.e. neither creating new

groups nor forgetting old ones.

We can also record the number of classes the network is using to classify the data. A

higher than expected number of classes is an indication that the network is subdividing

incoming clusters and mis-labelling them as separate patterns.

When using the test data set we can also directly check the success of the classification

process, because we know the correct class of every input signal. A simple scoring
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Figure 7: Benchmark data set
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mechanism is to count how many inputs from each class are mis-classified. In this

situation we are counting the false negatives, i.e. how many signals are assigned to

the wrong class. False positives are when classes are assigned extra data that does not

belong there. In this situation (with no noise present) the most helpful statistic is the

false-negatives, which we will refer to as ‘missed’ data.

Notice that we do not necessarily need to label the algorithm classes with the same

numbers as the input classes (as these are essentially arbitrary), so we choose the algo-

rithm class that has the most data points from an input class to represent it. We then

record how many data points from this class have not been allocated the same label.

This provides a simple count of mis-classifications. If one of the algorithm classes is

found to represent more than one of the input classes then the algorithm is clearly not

working properly, as it has classified the majority of two separate input classes in the

same algorithm class. We score this situation by looking for the next largest number of

data points in an algorithm class and using that class to judge how many are missed.

This will drastically increase the count of missed data points.

In the main section of the results on the test data we will mainly use the data from

the mis-classifications, but graphs of the other measurements can be found in Appendix

A.

A table detailing the location of the data from each input class, and where it has

been classified, is a useful way to assess the performance of the algorithm. Table 4 shows

shows an ideal result for a classification scheme. Each column represents an input class,

while the rows give the algorithm classes. In the ideal example, all data in each input

class has been allocated to a unique algorithm class, indicating a successful recognition

of a distinct pattern. False negatives will show up when a column has more than one

non-zero entry, while false positives occur when a particular row has more than one

non-zero entry.

The first row is empty because it represents the initial class from the random ini-

tialisation of the network, which ages away over the course of the algorithm unless by

chance data occurs nearby, when it will adjust to represent one of the clusters. The last

column is empty because there were no noise elements added in this example.
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Class 1 Class 2 Class 3 Class 4 Class 5 Noise Class
1 0 0 0 0 0 0
2 500 0 0 0 0 0
3 0 200 0 0 0 0
4 0 0 100 0 0 0
5 0 0 0 100 0 0
6 0 0 0 0 100 0

Table 4: Comparison of classifications

3.3 Tests

In this section we present the results of varying the parameters on the two different

versions of the algorithm. We use our implementation of Lang’s algorithm (discussed in

Section 2.1) and the new algorithm described in Section 2.3.

Unless otherwise stated we generate, for each test, a random data set (see Section 3.1)

and then run the algorithm on this data repeatedly while varying the chosen parameter

in small steps. We repeat this process 50 times (using a different randomly generated

data set each time). In the figures Lang’s algorithm appears first, the new algorithm is

second, and the axes are set similarly for comparison purposes. The mean results over

the 50 trials are plotted, with broken lines indicating ± one and two standard deviations.

Table 5 lists the values of all parameters used by default in these tests (where nec-

essary), while changing the parameter in question. Parameter ba takes the appropriate

value depending on the ageing system used.

Parameter Value
an 0.14
acl 80% of an, i.e. 0.112
ar 1
bc 1
ba 0.01 or 1.01
bv 0.2

Table 5: Parameters in tests
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3.3.1 Parameter bv

Parameter bv controls how much the focus is adjusted to become like the input (if it is

within the cluster threshold). Lang chooses a value of 0.9 but we demonstrate here that

this is an ineffective choice. Figure 8 shows how the number of data points missed (false

negatives) changes with bv.

It is clear that Lang’s algorithm works better with a much lower value of bv, but

there is still a significant amount of data missed, and as bv increases the spread of data

shows that the algorithm performs somewhat unpredictably. The new algorithm has a

consistently lower number of mis-classifications, and does not seem to be very sensitive

to the choice of bv, although lower values do appear to perform better.

It makes intuitive sense that a lower value of bv gives better results by adjusting the

network more gradually, and allowing it to accommodate data over time, rather than

drastically altering at every input. Beyond this observation, the main conclusion is that

the new version of the algorithm performs significantly better.

It is useful to compare the classification tables from Lang’s algorithm at different

bv values. Tables 6 and 7 show these when bv is 0.2 and 0.9 respectively. At a value

of 0.2, the algorithm recognises most classes completely accurately, only missing one

data point from class 2. At 0.9 however classes 3 and 4 are spread over many different

algorithm classes, while class 1 is split in two. The poor performance in classes 3 and

4 - the infrequent and irregular classes - demonstrate that the errors are arising in data

which is less ‘regular’. This seems to be because the clustering neurons have more time

to be ‘disturbed’ by the working of the algorithm before they see a new signal. The

problem appears to be solved by the new algorithm, which successfully reproduces the

ideal result in Table 4.

Notice that all the errors shown here are false negatives and that no false positives

occur. It seems that the only time false positives occur are when classes in the data

set are actually overlapping, and so the algorithm labels both two classes with the same

number. This is a problem with the data, and not the algorithm. For this reason we use

the false negatives as the main statistic for judging success.

36



Figure 8: Performance of the algorithms as bv is changed. The top graph is Lang’s
algorithm and the bottom graph is the new algorithm
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Class 1 Class 2 Class 3 Class 4 Class 5 Noise
1 0 0 0 0 0 0
2 500 0 0 0 0 0
3 0 1 0 0 0 0
4 0 0 100 0 0 0
5 0 199 0 0 0 0
6 0 0 0 100 0 0
7 0 0 0 0 100 0

Table 6: Lang’s algorithm with bv = 0.2

Class 1 Class 2 Class 3 Class 4 Class 5 Noise
1 0 0 0 0 0 0
2 116 0 0 0 0 0
3 0 200 0 0 0 0
4 0 0 2 0 0 0
5 0 0 3 0 0 0
6 0 0 0 5 0 0
7 0 0 2 0 0 0
8 0 0 0 1 0 0
9 0 0 0 1 0 0

10 0 0 1 0 0 0
11 0 0 0 93 0 0
12 0 0 1 0 0 0
13 0 0 1 0 0 0
14 0 0 2 0 0 0
15 0 0 1 0 0 0
16 0 0 69 0 0 0
17 384 0 0 0 0 0
18 0 0 0 0 100 0
19 0 0 18 0 0 0

Table 7: Lang’s algorithm with bv = 0.9
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3.3.2 Parameter an

The parameter an is crucial to define how big a ‘cluster’ can be, and has a big effect

on the results, as can be seen in Figure 9. When an is around the value suggested by

the data (about 0.14) it is obvious that both versions of the algorithm do fairly well,

although again there is a noticeable difference in the consistency of the results around

this point. Lang’s algorithm again has a larger standard deviation, compared to the new

version. Both algorithms classify the data badly as an moves away from the indicated

value; if it is too small then clusters are too small and single input classes are classified

as several different algorithm classes. If an is too large then algorithm classes encompass

wider areas and it becomes increasingly likely that algorithm classes will overlap two or

more input classes (and hence mis-classify the data).

It is clear from these results that choosing an effective value of an is a very important

factor in any useful operation of this algorithm. If the characteristics of the data are not

known beforehand this poses a problem. A potentially very useful direction for further

work would be to investigate how to allow the algorithm to adjust an dynamically as

the algorithm progresses. If a test data set is available then an approximate an can

be calculated (see Section 2.1.3), in this case we calculate the maximum radius of the

classes at around 0.13, so a suitable value of an is just larger than this at 0.14.

See Appendix A for graphs showing the other statistics for this parameter. Compu-

tational time (Figure 28) is much the same for both versions and does not alter across

the range of an. The recognition error is noticeably worse in Lang’s algorithm, and

tends to get higher as an increases. The other graphs (Figures 20 and 21) showcase the

effect of a very small an when the algorithm over-classifies data and creates far too many

classes.

3.3.3 Parameter acl

As discussed earlier in Section 2.2.1 it is not altogether clear why acl is a necessary extra

parameter. The results in Figure 10 demonstrate that for each version of the algorithm,

once acl > an it has a relatively small effect on the performance of the algorithm. In each

case the best performance is when acl ≈ an. This supports the earlier suggestion that
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Figure 9: Performance of the algorithms as an is changed. The top graph is Lang’s
algorithm and the bottom graph is the new algorithm.
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Figure 10: Performance of the algorithms as acl is changed. The top graph is Lang’s
algorithm and the bottom graph is the new algorithm

41



the two parameters could be combined. The other graphs in Appendix A also support

this, and show that this parameter has very little effect on recognition error.

3.3.4 Parameter ar

Parameter ar represents the maximum length of a link before it is deleted. As all link

lengths in Lang’s algorithm were scaled by this amount, and we set bc = 1
ar

, this has little

effect on the algorithm, other than the fact that it clearly must be above zero. If the

parameter gets too large then it will simply mean that ageing links has less effect, and

classes are forgotten less easily. This does not seem to affect the classification errors - as

the graphs in Figure 11 demonstrate. The only noticeable fact is that the new algorithm

is performing consistently better than Lang’s. The two sets of graphs from these tests

in Appendix A (Figures 24 and 25) show that ar appears to have no noticeable effect

on the new algorithm (perhaps multiplicative ageing means that far higher values of ar

need to be tested). For high values of ar Lang’s algorithm appears to never forget class 2

(the stopping class), as might be expected - this can be seen in the graph of the number

of classes present during the algorithm .

3.3.5 Parameter ba

The graph for Lang’s algorithm in Figure 12 shows sudden changes in behaviour. These

occur at ba ≈ 0.24, and again at ba ≈ 0.32. The value normally used is 0.01, so at these

points we are a considerable distance from the standard value, meaning that links are

aged very quickly. The changes are probably due to the ageing process occurring so

quickly that classes are forgotten before their next presentation.

The number of iterations between classes is at least 2, and can be as high as 4

iterations in our test data. From our tests we calculate that the average link length

within a class during our algorithms is about 0.04. Using this value for the shortest link

connected to a node csj in equation (2.8), and a value of 0.24 for ba gives us a temporal

persistence of around 4 iterations. So it is at exactly this point that we’d expect to see

a poor performance, since there are 4 classes present during most of the algorithm. Of

course, since some of the data is irregular, some classes are seen more often than that

and so will still be remembered. The next jump in the graph occurs at ba ≈ 0.32, which
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Figure 11: Performance of the algorithms as ar is changed. The top graph is Lang’s
algorithm and the bottom graph is the new algorithm
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Figure 12: Performance of the algorithms as ba is changed. The top graph is Lang’s
algorithm and the bottom graph is the new algorithm. Note that different x-axis scales
are used since the operation of the ageing process has changed.
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corresponds to a temporal persistence of only 3 iterations - which confirms this as the

explanation for the abrupt changes in performance.

The new algorithm has less catastrophic changes, but still a sharp rise in missed

data occurs at about ba=2.2, which corresponds (using equation (2.15)) to a temporal

persistence of almost exactly 4 iterations once again. In this case the 3 iteration threshold

occurs at about ba = 2.9. The degradation occurs slightly before and continues after

these values, because link lengths are not always exactly the same value, and only on

average around 0.04.

3.3.6 Noise

Figure 13 shows how the algorithms slow down when noise is added to the data set,

while Figure 14 shows the missed classifications (false-negatives). The x-axis shows

the number of noisy entries that we added, up to a maximum of 27000 extra entries,

beyond the original 1000 in the test data set. For each experiment we generated one

test data set for both algorithms to use, and then added more noise on successive runs.

We repeated this 10 times on different data sets to get an average of the results as

shown in the diagrams. Both algorithms cope fairly well with noise at these high levels,

although the new algorithm appears to perform better again. The new algorithm is

noticeably slower, but both algorithms demonstrate a strong linear relationship between

the amount of noise and the computational time. The standard deviations are not shown

on the time graph because they are so small (typically a only few seconds). The times

were produced on a Dell Inspiron 530s, 3.0 GHz Intel Core2 Duo CPU, with 3326MB

RAM, running Vista.

45



Figure 13: Computational time (in seconds) of the algorithms as the amount of noise is
increased from 0 to about 30000
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Figure 14: Performance of the algorithms as the amount of noise is increased from 0 to
about 30000
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4 Application to THALES Data

4.1 Data Format

THALES supplied us with a data set of 42156 signals, each of which had 5 variables,

labelled RF (Frequency), PW (Pulse Width), AMP (Amplitude), BRG (Bearing) and

TOA (Time of arrival). Figure 15 is a representation of all the data, note the 3D plot in

the lower left, which shows the clusters in the three dimensions we will ultimately use.

The last dimension of the data - the time of arrival of the signal - is, in its current

format, un-usable as an input to the PSOM, since the TOA is not a constant value for

a certain emitter. The AMP dimension is also problematic - the incoming signals are

often from rotating radars, so they are typically picked up faintly at first, more strongly

as they aim directly at us, and then lose strength as they turn away. As a result the

AMP value for each emitter changes in a sinusoidal manner, and is not directly useful

for the PSOM algorithm, since again it is not constant for each emitter.

That said, both of these dimensions of data can - and should - be used to further

classify and separate out the emitters, if additions are made to the classification code

beyond the pure PSOM function. In this project we focus on what can be achieved before

any such modifications are made, but implementing them to improve the performance

would be a natural next step.

Using the RF, PW and BRG dimensions of the data we import the data as a 42156×3

matrix. The first step is to normalise it. Without any knowledge of the context of these

dimensions we can proceed to normalise all the dimensions separately and identically

weighted by simply calculating the range of values in each dimension, dividing by this

range and subtracting the minimum value. This puts all data into values into the range

[0, 1]. Obviously if we wished one dimension to have more effect than the others then

we can adjust this process, see Section 5.3 for more discussion on this.

With the data normalised it just remains to set the parameters for the algorithm and

let it run. If nothing is known about the data structure or cluster sizes then estimates

will have to be used at first, and the parameters tuned on subsequent tests.
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Figure 15: THALES simulated data set, used with permission of THALES Aerospace.
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4.2 Results and Analysis

Applying the algorithm to the THALES data, the main output we get is the list of classes

that the data signals have been assigned. This is the classification that the algorithm

has provided. More usefully for judging the results we have the list of classmeans

and the other class statistics (see Section 2.2.5) which identify where each algorithm

class is located in the input space. After an initial run on the data we sent our results

to THALES for them to compare with the actual emitter data they held. This was

compared by means of a spreadsheet, and they tried to pair each algorithm class with an

emitter. As a rough method of assessing the success they assigned each of the algorithm

classes a description. All quotes in this section are from e-mail communication with

THALES [9] .

In a successful example the mean values of the data assigned to a certain algorithm

class were exactly the same as an emitter in their input set, and the number of signals

there was also identical. More commonly the mean values of a class in the algorithm

were very close to those of a certain emitter, with a slight discrepancy in the number

of signals there. This occurs when a few data signals are misclassified into this class,

but not enough to make the class un-representative of the emitter. In either of these

cases the algorithm class is labelled ‘good’ and judged to be ‘a good representation of

the emitter, without significant elements of other emitters.’

Sometimes the algorithm mistakenly incorporates significant numbers of signals from

two or more emitters into the same algorithm class. If the main emitter is still recog-

nisable, then the algorithm class is labelled as ‘OK’ - ’It is possible to tell the main

emitter, but there is evidence of the track containing other emitter(s)’.

If no obvious pairing with an emitter is seen then it is likely that the algorithm class

has combined multiple emitters into one class. These classes are labelled ‘poor’ - and

are ‘basically a combination of multiple emitters, what we call an Over Merge (OM)’.

Finally the algorithm can generate a class which represents the same emitter as

another class in the algorithm - these are labelled as ‘Multiple Tracks’ - where ‘the

class is a repeat of another class which has already been assigned to a specific emitter’.
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In the first run on the THALES data set we used the parameter values stated in

Table 8 (we still used the acl parameter at this point), but we also included the AMP

dimension of data, and normalised this in the same way as the other dimensions.

Parameter Value
an 0.14
acl 80% of an = 0.112
ar 1
bc 1
ba 1.0001
bv 0.2

Table 8: Parameters for first THALES run

After this run THALES revealed that 55 emitters were present in the data set - our

initial run had identified 57 classes. However, on comparison with the mean values for

the emitters, as described above, THALES judged that 20 of these classes were ‘good’,

16 ‘OK’ and 9 ‘poor’ with the remaining 12 being ’Multiple Tracks’ [9].

We then removed the AMP dimension from the classification procedure for the rea-

sons described in section 4.1, and we reduced the an parameter (to 0.11) since the 9 poor

classes were evidence that some classes were being merged.

A more precise way of scoring the results is to make a direct count of the mis-classified

results as we did with the test data, but this is only possible when we know which data

signals are from which emitters, which THALES only revealed late on in the testing

process. With this information not only can we score the results more easily, but we

can set some of the parameters more effectively. The incoming data can be visualised

by class as in Figure 16. From this we can see that the longest time between class

presentations is certainly less than 10,000 iterations, and so we can set our ba value,

(using equation 2.14 and a short link value of 0.04), at about 1.0003.

We can also calculate how wide a radius the emitter classes have in our normalised

space. We find a mean distance of about 0.09 from the class centres to furthest signals,

and so setting an = 0.1 seems reasonable.

The best results we obtained on the THALES data set were with the values in Table

9. This run gave us a score of 5,524 false-negatives (and 9,525 false-positives, although
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Figure 16: Incoming data plotted by class from the THALES simulated data set. The
data from each emitter comes in bursts - a sweeping radar would be detectable only
when it points towards us. Used with permission of THALES Aerospace.

Parameter Value
an 0.11
acl equal to an

ar 1
bc 1
ba 1.0002
bv 0.15

Table 9: Parameters for best THALES run

this is a less useful statistic - see discussion in Section 3.2) out of a total of 42,156

signals. From the false-negatives score (the data that was missed from its class) we can

say that about 87% of the data signals were classified correctly together, although the

false-positive score indicates that some of these classes were merged. We can check on

this by copying the process that THALES used to assess these results. We calculate that

we have 34 ‘good’ classes, (10 of which we labelled ‘excellent’ since they had only missed

or gained one or two inputs), 5 ‘OK’ classes, and 9 ‘poor’ ones, where multiple emitters

were merged as one class. No multiple tracks were obvious, but in most of the poor

classes it can be easily deduced which two emitters have been merged. The spreadsheet
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of the analysis is available in the online store of files associated with this project.

It is almost certain that still better results can be obtained by further tests and

tweaking of the parameters, and also that using the two neglected dimensions will aid

the separation process enormously.
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5 Further Work

5.1 Algorithm Changes

In Section 2.2 we discuss ways of changing Lang’s algorithm - in particular we suggest

new ways of performing the neighbourhood update, which have proved useful to counter

some of the undesirable effects of Lang’s version. However, there are many other vari-

ations that we could have suggested. It is perhaps a result of the less than rigorous

nature of the PSOM algorithm as it stands that there is no clear method to choose, but

a rather a wide array of slightly different options. Having said that, there is nothing to

prevent these untried methods potentially producing better results.

For example - the neighbourhood update procedure was altered in this project to

prevent the ‘neuron pushing’ behaviour observed in Lang’s algorithm. We changed the

update of ‘far’ neighbours (outside the clustering threshold but still linked to the focus)

by no longer pushing them away, just ageing the link to them. Lang’s idea of pushing

them away makes sense to provide the separation between classes. An option which may

retain this feature would be to push the far neurons away, but not in proportion to their

link length. Even a simple inversely proportional relationship may work better, so that

very distant neurons are altered only a small amount, whereas neurons just outside the

clustering threshold are altered enough to provide the separation effect Lang was after.

This is just one of many possibilities that could be usefully trialled.

Another suggestion which should perhaps be looked at in future work on this algo-

rithm would be the initialisation process. Do we need to introduce a random element

into the initial group of neurons? If the network is designed to create new groups of neu-

rons in a location representative of a new class appearing in the data then why shouldn’t

it start the whole process off in a similar way? The difference in the long-term running

of the network will almost certainly prove trivial, but it may aid testing procedures by

removing an arbitrary random element from the process, which can effect the subsequent

classification, particularly over a small data set.
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5.2 Parameters

We mention in Section 2.2.1 the possibility of introducing a new parameter to control

the neighbourhood update. Depending on the actual process used to update the neigh-

bourhood (Section 5.1 discusses some options) we could use this parameter in a similar

way to bv which is used to control how drastically the focus is updated. At present we

only use the link length to determine the ‘strength’ of the neighbourhood update (that

is - how drastically we update the neighbours to be like the focus). This parameter

could be used instead of using link length, or it could be used in conjunction with that

current link length method. Yet again we see that there are many variations that can

(and should) be tried to further explore the experimental working of this algorithm.

If we could find a way to determine and optimise parameters dynamically, during the

algorithm then much of the necessity of finding optimal values beforehand is removed.

This is obviously a desirable outcome and so this should be a priority for future study.

5.3 Changes for THALES Data

The THALES data set provides us with 5 dimensions of data that are potentially useful

to separate the signals into clusters. However the PSOM as an algorithm is only designed

to deal with clusters that exhibit consistently similar values in the data dimensions, and

we left two of the dimensions (time of arrival (TOA) and amplitude (AMP)) out of our

input data since they could not be described in that way. One clear property of the

emitters THALES have simulated is a ‘pulse time’, where the signals from a certain

emitter tend to come at regular intervals (as a radar device might be expected to send

out regular signals as it scans an area). These regular timings would be a constant

feature that could help further distinguish between clusters. The problem is that until

we know where to classify a signal we can’t know how long it has been since the last

signal from that emitter, and so we can’t know the pulse time. As a result the TOA

has not been incorporated into the classification process in this project, but in order to

enhance the PSOM for use on this type of data we can envision a simple further step

in the implementation that can make use of the TOA to compare pulse times. It is to

be hoped that this enhancement would only improve the classification performance of
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the simple PSOM. In a slightly different way the AMP dimension is not constant, but

tends to vary in a sinusoidal way over a the space of time that the signal is detected

(see Figure 17 for an example of just two emitters from the THALES data, where the

shape of the AMP dimension can be clearly seen in the 4th box down on the right hand

side). So expecting AMP to remain a constant feature in the cluster is an error, but we

would expect subsequent signals from an emitter to have similar AMP values, and that

these would progress in a predictable (sinusoidal) manner. Again it is simple enough to

see ways to add to the implementation to take this into account. Both of these changes

move the classification away from the simple use of a pure PSOM, and as a result are

beyond the scope of this short project, but the classification of this sort of data can only

be enhanced if they could be incorporated.

Another data-specific change would be to offer some ranking of importance of the

dimensions - are some expected to vary more than others? Dimensions that are known

to be more rigid within a cluster are more helpful to distinguish different clusters. When

the data is normalised these dimensions can be given a larger range in the space than

other dimensions so as to increase their influence on the clustering procedure. This is

not done in this project for reasons of simplicity - but anyone wishing to use the PSOM

on data which has properties like this can usefully use this technique.

5.4 Mathematical Foundation

A different, but perhaps even more vital, direction for further work on the PSOM would

be to try to set it on a more rigorous mathematical foundation. Many of the complica-

tions in the algorithm at present, and the wide variety of possible changes, are a result

of not really knowing how to frame the algorithm mathematically. This project has

reduced the ‘black-box’ nature of the algorithm to a certain extent by trying to justify

each part of its working experimentally and numerically. Any further progress in this

direction really needs to be more analytical, and may have to involve a fundamental

re-working of the algorithm from a new stand-point. Philip Bond, while supervising this

project, has suggested a new way of viewing the SOM and potentially the PSOM in the

form of a fibre bundle, and from this viewpoint analysing the behaviour geometrically. A

useful contribution to this work would be to re-code the PSOM in this different format

56



Figure 17: Two emitters from the THALES simulated data set
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so providing a concrete implementation of this version of the PSOM. This would enable

numerical results to be compared with the theoretical analysis that becomes possible.
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6 Conclusions

6.1 Summary

This project provides a new implementation of the plastic self organising map (PSOM)

algorithm in Matlab - see Appendix C for the pseudo code. The full code and other files

used in the project can be found online at

http://www.maths.ox.ac.uk/∼porterm/research/PSOM.

We offer several improvements to the algorithm detailed in Lang’s original thesis [8].

These improvements are shown to markedly improve the performance of the algorithm

on test data, and we explain the rationale behind the modifications and justify their

inclusion by numerical experiments. The THALES data set provides additional evidence

that the PSOM is functioning effectively, with an initial run on the data (with minimal

knowledge of the data structure) correctly classifying about 70% of the emitters, and

subsequent runs improving this to above 80% - without using two significant dimensions

of the data (TOA and AMP). We also describe various directions for further work on this

project, noting in particular ways to further modify the algorithm, but also emphasising

the need for the PSOM to be set on a more rigorous mathematical footing.

6.2 The New PSOM

Advantages and disadvantages of the PSOM are detailed in Lang’s original thesis [8],

but are updated here, with references specific to this project:

6.2.1 Advantages

• The PSOM successfully deals with data of various natures, as shown in the test

data sets generated for the project. It can classify regular and irregular data, forget

old classes, and learn new ones in a continuous manner, without the need to stop

the algorithm and retrain - this is the primary purpose for choosing the PSOM

above a static neural network. It can continue classification indefinitely, without

the need for stopping criteria, since it treats every signal in the same way, and no

part of the algorithm depends on the total time run - this makes the algorithm

ideal for a continuously changing and ongoing situation.
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• It is easy to choose parameter values effectively given enough information about

the data coming in. We have reduced the number of parameters to make this even

easier. Choices and heuristics for them are justified by numerical testing as far as

possible, and they prove fairly robust - in that they do not require highly accurate

values since they change the performance of the algorithm in a mostly continuous

way.

• The PSOM works in a noisy environment and successfully classifies data from our

test data sets even with a large noise to signal ratio. Even with ratios as high as

30:1 the algorithm typically successfully classifies about 90% of the signal data.

• The PSOM provides a quick and largely successful classification on the THALES

data set, which could easily be improved with the modifications discussed in Sec-

tion 5.3. The success of the algorithm, in the absence of these modifications and

with no weighting of the data dimensions is very promising, and provides good

justification for pursuing this approach further.

6.2.2 Disadvantages

• Some prior information is still needed to successfully set the remaining parameters,

notably the potential size of clusters (after normalisation), and the longest time

between presentations of a class. Exploring the dynamic setting of parameters (as

discussed in Section 5.2) may help this problem.

• The topology of the network can sometimes be unsatisfactory. As a result of links

being cut and never reformed it is entirely possible for nodes in the network to

end up very close to each other, but not linked in any way that the network can

discern. Lang also points this out ([8] p. 173), and it means that the PSOM should

not be used to present topologically reliable representations of the data - if just

used as a classification device then this should not be a problem.

• There is no clear method of optimising the working of the algorithm [8] or what

measurement to use for this. Recognition error (for example) provides a useful

measure of the success of the algorithm, but it is unclear how to automatically
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tune the parameters to reduce this, and the recognition error will of course have

to be occasionally high if new classes are to be detected.

• Many of the above concerns are perhaps due to the fact that the PSOM is not (at

present) built on a rigorous mathematical foundation, and suffers from a somewhat

ad-hoc feel, although we have reduced this to a certain extent. As a result there are

many possible variations to the specific working of the algorithm, and no real way

yet of justifying which to choose, other than by numerical evidence of experiments.
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A Graphs From Test Data

This appendix contains two sets of graphs for each parameter we vary in our experiments,

one set for each version of the algorithm. Each graph has three axes, which may change

orientation in the diagrams so as to give the best viewpoint. The vertical axis is always

the size of the variable that we are measuring, while the two horizontal axes show the

iteration number as it progresses through the algorithm, and the parameter as it is

varied. The best way to view these diagrams is to follow along the iteration axis, as

this represents moving through the algorithm in time. See Section 3.2 for descriptions

of these measurements, but we briefly describe them here

Top Left - Recognition Error. How far each input is from the focus. We expect this

to be initially high as the algorithm creates new nodes to represent the data, and

we also expect a spike at just before 800 iterations, when class 5 is introduced.

Top Right - Number of Classes. How many classes are currently being used by the

algorithm. Ideally this will be 4 classes for the most part. If class 2 is forgotten

before class 5 arrives then we will see it drop to 3, before returning to 4. Otherwise

it will increase to 5 classes as class 5 enters near 800 iterations.

Bottom Left - Number of Nodes. A measure of the size of the network - this is useful

to check on efficiency. If each class is represented by 2 or 3 neurons we will expect

this to take values between 8 and 15. Higher or lower values probably mean less

then optimal performance.

Bottom Right - Number of Links. Similar to the previous graph, this is a useful

alternative measure of size (and so efficiency). This time we just count the links

rather than the nodes. When the graph appears stable it probably means the

network has settled to a good representation of the incoming data.
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Figure 18: Other statistics for bv, Lang’s algorithm
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Figure 19: Other statistics for bv, new algorithm
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Figure 20: Other statistics for an, Lang’s algorithm
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Figure 21: Other statistics for an, new algorithm
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Figure 22: Other statistics for acl, Lang’s algorithm
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Figure 23: Other statistics for acl, new algorithm
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Figure 24: Other statistics for ar, Lang’s algorithm
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Figure 25: Other statistics for ar, new algorithm
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Figure 26: Other statistics for ba, Lang’s algorithm
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Figure 27: Other statistics for ba, new algorithm

72



Figure 28: Times taken for different values of parameters. The times should not be taken
as useful speed measurements as they were done on computers being accessed remotely
at the university Computing Laboratory

73



B Comparison with k-means Clustering

The k-means clustering technique is a simple, effective and widely used one. Given a

specific number of clusters, k, the algorithm forms data into clusters by the following

process:

1. Initialise - choose (somehow) k cluster centres - i.e. the centre of all the potential

cluster regions. This can be done randomly, or more effectively by using some of

the first few data points in the data set.

2. Classify - assign each data point to the ‘closest’ cluster. Any one of several distance

measures can be used to determine the closest, but it is simplest to think of this

as the Euclidean distance between the data point and the cluster centre.

3. Compute cluster means - calculate the mean position of all points allocated to each

cluster, these are the new cluster means.

4. Repeat - from step 2 using the new list of cluster means, until no changes of cluster

membership occur anymore.

The k-means algorithm is very simple, and perhaps the most often used clustering

algorithm. It is efficient - its complexity is linearly proportional to the size of the data

set [3] - but it probably unsuitable for our situation. To cluster the data this algorithm

needs to know all the data at the beginning - it is unable to function in ‘real time’ as

data arrives, and so is unsuitable for a continuous clustering process.

The results in Table 10 illustrate the problems with k-means clustering on this type

of data. Both false-positives and false negatives are present, and the classification is

unpredictable as the three wildly different results show.
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Class 1 Class 2 Class 3 Class 4 Class 5
1 0 200 99 100 0
2 258 0 0 0 0
3 0 0 0 0 49
4 242 0 1 0 0
5 0 0 0 0 51

Class 1 Class 2 Class 3 Class 4 Class 5
1 0 0 0 0 100
2 0 200 99 100 0
3 161 0 0 0 0
4 155 0 0 0 0
5 184 0 1 0 0

Class 1 Class 2 Class 3 Class 4 Class 5
1 244 0 0 0 0
2 0 0 100 0 0
3 0 0 0 0 100
4 0 200 0 100 0
5 256 0 0 0 0

Table 10: Three clustering attempts using kmeans(dataset,5) in Matlab, compare with
Table 4 for the PSOM results
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C PSOM Pseudo-code

We here lay out the structure of the algorithm as it currently stands:

Require: data set (and the dimension of the data), parameter values for an, ar, bv &

ba.

1: initialise network with 3 random nodes connected by links

2: repeat

3: input next entry from data set

4: find focus - closest (Euclidean) node

5: if distance to focus < an then

6: update focus (use bv)

7: update neighbours

8: assign class of focus to input

9: else

10: compare with forgotten classes

11: if distance to nearest old class < standard deviation of old class then

12: create new group of neurons with old class number

13: assign old class number to input

14: else

15: create new group of neurons with new class number

16: assign new class number to input

17: end if

18: end if

19: age all links (multiply by ba)

20: delete links longer than ar

21: delete nodes with no links

22: until data set exhausted

For all full code and other files see the website at

http://www.maths.ox.ac.uk/∼porterm/research/PSOM
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