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Abstract

We will study the possibility of reducing the aggregate waiting time

for public transportation system using a ‘multilayer’ network represen-

tation of these systems. A multilayer network can be interpreted as a

set of graphs that are connected by edges. To estimate the number of

passengers who travel between any pair of stations in the network, we

use a model for passenger mobility called the doubly constraint gravity

model. If we assume that all passengers travel along the path that

minimizes travel time, then we can use the graph-theoretical concept

of shortest paths to find these paths. We show that the waiting times

along a path can be obtained from the shortest paths on a multilayer

network representation, as we distinguish between travel, transfer, and

stopping time using different edges types. However, an algorithm for

finding shortest paths on multilayer networks did not yet exist. We we

show that Dijkstra’s algorithm which find the shortest paths on graphs

can also be used to find the shortest paths on a multilayer network.

Furthermore, we show that an adaptation of Dijkstra’s algorithm, when

applied to multilayer networks, can reduce the number of iterations re-

quired to find all shortest paths on the network. By combining the

shortest path and passenger volume information, we can estimate the

aggregate waiting time on a network. We show that the aggregate

waiting time of a multilayer network representation of a small network

can be improved by perturbing the existing schedule. Naturally, the

next step would be to optimize the schedule of a real transportation

network. This will be pursued in future work.



Contents

1 Introduction 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5

2.1 Britain’s rail infrastructure . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Graphs 8

3.1 Graph formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Graph representation of the British rail system . . . . . . . . . . . . 10

3.3 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Degree centrality . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 Geodesic node betweenness centrality . . . . . . . . . . . . . 13

3.3.3 Geodesic edge betweenness centrality . . . . . . . . . . . . . 14

3.4 The British rail network . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Multilayer networks 17

4.1 Multilayer network formalism . . . . . . . . . . . . . . . . . . . . . 18

4.2 Multilayer network construction . . . . . . . . . . . . . . . . . . . . 21

4.3 Multilayer network properties . . . . . . . . . . . . . . . . . . . . . 22

5 Estimating passenger flow 27

5.1 Origin-Destination matrices . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 The gravity model . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Shortest paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



5.2.1 Monoplex network: Dijkstra’s Algorithm . . . . . . . . . . . 31

5.2.2 Multilayer networks: Dijkstra’s Algorithm . . . . . . . . . . 32

5.2.3 Adaptation of Dijkstra’s algorithm . . . . . . . . . . . . . . 37

6 Schedule Optimization 40

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Implementation of optimization problem . . . . . . . . . . . . . . . 43

6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 51

A GTFS data description 54

B London underground connections 55

C Monoplex network types 57

D Dijkstra’s algorithm visualization 58

E Dijkstra’s algorithms 59

Bibliography 62

ii



Chapter 1

Introduction

The roots of graph theory are linked to the proof of the Königburg bridge problem,

which was constructed by mathematician Leonard Euler in 1735 [3]. The problem

asks if a path exists that crosses each of the seven bridges that connect the four

parts of the city of Königburg exactly once. By representing each part of the city

as a node and each bridge as an edge between two nodes, Euler showed that no

such path exists. The graph that was constructed is an example of a transportation

network. In the twentieth century, researchers started using graph representations

of transportation systems to study the properties of these systems [29]. In these

graphs, geographical locations (e.g. cities, stations, airports, etc.) are represented

as nodes and the edges in the network represent the routes between them (e.g.

roads, tracks, flightpaths, etc.) [29].

However, a graph is a simplified representation of a transportation network. For

instance, graphs are unable to represent the time-dependent nature of networks;

if a route between two locations exists at some given time, then only will the

respective nodes be connected by an edge. In transportation networks, this time-

dependency is a crucial feature. This is because connections only exist at certain

points in time; for example, a train runs from Oxford to London Paddington only

four times in one hour and so the edge representing the connection between the

stations will only exist four times every hour.

The time-dependency can be incorporated if a transportation system is repre-

sented as a multilayer network. In this case, a multilayer network can be thought

of as a series of graphs, where each graph (i.e. layer) represents the network at a

1



specific moment in time. The edges used to connect nodes to their counterparts

in other time-layers can now be interpreted as waiting time. Edges between two

different stations in different time-layers represent travel time.

Moreover, a multilayer network allows to segregate a network on the basis of

node characteristics. For example, in a rail network connections between stations

are part of different routes [39]. By segregating the nodes in the graph on the

basis of the routes that are used to connect them to other nodes, we can include

the notion of travel, transfer and stopping time in the network. For example, an

edge between a node and its counterpart in another route layer can be interpreted

as the required transfer time at the station represented by the node.

In contrast to those in a graph, edges in a multilayer network can thus have

different interpretations. This allows for a more realistic representation of a net-

work. For example, we can more accurately define a path on a network using a

multilayer network representation. For each journey on the network, we can, in

addition to the stations that are traversed, specify the times at which they are

traversed and the routes that are used to go between stations.

A multilayer network that has both routes and time as layers can be used

to represent a transportation schedule. By studying the network, we can, for

example, deduce information about possible travel patterns of the users of the

transportation network. This is especially useful when accurate data on passenger

behaviour is not available for the network that is studied. An understanding of the

travel patterns of passengers is essential for the construction and adjustment of

schedules on a network, as it allows operators to respond to fluctuations in demand

by adjusting their existing schedule (i.e. changing the number and/or distribution

of vehicles on a network) or by introducing price fluctuations [26].

Using a network representation of a transportation system, we can estimate

passenger flows on a system by finding the shortest paths. Depending on the

network, the definition of a shortest path may vary. For example, a shortest path

between an origin and a destination node can be the path with the smallest travel

time, the path that requires the least number of interchanges or the path that

has the smallest travel distance. We can find shortest paths on a graph using

Dijkstra’s algorithm [12]. However, an algorithm for finding shortest paths on

multilayer networks did not yet exist. We will show that Dijkstra’s algorithm can
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also be used to find the shortest paths on multilayer networks. Furthermore, we

propose an adjusted version of Dijkstra’s algorithm which can reduce the number

of iterations required to find all shortest paths on a multilayer network. Together

with information on the number of passengers that travel between each pair of

nodes in a network, we can estimate passenger volumes on the network.

The construction of actual data on passenger mobility is difficult, as it requires

the almost constant monitoring of the position of individuals [16]. Additionally,

the collection of spatio-temporal information of users in a network can pose a

serious threat to their privacy [6]. When data on passenger mobility patterns is

available, it can be used to create a better understanding of passenger preferences

on a network. For example, using smart card transaction data obtained for the rail

network in Japan, it was found that in addition to travel time passengers choose to

minimize the total waiting time along their journey, while also trying to minimize

the number of transfers when faced with a choice of train [25].

This behaviour can be explained by considering the value of travel time [45].

The value of travel time can be determined based on the mode of travel that is

used (e.g. walk, car, train, etc.). One way in which the value of travel time can be

interpreted, is that a passenger would be willing to spend more to avoid a travel

mode for which the value of travel is high (e.g. buy a more expensive train ticket

that reduces the waiting time along the journey). Consequently, the time spent in

travel modes for which the productivity (e.g. ability to do work) of a passenger

is high is valued less than time spent in travel modes for which the productivity

of a passenger is low. For example, the value of time that is spent walking or

waiting is likely to be valued more than in-vehicle time [45]. By measuring the

value of transfer and waiting time with respect to the value of in-vehicle time, it

was concluded that passengers value transfer and waiting time at 2 and 2.5 times

the value of in-vehicle time, respectively [45]. One way to increase the usage of

public transport is for policy makers to focus on the reduction of the aggregate

waiting time on the network.

It is found that the time a passenger spends waiting when using public trans-

portation is dependent on the level of synchronization of the schedule and on the

punctuality with which the schedule is executed [44, 19, 9]. Research on the punc-
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tuality of the schedule focusses on methods to recomputing schedules in case of

delays [22, 43], or on the construction of delay resistant schedules [27].

Attention has been increasingly paid to methods that improve the synchroniza-

tion between the schedules from different transportation modes [11, 8, 46]. Nair et

al. suggest that the aggregate waiting time on a multi-modal transportation net-

work can be reduced by perturbing the existing schedules [10]. They show that the

aggregate waiting time on the Washington D.C. public transportation network can

be reduced by 26.38%, affecting approximately 15% of the users on the network

[10]. The advantage of this method is that its implementation cost is relatively

low, because only minor changes to the schedule are introduced.

We apply this method to a single-modal transportation networks on which dif-

ferent operating companies are responsible for passenger transportation. To this

end, this thesis will use the formalism of multilayer networks to develop a frame-

work that can potentially reduce the aggregate waiting time on a transportation

network through a small perturbation of the existing schedule.

1.1 Thesis outline

Chapter 2 provides a general description of the British rail network and intro-

duces basic terminology and data sets that we use. In Chapter 3, we construct

a graph representation of the British rail network and discuss its characteristics

using standard network diagnostics. In Chapter 4, we introduce the concept of

multilayer networks and introduce the procedure for the construction of multi-

layer network for general public transportation networks. The chapter concludes

with a discussion of the network properties of the constructed network. in Chapter

5, we introduce methods to obtain information on passenger flow in a network. In

Chapter 6, we introduce the schedule optimization method and illustrate it using

a small scale example. We provide concluding remarks in Chapter 7 as well as an

overview of possible directions for future work.
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Chapter 2

Preliminaries

This chapter provides a background on Britain’s rail infrastructure, introduces the

terminology used for describing rail infrastructures, and gives a description of the

data sets used in this dissertation.

2.1 Britain’s rail infrastructure

Britain’s rail infrastructure, regulated by Network Rail since its privatization in

October 2002, is responsible for 1.5 billion passenger journeys each year and is

considered the fastest growing rail network in Europe [36]. The 2,519 stations

contained in the network are connected using approximately 20,000 miles of track.

All stations are owned by Network Rail and leased to train operating companies

(TOCs) with the exception of 19 critical stations, which remain under the di-

rect control of Network Rail. These critical stations include Paddington, Glasgow

Central, London Bridge, Birmingham New Street, and St Pancras International

[39]. The licensing of the other stations is controlled by the Office of Rail Regula-

tion (ORR) in order to enforce the existing domestic competition laws [31]. The

ORR is also responsible for the regulation of track access by the train operating

companies [31]. The assignment of track access among the different operators is

motivated by the commercial needs of rail operator companies, the flexibility needs

of Network Rail with respect to the optimization of the network capacity, and the

existing maintenance requirements to ensure passenger safety on the network [31].

Although the ORR is the independent regulator of Britain’s rail network, it works
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in close collaboration with both the Scottish and British government on the de-

velopment, funding, and execution of major rail projects [32].

A total of 29 TOCs are responsible for passenger transportation. Freight trans-

portation is controlled by 8 freight operating companies (FOCs) [39]. TOCs oper-

ating on Britain’s rail network include Arriva Trains Wales, First Great Western,

Southern, and ScotRail. The Association of Train Operating Companies (ATOC)

is the umbrella organization for TOCs [34]. ATOC’s goal is to optimize passenger

satisfaction across operators. This has, for example, lead to the introduction of the

Rail Settlement Plan and the National Rail Enquiries (NRE). The former allows

passengers to buy tickets for journeys that might require the use of two or more

different TOCs on the network and the latter provides passengers with up-to-date

information about the train times, fares, reservations and trains disruptions across

the United Kingdom [34].

2.2 Terminology

In this section, we introduce the terminology that we will throughout this disser-

tation. A route is defined as an ordered set of stations that are serviced by a single

train (e.g. {Birmingham New Street, Wolverhamption, Penkridge}) and is oper-

ated by one TOC. A trip is a realization of a route at a specific time (e.g. the train

that departs from Birmingham New Street at 9.42 am, calls at Wolverhamption at

9.59 am and terminates at Penkridge at 10.09 am). Each trip can be mapped to at

most one route, whereas a route can be mapped to at least one trip. A journey is

the sequence of trips required to travel from the selected departure station to the

target station; one can usually find a journey online using a journey planner. The

time headway is defined as the minimum time between two subsequent departures

at a station and is implemented for the safety of passengers and personnel in case

of an incident. The minimum transfer time at a station provides an indication of

the time that is needed to interchange at that station.
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2.3 Data

We obtained the data used for this thesis from [21]. It is structured following

the General Transit Feed Specification (GTFS) format. The GTFS format was

originally developed by Google for Google Maps, but it has since then been adopted

by various public transit agencies [13, 20]. See Appendix A for a description of

the contents of GTFS data files.

Raw data for the British rail network is published weekly by ATOC, Network

Rail, the Department for Transport [40, 38, 30]. The GTFS data files for the

British rail network were constructed by Nathan Johnson from data published by

ATOC, Network Rail, the Department for Transport for the period 17–24 Au-

gust 2013. The geographic data included in the GTFS files was obtained from

OpenStreetMap. Unfortunately, the procedure that was used for the construction

of the data was unavailable. For future work, it might be worthwhile to format

the raw data provided by [40, 38, 30]. This could reduce the time needed for the

preprocessing of the data.

We obtained information about the the passenger flow through each station

in Great Britain’s rail network from a data set constructed by the Infrastructure

Transitions Research Consortium (ITRC) for the study of inter-dependent infras-

tructure failures resulting from extreme national hazards [37]. As the passenger

flow information is for the period 2011–2012, there is a discrepancy with the sched-

ule data described above. Using the measured growth in passenger volume in the

period 2011-2013, the 2011-2012 passenger flow data can be used to approximate

the passenger flow in 2013.

Additionally, we obtained the travel times between stations situated in London,

which are connected through the London Underground from [14, 15]. We hypoth-

esize that this information is essential when studying Britain’s rail network, as

transfers between rail stations via the London Underground are common. We

show the complete list of connections in Appendix B.
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Chapter 3

Graphs

This chapter provides an introduction to the main graph-theoretical concepts that

we will use in this thesis.

3.1 Graph formalism

A graph is defined as a tuple G = (V,E), where V is a set of nodes and E is

a set of edges that connect pairs of nodes. Nodes are an abstract representation

of the entities contained in the system that is being modelled. When modelling

rail networks, nodes represent the stations and an edge between a pair of nodes

specifies the existence of a track (edge) between two stations (nodes).

If the edges in a graph have a specified direction, the network is directed.

Conversely, if edges do not have specified direction, the graph is undirected. A

graph can be represented by an adjacency matrix. For an unweighted, directed

graph with N nodes, the adjacency matrix A is an N ×N matrix, whose elements

are given by [29]:

Aij =

{
1, if there is an edge from node j to node i
0, otherwise

.

For undirected networks, the adjacency matrix is symmetric (i.e. Aij = Aji) [29].

Edge weights can be used to specify the strength of a connection between nodes.

In a weighted graph, the edge weights might represent geographical distance, travel

time, or passenger volume. A weighted, directed graph can be represented by a
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weighted adjacency matrix wij, whose elements are:

Wij =

{
w(i, j), if there is an edge from node j to node i
0, otherwise

,

where w(i, j) is the weight of the edge from node j and i [29]. For a graph to be

undirected, nodes have to be connected by two edges with equal edge weights, but

in opposite direction [29].

A path on a graph is defined as the sequence of nodes and edges that are

traversed between an origin and a destination node [29]. The associated path

length is the sum of the edge weights of the edges along the path. Depending on

the choice of edge weights, the path length can have different interpretations. For

example, if the edges are weighted by the travel time between nodes, then the

path length gives the total time required to travel from an origin to a destination

node. For an unweighted graph, the path length gives the number of edges that

are traversed between the origin and destination node [29]. For nodes that are not

connected the path length is infinite. The shortest path or (geodesic path) between

two nodes is the path with the smallest path length. We will introduce Dijkstra’s

algorithm which can be used to find the shortest paths on a graph in Chapter 5.

A graph is connected if there exists a path between all pairs of nodes in the

graph [3]. For directed graphs, we can distinguish between strongly connected and

weakly connected graphs. A directed graph is strongly connected if there exists

a directed path between all pairs of nodes in the graph [29]. If a path between

every pair of nodes only exists when all edges are assumed to be undirected, the

graph is weakly connected. A graph is disconnected if there exists at least one

pair of nodes that are not connected by a path. In an disconnected graph, one

can identify connected components. A connected component of a graph is the

largest possible subset of nodes such that each pair of nodes in this set can be

connected by a path [29]. For a transportation network, it is essential that the

network is strongly connected, as preferably passengers should be able to travel

between any two locations in the network without having to use an alternate form

of transportation. For a graphical representation of different network types, see

Appendix C.
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Figure 3.1: Graph of the British rail network. For clarity, the direction of the
edges is not included.

3.2 Graph representation of the British rail sys-

tem

We construct two graph representations of the British rail system from the data

described in Section 2.3. Both graphs are directed and have edges that are weighted

by the travel time. The first graph does not contain connections between London

stations provided by the London Underground. The second graph does include

these connections. To construct both graphs, we perform the following steps for

each station in each trip listed in the British rail data:

1. We determine the departure time (tdd) at the departure station (sd) in min-
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utes.

2. We determine the arrival time (taa) at the arrival station (sa) in minutes.

3. We compute the travel time (ttravel) between the departure and arrival station

as ttravel = taa − tdd.

4. We construct an edge from sd to sa with edge weight ttravel.

For the graph that includes the London Underground, we extend the graph with the

connections listed in Appendix B using the procedure described above. We show

a graphical representation of the British rail network that includes the London

Underground in Figure 3.1.

3.3 Centrality measures

Now that we have constructed two suitable network representation for the British

rail network, we can study their properties using different graph measures. For

example, centrality measures can be used to quantify the importance a node or

edge in a network [29]. The concept of importance is prescribed by the centrality

measure that is used. For example, if one uses degree centrality, a node is con-

sidered important if it has a large number of neighbours in comparison to other

nodes in the network. In this section, we will discuss three centrality measures (i.e.

degree centrality, node betweenness centrality and edge betweenness centrality).

For a thorough review of other centrality measures for graphs, see [29].

3.3.1 Degree centrality

Degree (aka degree centrality) is a simple measure that can be used to determine

central nodes in the network. It assumes that central nodes are high degree nodes.

The incoming degree kini of a node i is given by the number of incoming edges of

the node. Similarly, the outgoing degree kouti is defined as the number of outgoing

edges of node i. One can compute both the incoming and outgoing degree from

the corresponding adjacency matrix:

kini =
N∑
j=1

Aij, kouti =
N∑
j=1

Aji. (3.1)
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Figure 3.2: Degree distribution of the directed, weighted network representation
of the British rail system (including the London Underground) as a density plot.

Note that for an undirected network the incoming and outgoing degree are equal.

The degree centrality for a node i is determined from the total degree of a node:

ki = kini + kouti . (3.2)

In transportation networks, high-degree nodes are likely to be essential for con-

necting different parts of the network. For example, for a directed, weighted rep-

resentation of the British rail system, we find the station Birmingham New Street

in the top 10 of high degree nodes presented in Table 3.1. This is in agreement

with our expectation, as Birmingham New Street station has a central position ge-

ographically and is an essential transfer station in going between the North, East,

South, and West of the United Kingdom.

In Figure 3.2, we show the density plot for the ingoing and outgoing degrees of
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Rank Degree Centrality Degree Centrality
(excluding LU) (including LU)

1 Birmingham New Street (0.026) London Bridge (0.027)
2 Manchestor Piccadilly (0.024) Birmingham New Street (0.026)
3 London Bridge (0.024) Manchestor Piccadilly (0.024)
4 Clapham Junction (0.022) Clapham Junction (0.022)
5 Reading (0.020) Reading (0.020)
6 Leeds (0.020) Leeds (0.020)
7 Crewe (0.019) London Euston (0.020)
8 Glasgow Central (0.019) Crewe (0.019)
9 Preston (0.018) Glasgow Central (0.019)
10 Nottingham (0.018) London Liverpool Street (0.019)

Table 3.1: Stations with the highest degree centrality for a directed, weighted
network representation of the British rail system that excludes the London Under-
ground (LU) and a graph representation that includes the London Underground.
The numbers in brackets give the normalized degree centrality of the station. The
number of nodes in the network N was used as the normalization factor.

the nodes in the British rail system. We find that for most nodes the number of

ingoing and outgoing edges is approximately equal. Furthermore, we see that the

approximately half of nodes in the network have 3 ingoing and 3 outgoing edges.

Only a small fraction of nodes in the network have a degree k that exceeds 40.

These nodes are known as “hubs” and include the nodes listed in Table 3.1.

3.3.2 Geodesic node betweenness centrality

Geodesic betweenness centrality provides a measure for the relative importance of

a node in the network on the basis of the fraction of shortest paths that go through

this node. Geodesic betweenness centrality for directed networks, which can be

either weighted or unweighted, is given by [29]

xi =
1

N2

N∑
s=1

N∑
t=1

nist
nst

, (3.3)

where nist is the number of shortest paths from node s to node t that traverse node

i, nst is the total number of shortest paths from s to t, and N is the number of nodes

in the network [29]. In the case that both nist and nst are 0, we set nist/nst = 0.
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Rank Number of Betweenness centrality Betweenness centrality
Interchanges (excluding LU) (including LU)

1 Clapham Junction Birmingham New Street (0.237) London Euston (0.403)
2 London Waterloo Crewe (0.177) London Victoria (0.311)
3 London Victoria Reading (0.171) Preston (0.169)
4 London Bridge London Euston (0.160) Crewe (0.144)
5 East Croydon Preston (0.150) London Kings Cross (0.120)
6 Birmingham New Street Leicester (0.149) London Paddington (0.0116)
7 London Euston Peterborough (0.132) London Liverpool Street (0.115)
8 Manchester Piccadilly Leamington Spa (0.131) Birmingham New Street (0.113)
9 St. Pancras International Derby (0.117) Reading (0.103)
10 London Kings Cross Cheltenham Spa (0.112) Cardiff Central (0.091)

Table 3.2: Stations with the highest geodesic betweenness centrality for a graph
representation of the British rail system that excludes the London Underground
(LU) and the graph representation that includes the London Underground. The
stations that have the highest number of interchanges [33].

A high betweenness centrality can be an indication that a node is essential in

connecting different parts of a network. See Table 3.2 for the 10 stations with the

highest betweenness centrality for the two monoplex network representations of

the British rail system.

3.3.3 Geodesic edge betweenness centrality

Edge betweenness centrality can be used as a measure of the importance of an

edge in a network, as it determines the fraction of shortest paths that traverse this

edge. The geodesic edge betweenness centrality ei for an edge i is given by

ei =
1

N2

N∑
s=1

N∑
t=1

eist
est
, (3.4)

where eist is the number of shortest paths from s to t that traverse edge i and

est is the total number of shortest paths between s and t [29]. For a transporta-

tion network, geodesic edge betweenness centrality can provide information on the

likelihood of congestion between nodes or along a path in the network. Note,

however, that edge betweenness centrality does not necessarily give an indication

of the importance with respect to passenger volume along an edge. To measure

the importance of an edge in a network, its betweenness centrality should be com-

bined with information of the number of passengers that travel between all pairs

of stations in the network.
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Rank Origin station Destination station Edge betweenness
centrality

1 London Victoria London Euston 0.115
2 London Euston London Victoria 0.105
3 London Euston Preston 0.055
4 London Paddington London Victoria 0.056
5 London Victoria London Liverpool Street 0.054
6 Crewe Shrewsbury 0.054
7 London Liverpool Street London Victoria 0.045
8 Newport (Wales) Cardiff Central 0.045
9 London Kings Cross London Euston 0.044
10 Edinburgh London Euston 0.038

Table 3.3: Edges with the highest geodesic edge betweenness centrality for the
graph representation of the British rail network including the London Under-
ground.

3.4 The British rail network

Table 3.2 lists the 10 stations that have the largest number of interchanges, and

the ten stations that have the largest shortest path betweenness centralities. We

find a significant difference in the betweenness centralities in the two networks.

For example, only one London station is among the 10 stations with the largest

betweenness centrality when excluding the London Underground connections, but

five London stations occur in the top ten when the London Underground connec-

tions are included. This implies that shortest paths going through London often

include tube connections. This conclusion is supported by data that ranks the

stations with the largest number of transfers as can also be found in Table 3.2.

London stations with a high betweenness centrality are also the stations with the

most passengers transfers according to data obtained from [33]. If a majority of

passengers travel along the shortest paths in a network, then this is an expected

result, as betweenness centrality gives an indication of the number of shortest (op-

timal) paths going that traverse a station. This implies not only that the London

Underground is of importance when travelling through London, but also that Lon-

don itself has a critical position in the network. For example, we find that 40% of

the shortest paths in the network traverse the station London Euston.
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The importance of the London Underground is also emphasized by the the

geodesic edge betweenness centralities (see Table 3.3). The majority of connections

with a large edge betweenness centralities are either tube connections between two

London stations or connections between a London station and another important

interchange station outside of London. An example of the former is the connection

between London Victoria and London Euston. The connection between London

Euston and Preston is an example of the latter. Only two edges within the 10

edges with the largest betweenness centrality do not have a London station as

either its starting or ending point. One of these is the connection from Newport

(Wales) to Cardiff Central, which is critical for connecting Wales to the rest of the

United Kingdom.
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Chapter 4

Multilayer networks

In graphs, all edges are assumed to be of the same type. However, one can of-

ten identify different types of relations within a system. Consider, for example, a

network that describes relations between individuals on social media. When repre-

sented as a graph, each edge (possibly weighted and/or directed) indicates that a

connection exists on social media without specifying the connection type. As, for

example, connections on LinkedIn have a very different nature than connections

on Facebook, important information about the network might be lost because of

the graph representation. A multilayer network representation allows the identifi-

cation of different relation types through the construction of different layers [24].

In the example of social media, each layer could represent a social medium (e.g.

Facebook, Twitter, LinkedIn etc.) although other segregations are also possible.

Edges within layers and edges between layers also have different interpretations

depending on the segregation structure. This will be discussed further in Section

4.1.

A multilayer network might also restrict the set of choices of an agent that

traverses it. Consider a rail network. In a graph representation, the existence of

an edge implies that there exists a connection between two nodes (i.e. a train

service is run between two stations). However, it does not provide information

about the time(s) that this service is available, which is an important feature

in a rail network (e.g. in identifying the shortest paths). See the discussion in

Chapter 5. One can include temporal using a multilayer network in which each

time instance corresponds to a layer. The possible edges that can be chosen at
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a particular node no longer depend purely on the existence of the edge, but also

on the current availability of the edge. In relation to multilayer networks, the

traditional graph is referred to as a monoplex network.

Recall from Chapter 3 that a monoplex network (i.e. a traditional graph) is a

tuple G = (V,E), where V is a set of nodes and E is the set of edges that connect

pairs of nodes. Multilayer networks have, in addition to nodes and edges, a set

of layers L. One can visualize a ‘one-dimensional’ multilayer network as a stack

of monoplex networks that are connected to each other using a particular type of

edge. Higher dimensional structures are also possible. Following the terminology

introduced in [24], one dimension of a multilayer network will subsequently be

called an aspect. For example, a one-aspect multilayer representation of a rail

network could segregate the network with respect to the TOCs. A two-aspect

multilayer network could include both different TOCs and time.

Each aspect has a set of elementary layers. For example, the elementary layers

of an aspect that represents the TOCs, would be the individual TOCs (e.g. Arriva

Trains Wales, First Great Western, Southern etc.). For an aspect that describes

time, an elementary layer could contain information on the network for a specific

period in time, i.e. Monday morning, Wednesday 13.53 or t = 743. A specific

combination of elementary layers from different aspects are called layers. The

combination of a node and a layer is defined as a node-layer tuple. Continuing

the example of a multilayer network with TOCs and time as the two aspects, a

layer in the network could be the tuple (Arriva Trains Wales, Wednesday 13.53).

A possible node-layer tuple is (Birmingham New Street, Arriva Trains Wales,

Wednesday 13.53). In the most general definition of a multilayer network, each

node can exist in any subset of layers and each edge is allowed to pairwise connect

all possible node-layer tuples.

4.1 Multilayer network formalism

Let La be the set of elementary layers associated with an aspect a [24]. We define

L = {La}da=1 as the sequence of sets of elementary layers, where d is the number

of aspects in the network [24]. The set of all possible layers in the network can

be defined as the Cartesian product of all sets of elementary layers in a network
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Figure 4.1: (a) A graphical representation of a general type of multilayer
network. The network has three nodes (i.e. V={x0, x1, x2}), and two
aspects. The set of elementary layers corresponding to each aspect are
given L1 = {y0, y1} and L2 = {z0, z1}. There are four possible layers:
(y0, z0), (y0, z1), (y1, z0) and (y1, z1). The set of node-layer tuples is VM =
{(x0, y0, z0), (x0, y0, z1), (x0, y1, z0), (x1, y1, z0), (x2, y0, z0), (x2, y0, z1)} ⊂ V × L1 ×
L2. Intra-layer edges are drawn as solid lines. Inter-layer edges are drawn as
dashed lines. (b) The underlying graph of the multilayer network given in (a).
Again, intra-layer edges are drawn as solid lines and inter-layer edges as dashed
lines.

L1 × L2 × · · · × Ld [24]. All possible node-layer tuples are given by the Cartesian

product V × L1 × · · · × Ld. We also want to allow the construction of multilayer

networks in which a node only exists in a subset of layers. The set of node-

layer tuples that exist in the network is denoted by VM ⊆ V × L1 × · · · × Ld

[24]. We will use the term node-layer tuple to describe node-layer tuples in the

set VM . The set of edges that connect node-layer tuples in a network is denoted

by EM ⊂ VM × VM [24]. A multilayer network M can thus be defined as the

quadruple M = (VM , EM , V,L) [24]. See Figure 4.1 for a graphical representation

of a multilayer network.

It is important to note that a multilayer network can be represented by a

monoplex network in which each node is labelled by a node-layer tuple. We will

call the monoplex representation of a multilayer network the underlying graph

GM = (VM , EM) (see Figure 4.1).

The monoplex representation of a multilayer network allows natural generaliza-

tions of several concepts defined for monoplex networks [24]. A weighted multilayer

network can, for example, be constructed by assigning weights to the edges in the
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underlying graph. Similarly, a multilayer network is considered directed if the

underlying graph is directed.

An important difference with monoplex networks is that one can distinguish

between different edge types in the network [24]. We define intra-layer edges as

edges that exist within a layer, while inter-layer edges connect nodes between

layers. The full set of edges EM in the network can thus be described as the union

of the intra- and inter-layer edges.

However, the generalization of the concept of a path to multilayer network is

not straight forward. For example, one has to establish whether changes between

layers are included in a path [24]. If changes between layers are included, then a

path is defined as the sequence of node-layer tuples and edges that are traversed

when going from an origin node-layer tuple to a destination node-layer tuple [24].

In order to compute the associated path length, one should consider whether

there are cost associated with changing layers in the network [24]. For example,

consider a multilayer network representation of a rail network in which each layer

represents a route in the network and edges are weighted by travel time. Changing

layers in this network implies that a passenger needs to change trains. As it was

found that transfer and waiting time are valued twice more than in-vehicle time,

one could weigh the weights of inter-layer edges twice more than the weights of

intra-layer edges [45].

One also has to determine whether edges within layers have the same inter-

pretation for all layers in the network [24]. For example, one could construct a

network for which all intra-layer edges have the same length. Alternatively, intra-

layer edges could be of the same type, but be weighted differently depending on

the layer they are in. An example of the latter is a multilayer transportation

network that has a layer representing the travel mode walking and another layer

representing the travel mode bus. In both layers the intra-layer edges are weighted

by travel distance. If one has to travel between two nodes either by foot or by

bus, then the nodes in the bus layer can be considered ‘closer’ than in the walking

layer. Intra-layer edges in the bus layer could, thus, be weighted more than the

intra-layer edges in the walk layer. For a thorough review of multilayer networks

and multilayer network diagnostics, see [24].
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4.2 Multilayer network construction

We construct two weighted, directed single-aspect multilayer networks using data

for the British rail system on Monday 19 August 2013. In the first network, we use

time as the aspect. Each layer in this network represents 1 minute. The network

represents the British rail system for a single day (and 2 extra hours) from 00.00

to 02.00 the next day (i.e. t ∈ [0, 1560]). For the second network, we use TOCs

as the aspect. Both networks are constructed from the data introduced in Section

2.3 (using the Python package Plexmath [23]).

We will now explicitly describe the steps that are taken in the construction

of directed, weighted 2-aspect multilayer networks that have routes and time as

aspects. This type of multilayer network will used in Chapter 6.

1. We extract the arrival (tda), departure (tdd) and minimum transfer (tdt) time

and route (r) for the departure node (sd) and convert the times to minutes.

2. We extract the arrival time (taa) for the arrival node (sa) are and convert

the times to minutes.

3. We construct an edge from (sd, r, tda) to (sd, r, tdd) with weight taa − tdd.

4. We construct an edge from the departure tuple (sd, r, tdd) to the arrival tuple

(sa, r, taa) with weight taa − tdd.

5. We construct a set R̂ that contains all routes r̂ that stop at the departure

node.

6. For all routes r̂ in R̂\{r}, we determine the next departure time t+dd of the

departure node sd in route r̂. If t+dd − tda > tdt, we place an edge from

(sd, r, tda) to (sd, r̂, t
+
dd) with weight t+dd − tda

The constructed network only contains inter-layer edges. Note that the inter-

pretation of the inter-layer edges constructed in the each steps is different. For

example, in step (3) we construct edges between nodes and their counterparts

that lie in the same elementary route layer, but in different elementary time lay-

ers. These edges represent the stop time of a train along a route at a particular

21



S0

S1

tdd

taa

Route 2

Route 1
S0

S0

tda

Figure 4.2: A two-aspect multilayer network with aspects routes and time. The
construction of the edges for a station S1 is illustrated. The solid line is an edge
that represents travel time. The dashed line indicates stop time. The dotted line
indicated a transfer to another route.

station. The edges constructed in step (4) connect two nodes that lie in the same

elementary route layer, but in different elementary time layers and can be inter-

preted as the travel time between two stations in the network. Finally, in step (6),

we construct edges that connect nodes to their counterpart that lies in different

elementary route and elementary time layers. These edges naturally represent the

transfer time between routes at a particular station. As we can associate differ-

ent costs with different types of inter-layer edges, future work could consider the

construction of a network in which, for example, the waiting time is valued more

than the in-vehicle time [45].

In case of the British rail system, the resulting two-aspect multilayer network

would have 6,054 elementary route layers and 1,577 elementary time layers. Each

layer contains at most 2,551 active nodes. So there are 24∗109 possible node-layer

tuples. However, the actual multilayer network contains only 742,744 node-layer

tuples. The resulting network is, thus, very sparse.

4.3 Multilayer network properties

Figure 4.1 suggests that most stations appear in at most a single elementary op-

erator layer. Figure 4.2 shows the number of nodes in each elementary time layer.

We find that the number of trains that arrive and depart is significantly lower for

Monday between t = [0, 200] and t = [1500, 1560]. This confirms the intuition that
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Figure 4.3: Number of nodes plotted with respect to the number of TOC layers
they appear in.

few or no trains are running at night. As expected, the highest level of activity

on the network occurs during the day (i.e. between 6 am (t = 360) and 7 pm

(t = 1140)).

When we look at the number of nodes for each TOC in a TOC-aspect multilayer

network (see Figure 4.3), we find that Northern Rail has the highest number of

nodes, followed by ScotRail and Southern. TOCs with the least number of nodes

include Island Line, Heathrow Connect and Heathrow Express. We note that

these TOCs are very localized within the network, as they are used to provide a

connection to a specific location (e.g. Heathrow).

A visualization of the node similarity for all TOC layers in the network can be

found in Figure 4.4. We find that First Transpennine Express and Northern Rail

share the largest number of stations, followed by the pairs First Capital Connect

and Southeastern, and First Great Western and CrossCountry. The majority

of operator pairs share fewer than 10 stations. Together with Figure 4.1, this

observations leads to the conclusion that, from an TOC perspective, the network

is highly segregated as the majority of stations are serviced by a single operator.

One can obtain further insight about the importance of operator coordination
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Figure 4.4: The number of nodes in each elementary operator layer obtained from
the operator-aspect multilayer network.
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Figure 4.5: The number of nodes in each elementary time layer obtained from
time-aspect multilayer network.
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Figure 4.6: Number of stations that are shared by every pair of operators in the
network represented as a density plot.

Figure 4.7: The fraction of nodes that are shared by every pair of operators in
the network presented as a density plot. The number of stations for the operators
along the horizontal-axis are used for the denominator.



on the network from examining the fraction of nodes that are shared by each

operator pair relative the the number of stations serviced by either one of the

operators. In contrast to Figure 4.4, we find that Figure 4.5 is asymmetric, as the

number of stations shared between each operator pair is normalized by the total

number of stations serviced by the operator along the horizontal axis. We find

that localized operators such as Heathrow and Gatwick Express tend to share all

of their stations with at least one other operator. We also find that First Great

Pennine Express shares the majority of the stations it services with Northern Rail.

This information could, for example, be used to evaluate the level of coordination

between the two operators. If shortest paths transferring from First Transpennine

Express to Northern Rail spend on average more time at a transfer station than

shortest paths transferring at the same station between trains of the same operator,

this might provide an indication that there exists a lack of coordination between

these two operators. In general, we might be able to obtain information about the

level of coordination between operators by computing the fraction of aggregate

waiting time spend while transferring between two TOCs and aggregate waiting

time on the network.
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Chapter 5

Estimating passenger flow

Our aim is to reduce the total waiting time for passengers who traverse a rail

network. To do this, we first need to measure the current total waiting time Ttot

of the network. Let wpqs be the time spent at station s waiting for a transfer from

trip p to trip q, and let Cpqs be the number of passengers waiting at station s for

a transfer from trip p to trip q. The total waiting time Ttot for the network is then

Ttot =
∑
p,q∈Q

∑
s∈S

wpqsCpqs, (5.1)

where Q is the set of all trips in the network and S is the set of all stations

in the network. When q and p describe the same trip or are part of the same

route, then Cpqs = 0. One can estimate the number of passengers that transfer

at station s from individual tickets sale data as this contains information on the

origin and target station for a subset of all journeys undertaken on the British

rail network. Ticket sale information for the British rail network is collected by a

system called LENNON and is used by Office of Rail Regulation (ORR) to publish

quarterly statistics on the use of the rail network [18]. As the raw data collected by

LENNON is not publicly available, we need to pursue a different course. Section

5.1 will, therefore, discuss a human mobility model know as the gravity model that

can be used to estimate the number of passengers who travel between any pair of

stations in the network.

Once information on passenger volume in the network has been obtained either

by estimation or by actual data, we need to determine the waiting time that is

experienced by the passengers when travelling to their destination. This requires
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knowledge of the specific journey that is undertaken by each passenger, where it is

essential that we can distinguish between waiting and travel time. As smart-card

data usually does not record the intermediate stations visited by a passenger, we

need to investigate the paths or set of paths that a passenger is most likely to

take between any pair of stations in the network [25]. This will be the subject of

Section 5.2.

5.1 Origin-Destination matrices

Origin-Destination (OD) matrices contain information about the travel demand

in a network. For example, in case of a rail network, the elements of an origin-

destination matrix Tij would describe the number of passengers that travel from

station i to station j [1]. OD matrices are traditionally constructed from data

obtained through direct measurement (i.e. by counting) and/or by surveying users

of a transportation system [2]. As data collection can take years – during which the

network itself – the policies to which the network is subjected or user preferences

might change, this process is extremely costly and often inaccurate [28]. Once

an OD matrix has been obtained using traditional methods, this matrix can be

updated from available passenger counts [2]. The relation between an OD matrix

and the number of passengers that traverse an edge e in the network is given by,

ve =
∑
ij

peijTij, e ∈ E, (5.2)

where ve is the number of passengers that traverse the edge e, the variable peij is the

proportion of trips between node i and j that use edge e and Tij is the OD matrix

with origin i and destination j [1]. Finding an OD matrix is thus an example of

an inverse problem in which Tij is estimated from known values ve and pij [1]. The

values for pij are usually estimated using an assignment model that describes the

route choice mechanisms on a network [7].

See [1], for a review of different methods used to construct OD matrix on the

basis of available OD matrices and passenger volume counts.
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5.1.1 The gravity model

When no prior OD matrix is available, one can use human mobility models to

estimate the passenger distribution on the network. One example of a frequently

used human mobility model is the gravity model. The model, which is obtained

by analogy from Newton’s law of gravity, assumes that the passenger flow between

two regions is directly related to the population size in each regions and inversely

related to the distance between them [4]. One can use different measures for the

distance between two regions. Examples include travel distance, travel time, or

travel cost. One can also choose different functions to relate the distance between

two regions to the flow between them [4].

The gravity model in its most basic form is given by

Tij = K
XiYj
dµij

(5.3)

where K is a normalization factor, µ is a model parameter that one can determine

(e.g. by multiple regression analysis) and dij is Euclidean distance between a region

j to the region i [4]. The variables Xi and Yj are generally defined as the production

ability of a zone i and the attraction ability of a zone j, respectively [4]. In the

context of a rail network, we can interpret Xi as the number of passengers that

depart from station i, and Yj as the number of passengers that arrive at station

j. Their values can be determined from passenger counts at individual stations.

The total number of passengers that enter and exit a station i, as provided by the

data described in Section 2.3, are given by sexiti and senteri respectively.

For a realistic approximation of the number of passengers travelling between

any pair of stations in a transportation network, we require that the number of

passengers that exit a station i as predicted by the gravity model has to be equal

to the number of passengers that exit a station i as found from passenger counts

[4]:
N∑
k=1

Tik = sexiti . (5.4)

The same requirement is imposed for the number of passengers that enter a station
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i [4]:
N∑
l=1

Tlj = senterj . (5.5)

Substituting the expression for Tij given in Equation (5.3) into Equation (5.4), we

find

KYj

N∑
l=1

Xld
µ
lj = senterj . (5.6)

Rewriting this expression for Yi yields

Yj =
senterj

K
∑N

l=1Xl/d
µ
lj

(5.7)

Similarly, we find

Xi =
sexiti

K
∑N

k=1 Yk/d
µ
ik

(5.8)

The resulting gravity model, also know as the doubly constraint gravity model, is

now given as [4]

Tij =
1

K

sexiti senterj /dµij(∑
lXl/d

µ
lj

)
(
∑

k Yk/d
µ
ik)
, (5.9)

The advantage of the gravity model is that it is easy to understand and apply.

However, it fails to accurately represent the influence of the trip purpose in the

assignment of passenger volume. It was, for example, found that µ = 1/2 is most

appropriate for describing commuting flows, while for social and shopping trips

the appropriate values are µ = 3 and µ = 2 respectively [5].

Extensions of the gravity model have been developed to appropriately account

for different trip purposes using the concept of travel-time factors. As we will use

the doubly constrained gravity model for the estimation of the OD matrix, we

refer to [4, 5] for a discussion on improved versions of the gravity model. In future

work, we could explore the effects of the estimated OD matrix on the solution to the

optimization problem defined in Chapter6. Other human mobility models that can

be used to estimate passenger volumes on a network include the radiation model,

the intervening opportunity model, the direct demand model, and the growth

factor model [4, 5].

30



5.2 Shortest paths

At this point, we assume that the number of passengers that travel between each

pair of stations in the network is available either from direct measurement or from

a human mobility model, such as the gravity model. We now want to determine

which path passengers are likely to take when travelling between all pairs of sta-

tions in the network.

To do this, we model passengers as a group of identical agents who make the

rational choice to always take the ‘shortest’ path from their origin to target station.

Recall from Section 3.3.2 that the shortest path (or geodesic path) between two

nodes i and j in a network is the path with the smallest sum of edge weights

[29]. In this section we describe Dijkstra’s algorithm which can be used to find the

shortest paths on a monoplex network. We then show that Dijkstra’s algorithm

can also be used to find the shortest paths on multilayer networks. Finally, we

propose an adaptation of Dijkstra’s algorithm for multilayer networks which can

potentially reduce the number of iterations that is required to find all shortest

paths.

5.2.1 Monoplex network: Dijkstra’s Algorithm

A variety of methods exist for finding a single or all shortest paths in a network.

The simplest method is the breath first search (BFS) algorithm that finds the

shortest path for unweighted graphs. When considering a weighted network, Di-

jkstra’s algorithm (or adaptations thereof) are popular as it is the fastest known

single-source shortest path algorithm [12]. For each node in the network, both

methods store the distance to the source node and the ancestor of the node. An

ancestor (or predecessor) of a node is the node that precedes this node on a path

from the source node to this node [12]. A node can have multiple ancestors, as

there can be multiple paths connecting the node and the source node. Dijkstra’s

algorithm begins with the initialization of a network: for each node i in the net-

work, the distance d(i) to the source node is set to infinity and the ancestor a(i) is

given as ‘Unknown’. Subsequently, the distance d(s) of the source node s is set to

0. Two sets are constructed: the set M contains the nodes that have been visited

and is initially empty and the set U contains the nodes that have been visited and
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initially equals the set V . At each iteration, the node u with the smallest distance

to the source node is selected (e.g. using a heap queue algorithm), removed from

the set U , and added to the set M . For each neighbour v of the node u, the

distance and ancestor a(v) for node are only updated if

d(u) + w(u, v) ≤ d(v), (5.10)

where w(u, v) is the edge weight between nodes u and v. The updated distance

and ancestry of node v are now given by

d(v) = d(u) + w(u, v), a(v) = u. (5.11)

In the above, we assume that we find a single shortest path between every two

nodes in the network. This can be generalized to find all shortest paths by storing

all ancestors of a node. A new node u is selected in each subsequent iteration

as long as the set U is not empty. When U is empty, the algorithm terminates.

A graphical representation of Dijkstra’s algorithm in a monoplex network can

be found in Appendix D. We give the pseudo-code for Dijkstra’s algorithm in

Algorithm 1 in Appendix E.

When Dijkstra’s algorithm terminates, the distance d(i) for every node in the

network gives the smallest edge sum when going from the source node s to node i.

One can deduce the shortest path from the ancestor information stored for each

node. We first find the ancestor of the target node i, then the ancestor of the

ancestor of node i an so on, until we find a node whose ancestor is the source

node. The set of nodes visited during this procedure are the nodes that lie on

the shortest path from the source to the target node. For a proof of Dijkstra’s

algorithm, see [12].

5.2.2 Multilayer networks: Dijkstra’s Algorithm

In some cases, more information about the network is given than can be repre-

sented in a monoplex network. For example, the connections in a railway network

are subject to the existing schedules applied to this network. Edges between nodes

therefore only exist at specific moments in time. Networks in which the temporal

aspect is incorporated either through the use of timestamps or the construction of
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a multilayer network, might therefore provide additional and/or more accurate in-

formation about the dynamics in the modelled system than when using a monoplex

representation.

As the path taken by passengers on the British rail network depends on the

availability of connections between their departure and arrival time, we will use

a multilayer network representation to obtain the shortest paths in our network.

As no shortest-path algorithm has been developed for multilayer networks, we will

attempt to adapt Dijkstra’s algorithm for multilayer networks.

We assume that a path on a network in this case includes inter-layer edges. The

shortest path for a multilayer network is, thus, the sequence of node-layer pairs

that have been traversed to get from a source node-layer to a target node-layer.

As we can represent a multilayer network by its underlying graph, we can map

each tuple in the multilayer network to a node in a monoplex network. We can

then find the shortest paths on a multilayer network using Dijkstra’s algorithm on

the monoplex representation (see Figure 5.2).

For monoplex networks, a shortest path between two nodes depends only the

topology of the network and the type of edge weights that are used to construct

the network (see Section 4.1). Shortest paths in monoplex networks are therefore

independent of any characteristics that the nodes in the network might possess.

Each entity in a system is represented exactly once in its network representation.

A node can thus be considered unique within the network. One interpretation

of a multilayer network is that it segregates the nodes in a monoplex network

on the basis of their characteristics. For example, in a network representation of

the British rail system, nodes could be segregated based on the TOCs that service

them and the times that they are active (i.e. a train arrives or departs). Instead of

the node, the combination of a node and its elementary layers is now unique (e.g.

the tuple (Birmingham New Street, Arriva Trains Wales, Wednesday 15.53)). The

node itself (Birmingham New Street) has multiple representations in the network,

as it can appear in multiple node-layer tuples.

When applying Dijkstra’s algorithm to multilayer networks, we find the short-

est paths between uniquely defined entities in a network (i.e. nodes and tuples).

However, in a multilayer network one can also find shortest paths between entities
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Figure 5.1: A graphical representation for Dijkstra’s algorithm on the monoplex
representation of a multilayer network. We exclude the aspect Y from the aggre-
gated tuple. The tuple reference is given above or below each node in the network,
where the elementary layers that are included are represented using bold face.
The node values correspond to the current shortest distance from the aggregated
source tuple (lower left tuple and upper right). White node represent tuples that
are unvisited. Black nodes indicate that a tuple has been visited. A grey node
is the source tuple currently being evaluated. The red vertices give the current
shortest paths in the network.
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Figure 5.2: A graphical representation for Dijkstra’s algorithm on the monoplex
representation of a multilayer network. The tuple reference is given above or below
each node in the network. The node values correspond to the current shortest
distance from the source tuple (lower left tuple). White nodes represent tuples
that are unvisited. Black nodes indicate that a tuple has been visited. A grey
node is the source tuple currently being evaluated. The red vertices give the
current shortest paths in the network.



that are not uniquely defined. For example, consider a 2-aspect multilayer net-

work with a set of nodes X = {x0, x1, x2} and two aspects Y and Z. The set of

elementary layers of aspect Y is Ly = {y0, y1, y2}. Similarly, the set of elementary

layers for aspect Z is Lz = {z0, z1, z2, z3} respectively. The set of node-layer tuples

in the network is VM = {(x0, y0, z0), (x0, y1, z0), (x1, y1, z1),
(x1, y2, z1), (x2, y0, z3), (x2, y1, z2)}. See Figure 5.1, for a graphical representation

of this network.

We now define a set of aggregated node-layer tuples. An aggregated node-layer

tuple is a representation of a node-layer tuple in which the elementary layer infor-

mation of one or more aspects is excluded. In the case of the example described

above, we could exclude the aspect Y and define a set of aggregated node-layer

tuples V̂M = {(x0, z0), (x1, z1), (x2, z3), (x2, z2)}. Once the aspect that is excluded

has been defined, we can map each aggregated node-layer tuple to at least one, but

generally more, node-layer tuples. Conversely, a node-layer tuple can be mapped to

only one aggregated node-layer tuple. For instance, the aggregated node-layer tu-

ple (x0, z0) can be mapped to two node-layer tuples (i.e. (x0, y0, z0) and (x0, y1, z0).

Instead of finding the shortest path between node-layer tuples, we can now find

the shortest paths from an aggregated node-layer tuple to either node-layer tuples

or aggregated node-layer tuples. One can use aggregated node-layer tuples to find

the shortest paths on the network if the choice for a shortest path is independent

of one or multiple aspects. For example, when finding the shortest paths on a rail

network with aspects defined as routes and time, passengers might be assumed to

be indifferent to the routes they use as long as these routes lie on a shortest path.

From this point, we will refer to node-layer tuples as tuples and aggregated

node-layer tuples as aggregated tuples. To find the shortest paths using aggregated

tuples, we again map our multilayer network to the underlying graph. The main

difference is that in the case of aggregated source tuples we can have multiple

source nodes. From Figure 5.1, we see that the node-layer tuples (x0, y0, z0) and

(x0, y1, z0) corresponding to the aggregated tuple (x0, z0) are source nodes. When

the source nodes have been initialized, we can use Dijkstra’s algorithm on the

network. The distance d now gives the distance of each tuple to the aggregrated

source tuple. For example, the distance from the aggregated source tuple (x0, z0)
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to the tuple (x1, y1, z1) is 10. Similarly, the distance from the aggregated source

tuple to the tuple (x1, y2, z1) is 2.

Additionally, we can find the distance between aggregated tuples. The distance

from an aggregated source tuple to an aggregated tuple is given by the minimum

of the distances from the aggregated source tuple to tuples that can be mapped

to this aggregated tuple. For instance, the distance from the aggregated source

tuple (x0, z0) to the aggregated tuple (x1, z1) would be given by the minimum of

the distances from the aggregated source tuple (x0, z0) to the tuples (x1, y1, z1)

and (x1, y2, z1). We, thus, find that the distance between the two aggregate tuples

is given by min(10, 2) = 2. To find the shortest paths between aggregated source

tuples and aggregated tuples, we can thus use Dijkstra’s algorithm followed by

a post-processing step. The post-processing step consist of finding the shortest

paths to all tuples that can be mapped to the same aggregated tuple and then

selecting the path that has the smallest path length.

5.2.3 Adaptation of Dijkstra’s algorithm

However, if we want to find the shortest paths between two aggregated tuples, the

number of iterations required for Dijkstra’s algorithm can potentially be reduced.

We will now describe an adaptation of Dijkstra’s algorithm that can be used to

find the shortest paths between aggregated tuples.

For each tuple κ in the network, we set the distance d(κ) to infinity and the

ancestor a(κ) is specified as ‘Unknown’. We construct the sets M and U con-

taining the visited and unvisited tuples respectively. The set M is empty upon

construction, while the set U contains the tuples in the set VM . The aggregate

tuple associated with the tuple κ from which one or more aspects are excluded is

denoted κ̂. For each aggregated tuple κ̂, we set the distance d̂(κ̂) to infinity and

the ancestor â(κ̂) to ‘Unknown’, where d̂(κ̂) gives the distance from the aggregated

tuple κ̂ to the aggregated source tuple and â(κ̂) stores the ancestor tuple that min-

imizes the path length to the aggregated source tuple. We construct a set M̂ that

contains the aggregated tuples that have been visited and a set Û that contains

the aggregated tuples that have not been visited. The set M̂ is empty upon con-

struction. The set Û is initialized to contain the aggregated tuples contained in
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the set V̂M .

Let γ̂ be the aggregated source tuple. The distance is specified as d̂(γ) = 0.

For all tuples γ that can be mapped to the aggregated source tuple γ̂, the distance

is d(γ) = 0

At each iteration, a tuple α with the smallest distance to the aggregate source

tuple γ̂ is selected, removed from the set U and added to the set M . Additionally,

if the the corresponding aggregated tuple α̂ is still in the set Û , then the aggregated

tuple is removed from the set Û and added to the set M̂ . For each neighbour tuple

β of the tuple α, the distance d(β) and ancestor a(β) are updated if

d(α) + w(α, β) ≤ d(β), (5.12)

where w(α, β) is the weight of the edge that connects tuple α to tuple β. If this

condition is satisfied, then,

d(β) = d(α) + w(α, β), a(β) = α. (5.13)

Furthermore, we check the condition

d(β) ≤ d̂(β̂). (5.14)

If this condition is satisfied, then we update the distance d̂(β̂) and ancestor â(β̂):

d̂(β̂) = d(β), â(β̂) = α (5.15)

A new tuple α whose distance to the aggregated tuple is the smallest, is selected

in each subsequent iteration. In comparison with Dijkstra’s algorithm described

in Section 2.2.1, we can now impose a different stopping condition; the algorithm

terminates when the set Û is empty. Note that if the set U is empty, then the set Û

is empty. The shortest distance from the aggregated source tuple to an aggregated

tuple δ̂ is now given by d̂(δ̂). The shortest path between the two aggregated tuples

can be found from the ancestor information given in a(δ) for the tuple stored in

â(δ̂).

As the number of aggregated tuples in Û is always smaller or equal to the

number of tuples in U , the use of the adjusted version of Dijkstra’s algorithm

reduces the number of iterations required to find the shortest paths between two
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aggregated tuples. For example, in Figure 5.1 the algorithm would have terminated

after Iteration VII as at that point the shortest path to all aggregate tuples in the

set Û is found. In future work, the effect of the adjusted version of Dijkstra’s

algorithm on a variety of multilayer networks could be studied. The pseudo code

for the adapted version of Dijkstra’s algorithm can be found in Appendix E.
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Chapter 6

Schedule Optimization

In this section we introduce a method that can be used to decrease the aggre-

gate waiting time on a public transportation network by perturbing the existing

schedule. We follow the methodology described in [11].

6.1 Problem formulation

Let R be the set containing all routes in a network. Let r ∈ R denote one particular

route in this network. The stations visited by route r are contained in the set

Sr ⊆ S, where S is the set containing all stations in the network. The set P

contains all the trips associated with route r. Let p ∈ P be one trip along route

r. We define the time headway hp as the average inter-departure time of trips

along route r. The time interval spent at station s ∈ Sr during trip p is given

by tps = [taps, t
d
ps], where taps and tdps are the arrival and departure time at station

s for trip p respectively. Station s can also be serviced by other routes and their

associated trips. The set of Q contains the trips that are not included in route r.

The union of the sets Q and P contains all trips on the network.

For each station s, the minimum time needed to transfer between trips is

denoted by tts. A transfer from trip p to trip q exists if the sum of the arrival time

of trip p and the transfer time at station s is smaller or equal to the departure time

of trip q at station s, i.e. taps + tts ≤ tdqs. Similarly, one can transfer from trip q to

trip p if taqs + tts ≤ tdps. The ability to transfer between trips p and q is determined
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by two indicator variables:

ξ−pqs =

{
1, if taqs + tts ≤ tdps
0, otherwise

, ξ+pqs =

{
1, if taps + tts ≤ tdqs
0, otherwise

. (6.1)

We seek to estimate the number of passengers who transfer from trip q to trip

p and vice versa. Let F be the set that contains the shortest paths between each

pair of stations in the system obtained using the adapted version of Dijkstra’s

algorith for multilayer networks. We use the adapted version, as we assume that

passengers are indifferent to the routes they use to get to their destination. Let

f ∈ F be a vector containing the tuples with elements (s, ri, t), where s is the

station, ri denotes the elementary route layer in which trip i lies and t gives the

elementary time. If [(s, rq, t
a
qs), (s, rp, t

d
ps)] is in f , then the number of people that

transfer from trip q to trip p on their journey from station sstartf to sendf is given by

the entry (sstartf , sendf ) of the OD matrix. The total numbers of passengers leaving

C−pqi and entering C+
pqi trip p at station s are, thus, given by

C−pqs =
∑

w∈W φ−pqwT (sstartw , sendw ), C+
pqs =

∑
w∈W φ+

pqwT (sstartw , sendw ), (6.2)

where T is the OD matrix and φ−pqw and φ+
pqi are indicator functions:

φ−pqf =

{
1, if [(s, rp, t

a
ps), (s, rq, t

d
qs)] ∈ f

0, otherwise
,

φ+
pqf =

{
1, if [(s, rq, t

a
qs), (s, rp, t

d
ps)] ∈ f

0, otherwise

. (6.3)

Our aim is to shift the existing schedule for each trip p by an amount δp such

that the waiting times along route r are minimized while all available transfers

between trips remain feasible. To do this, we define a variable ωpqs that gives the

sum of the individual waiting times for passengers who transfer from trip p to trip

q at station s (and vice versa) if we shift the schedule by δp:

ωpqs = (tdqs−(taps+δp))C
−
pqs+((tdps+δp)−taqs)C+

pqs, ∀p ∈ P, ∀q ∈ Q, ∀s ∈ Sr. (6.4)

This yields rise to the following optimization problem:

min
δp

∑
p∈P

∑
s∈S

∑
q∈Q

ωpqs (6.5)
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subject to the constraints

−hp/2 ≤ δp ≤ hp/2 ∀p ∈ P, (6.6)

ξ−pqs(t
d
qs − (taps + δp)) ≥ tts ∀p ∈ P, ∀q ∈ Q, ∀s ∈ Sr, (6.7)

ξ+pqs(t
d
ps + δp)− taps) ≥ tts ∀p ∈ P, ∀q ∈ Q, ∀s ∈ Sr, (6.8)

δp ∈ R ωpqs ∈ R+ ∀p ∈ P, ∀q ∈ Q, ∀s ∈ Sr. (6.9)

Equation (6.6) ensures that the maximum shift of a trip in the schedule does not

exceed half the time headway (see Section 2.2 for the definition). Equations (6.7)

and (6.8) guarantee that all existing connections remain feasible.

Because we attempt to optimize the schedule by solving equation (6.5) for each

route r ∈ R using the (updated) schedule, the algorithm used for our optimization

problem is an example of a greedy algorithm. A greedy algorithm chooses the

locally optimal solution in the hope of finding the global optimal solution [12].

Although greedy algorithms can yield the optimal solution in a wide range of

problems, we do not have any guarantee that this is the case for our problem.

Finding an optimal solution is, however, not our main objective, as we are only

looking for a significant improvement of the existing schedule.

Even if the new schedule is optimal and we see a significant decrease in the

total waiting time of the network, it might not be a desirable solution. As we

shift each trip p individually, the periodicity of a route might be disrupted and the

schedule could even become highly irregular. An irregular schedule is generally

no concern in systems for which the demand for and the frequency of connections

are high. In such systems passengers tend to arrive at their departure station at

‘random’ as the expected waiting times at the departure station and all subsequent

transfer stations are low. Consequently, the total waiting time in such a system

is relatively small even when passengers do not follow a preplanned schedule. In

systems with a low departure frequency, however, the use of an irregular schedule

has been found to encourage passengers to either learn the schedule or use a

journey planner to attempt to limit the negative consequences of an irregular

timetable [41]. Journeys on the British rail network are subject to specific rules

that limit the routes passengers are allowed to take as the result of the dynamic

pricing policies and the different TOCs [35]. ATOC therefore advices passengers to
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consult a journey planner before departing [35]. An irregular schedule is therefore

a reasonable solution to the optimization problem when considering the British

railway system. Nevertheless, the irregularity of the optimized schedule can be

controlled by adjusting constrains in the optimization problem [11].

6.2 Implementation of optimization problem

For the construction of the optimization problem we use the Python Optimiza-

tion Modelling Object (Pyomo) open-source software package [17]. We solve the

optimization problem using the Network-Enabled OPtimization System (NEOS)

optimization server using the COIN Branch and Cut (CBC) solver [42]. The CBC

solver has been developed by the COmputational INfrastructure for Operations

Research (COIN-OR) project and uses an algorithm based on the simplex algo-

rithm developed by George Dantzig for solving linear optimization problems [42].

To solve the optimization problem (6.5), we first construct a 2-aspect multi-

layer network with routes and times as aspects and find the shortest paths in this

network. We then initialize the system such that the arrival and departure times

of the trips p corresponding to the route r and the set of intersecting trips q at

every station along route r in the system is known. We determine the values for

ξ−pqs and ξ+pqs from equation (6.1)and we determine the transfer volumes C−pqs and

C+
pqs using equation (6.2). We then optimize the schedule for route r.

As the shift of each trip p in route r is restricted by the constraint that all exist-

ing transfers given in ξ−pqs and ξ+pqs must remain feasible, we make the assumption

that the combination of trips that describe each shortest path remains unchanged.

This is a strong assumption, as it is likely that shifts in the schedule allow new

transfer possibilities that yield shorter paths than are currently considered. The

construction of a new multilayer network using the optimized schedule that results

from shifting the route r, which can be used to construct a new set of shortest

paths, is a possible solution, but it is computationally expensive. Consequently,

we keep the transfer volumes C−pqs and C+
pqs constant throughout the optimization

of the routes in the network. Note that we update the indicator functions ξ−pqs and

ξ+pqs to ensure that new transfer connections remain feasible in subsequent route

optimizations.
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S1
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Figure 6.1: Monoplex representation of the model network. Each node represents
a station in the network. Each edge represents a route. The edge colors indicate
the TOC that is associated with each route (i.e. orange=Arriva Trains Wales,
green=First Great Western, yellow=Southern and blue=ScotRail).

The existing schedule can now be optimized by perturbing a route r in the

network. When the waiting time along the route remains constant after optimiza-

tion, but a shift is suggested, we choose not to update the schedule. Otherwise,

the arrival and departure times of the trips along route r are updated, i.e.

tps =
[
taps + δp, t

d
ps + δp

]
, ∀p ∈ Pr, ∀s ∈ Sr. (6.10)

Note that we make the assumption that all arrival and departure times at all

stations serviced by trip p are shifted by δp. We thus do not lengthen or shorten

the time spent at individual stations along the route. In the subsequent iteration,

a new route is selected, the values for the indicator variables are determined, and

the schedule is optimized. We repeat this process for all routes in the network.

We expected that the schedule that we obtain using this procedure has a lower

aggregate waiting time than the original schedule.

6.3 Example

To illustrate the optimization process we consider the monoplex network given in

Figure 6.1. Each edge in the figure represents a route. The edge colors indicates

the TOC that is associated with each route (i.e. orange=Route 1, green=Route

2, yellow=Route 3 and blue=Route 4). The nodes represent the stations at which

two or more routes intersect. The schedule that is run on the network is given

in Figure 6.2. Each rectangle presents a trip in the schedule. The color of each

rectangle indicates which route the trip belong and can be matched with Figure
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Station 3 (S3)

Station 2 (S2)

Station 1 (S1)

9 10

5 6 7 8

1 2 3 4

Figure 6.2: The schedule associated with the network given in 6.1. Each rectangle
presents a trip in the schedule. The color of each rectangle indicates which route
the trip belong and can be matched with Figure 6.1. The length of the rectangle
is prescribed by the length of the trip and the position of the rectangle by the
departure of the trip. For example, trip 1 is part of Route 1, departs from Station
1 at t = 0 and arrives at Station 2 at t = 5.

6.1. The length of the rectangle is prescribed by the length of the trip and the

position of the rectangle by the departure of the trip. For example, trip 1 is part

of Route 1, departs from Station 1 at t = 0 and arrives at Station 2 at t = 5.

Similarly, trip 5 is runs along Route 2, departs from Station 2 at t = 11 and

arrives at Station 1 at t = 16. From Figure 6.2, one can determine the transfers

that are available to the passengers in the network. A transfer from trip i to trip

j is possible if the rectangles corresponding to trip i and trip j do not overlap and

the arrival station of trip i and the departure station of trip j are identical. The

transfer from trip 1 to trip 5, for example, is not possible as trip 5 has departed

from Station 2 before the arrival trip 1 at this station. The transfer from trip 6

to trip 10 is also not possible as the arrival station of trip 6 is Station 1 while the

departure station of trip 10 is Station 3. Examples of possible transfers are trip 1

to trip 7, and trip 5 to trip 10.

From the model network and the associated schedule, we can construct a

weighted, directed 2-aspect multilayer network (see Figure 6.3). For the con-

struction of the multilayer network, we have followed the procedure described in

Section 4.2. We assume that the stop time at a station is less than one minute.

Consequently, there are no edges connection a node to its counterpart in the same

route layer. Furthermore, we assume that the minimum transfer time at all sta-

tions is one minute. The average headway for each route is given in Table 6.1.

Solid lines are used for edges that connect two node-layer pairs that lie in the

same route layer. Dashed lines are used for edges that connect node-layer pairs
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Figure 6.3: Multilayer network representation for t = 0 to t = 11. The vertical
axis represents the different TOCs. The horizontal axis represent time. Only the
first trip of each route is represented. A layer is coloured if it has at least one
tuple with either an ingoing or outgoing edge. A layer is grey if the tuples have
degree zero on the underlying graph. Elementary time layers in which there are
no tuples with a degree greater or equal to one in the underlying graph are not
represented in the network. For instance, t = 1 and t = 2 are excluded from the
network presented in Figure 6.3. Solid lines are used for edges that connect two
node-layer pairs that lie in the same route layer. Dashed lines are used for edges
that connect node-layer pairs that differ both in route and time layer.

that differ both in route and time layer.

We want to find a schedule for which the aggregated wait time is lower than for

the schedule given in Figure 6.3. To do this, we have constructed the an OD-matrix

for the network:

OD =

 0 1436 66
1436 0 8
66 8 0

 (6.11)

Using adapted version of Dijkstra’s algorithm, we find the shortest paths on the

network. For example, we find that there is a shortest paths from Station 1 at

t = 0 to Station 3 is given by
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Shortest path 1: Station 1 at t = 0 to Station 3
(Station 1, Route 1, 0) → (Station 2, Route 1, 5) → (Station 2, Route 3, 17)
→ (Station 3, Route 3, 24)

Passengers on Shortest path 1 have to transfer at Station 2, where they have to

wait for 12 minutes for the next departure. Another shortest path on the network

describes the path between Station 1 and Station 3 that departs from Station 1 at

t = 9:

Shortest path 2: Station 1 at t = 9 to Station 3
(Station 1, Route 1, 9) → (Station 2, Route 1, 14) →
(Station 2, Route 3, 17) → (Station 3, Route 3, 24)

This path has a waiting time of 3 minutes. In both Shortest path 1 and Shortest

path 2, passengers transfer from the Route 1 to the Route 2. We find that there

are not shortest paths in the network for which passengers from another route

transfer to Route 1, as this would return them to a previously visited station. For

example, it is possible to transfer from trip 6 to trip 3 at Station 1. However, trip

6 departs from station 2 and trip 3 goes to station 2. A transfer to the Route 1

would, thus, naturally lead to a cycle. Consequently, there is no shortest path in

which passengers transfer to a trip in Route 1.

We can now determine the aggregate wait time on Route 1. To do this, we

find the total number of passengers that travel between Station 1 and Station 3

from the OD-matrix. From (6.11), we find that the total number of passengers

that travel from Station 1 to Station 3 is 66. We assume that the passengers are

homogeneously spread over Shortest path 1 and Shortest path 3. The aggregate

waiting time of passengers on Route 1 is now 33 ∗ 12 + 33 ∗ 3 = 495 minutes. The

aggregate waiting time on the network is defined as the sum of the aggregate wait

time of each route in the network. This is not the exact aggregate wait time on the

network, but an upper bound as the wait time from a trip p to a trip q is included

in the wait time for the route that includes the trip p and the route that includes

the trip q. The aggregate waiting time of passengers for the schedule 6.2 is found

to be 1782 minutes.
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We start the optimization process by finding a shift of the trips along the

Route 1 that will reduce the aggregate wait time on the network. The initial

waiting time along the Route 1 is computed using Pyomo by setting δp = 0 for

all p ∈ PRoute 1 and is found to be 495 minutes. Upon optimization of Route 1,

we find that the new schedule reduces the waiting time along the route from 495

to 297 minutes, while the aggregate waiting time on the network is reduced from

1782 to 1386 minutes. In Figure 6.4, we label each trip following the notation that

is introduced in (6.5); a trip p is part of the route that is being optimized; the

other trips are denoted by q. The optimized schedule is given in Figure 6.4(b).

We see that the shift of trip p1 is restricted by constraint (6.6) as the waiting

time for transfer to trip q3 could have been further reduced by a larger positive

shift. The shift of trip p2 is restricted by constraint (6.7). A further shift would

have made the transfer from trip p2 to trip q3 impossible as the minimum transfer

time at Station 2 is 1 minute. We see that the trips p3 and p4 have been shifted

in the new schedule. This does not effect the aggregate waiting time along the

route as the wait time associated with both trips was 0 in the original schedule.

We could have obtained a different schedule by shifting routes p3 and p4 within

the limits of condition (6.6) for which the reduced aggregate wait time along the

route would have been the same. The solution to the optimization problem is thus

not unique.

Moreover, we observe that the departures along the Route 1 which were initially

periodic, leaving every 10 minutes, have become more irregular leaving either 6

or 7 minutes after each other. We also note that the inter-departure times have

decreased in the new schedule. Important is, however, that we do not change the

number of trips along a route. The decrease in inter-departure time is, therefore,

not an indication of an increase in the departure frequency along the route.

The subsequent optimization of Route 2 produces the schedule that can be

found in Figure 6.4(c). The waiting time along the route remains constant and

the aggregate waiting time of the network is not reduced. Subsequent optimization

of Routes 3 and 4 yield reductions in waiting times along each route from 396 to

330 and 330 to 265 minutes respectively. For the final schedule given in Figure

6.4(e), we find that the network has an aggregated wait time of 1254 minutes.
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Route Intersecting Headway Waiting time Minimum waiting
trips along route time network

Route 1 4 8 495 1254
Route 2 8 10 495 1452
Route 3 8 9 396 1452
Route 4 4 11 396 1254

Table 6.1: Comparison of number of intersecting routes, headway and initial wait-
ing time along the route. The final column describes the minimum overall waiting
time on the network that can be obtained if the route is optimized first.

The aggregated waiting time on the network has been reduced by approximately

is 30%.

As we are using a greedy optimization methods, there might be another sched-

ule that provides a larger reduction in the aggregated wait time on the network. We

now investigate whether the order in which the routes are optimized has an influ-

ence on the aggregate waiting time of the final schedule that is obtained. Different

optimization strategies can be applied as routes can, for example, be optimized in

order of increasing/decreasing overall waiting time, increasing/decreasing number

of intersecting routes, or increasing/decreasing average headway time.

For our sample network, we are able to test every route ordering as the number

of possible combination is only 4! = 24. We find that the total waiting time

in the network is reduced from 1782 to 1650, 1452 or 1254 minutes depending

on the ordering of the routes suggesting that the problem has two local and one

global minimum. We also find that the global minimum is never reached when

we start the optimization with either the Route 2 and Route 3. We reach the

global minimum of 1254 minutes for 8 out of the 24 possible orderings. Similarly,

we find the local minima of 1452 and 1650 for 12 and 4 orderings respectively.

Table 6.1 gives the intuition that optimization of routes that are intersected by

the smallest number of trips will give a larger reduction in the waiting time than

routes that are intersected by a larger number of trips. However, any conclusions

about the optimal strategy for the optimization of a transportation schedule will

require either the study of larger and more realistic sample networks or the study

of a set of real transportation schedules. This could be a direction for future work.
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(a) Original Schedule

t0 5 10 15 20 25 30

Station 3

Station 2

Station 1

q5 q6

q1 q2 q3 q4

p1 p2 p3 p4

(b) Schedule after optimization of Route 1

t0 5 10 15 20 25 30

Station 3

Station 2

Station 1

q7 q8

p1 q5 p2 q6

q1 q2 q3 q4

(c) Schedule after optimization of Routes 1 and 2

t0 5 10 15 20 25 30

Station 3

Station 2

Station 1

q7 q8

q5 p1 q6 p2

q1 q2 q3 q4

(d) Schedule after optimization of Routes 1,2 and 3

t0 5 10 15 20 25 30

Station 3

Station 2

Station 1

p1 p2

q5 q6 q7 q8

q1 q2 q3 q4

(e) Final Schedule: schedule after optimization of all routes

t0 5 10 15 20 25 30

Station 3

Station 2

Station 1

Figure 6.4: (a) The original schedule of the network given in Figure 6.1. The route
that is currently being optimized is indicated by p. The other routes are denoted
by q. (b)-(e) The schedule after each iteration of the optimization process. Again,
p is the trip that is currently optimized. The other routes are denoted by q. The
result of the optimization of the route is given in the next figure. For example,
the schedule after the optimization of the Route 1 in (a) is given in (b). (f) The
optimized schedule. The trips labels are omitted as the optimization process has
been completed.



Chapter 7

Conclusion

In this thesis, we have used a graph-theoretical framework to develop a method

with which we can obtain estimates for the aggregate waiting times on public

transportation networks. We needed these estimates for the construction of an

optimization problem that attempts to reduce the aggregate waiting time by per-

turbing the trips in the network.

We first constructed two weighted, directed monoplex network representations

of the British rail network (i.e. including and excluding the London Underground)

and used centrality measures to obtain the central nodes in the network. We

found that the stations with the highest degree and betweenness centrality are

stations that have a high number of passengers interchanges. We also found that

the London Underground is of critical importance for the British rail network, as

London rail stations become more central when London Underground connections

are included in the network.

We, then, constructed two single-aspect multilayer networks for the British

rail system using TOCs and time as aspects. The time-aspect multilayer network

describes the network for a single day. As expected, we found that the activity

on the network is highest during the day. We also found that the network is

highly segregated with respect to the TOC, as most stations are only serviced

by one TOC. Additional analysis could be done on these networks. One could,

for example, find the the number of operators that use the same track (edge) on

the network. Furthermore, we could investigate the properties of the network on

different days of the week.
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To estimate the number of passengers that travel between each pair of stations,

we construct an OD matrix using the doubly constrained gravity model. We discuss

how shortest paths can be found on multilayer networks. An important observation

is that one can find the shortest paths on any multilayer network by using Dijkstra’s

algorithm on its underlying graph. Additionally, we found that the shortest paths

on a multilayer network are not only dependent on the topology of the network,

but also on the specification of the aspects on the path. Using the concept of

aggregated tuples, we found a potentially faster algorithm for multilayer networks

in which the shortest path is assumed to be independent of one or multiple aspects.

Future work could include a study of the possible advantages of this method.

Finally, we investigate how the aggregate waiting time on a public transporta-

tion network can be reduced. Following [11], we try to decrease the aggregate

waiting time on a network by perturbing the existing schedule. Using a small

sample network, we show that the aggregate waiting time on this network is re-

duced by introducing a perturbation to the original schedule. We also note that

the final solution to the optimization problem is dependent on the order in which

the routes are optimized.

As the sample network is an extremely simplistic, the next step would be to use

the method described in this thesis to the data of the British rail network. This

would allow us to see what the effects of small perturbations to an existing schedule

would be for a real public transportation networks. Furthermore, we could, for

example, compare the results of the optimization of the British rail network to a

rail transportation network that has fewer TOCs (e.g. the Dutch rail network).

This could provide insight into the effects of the use of different TOCs on the

waiting time experienced by passengers on the network.

We could further improve the optimization procedure by recomputing the short-

est paths for each schedule that is found after the optimization of one route. Ad-

ditionally, we could investigate if a specific ordering of the routes can be found

that will lead to the optimal schedule.

We could also obtain more information on the waiting times along different

routes of the British rail network using the shortest paths that are found using

Dijkstra’s algorithm. Furthermore, the construction of a 2-aspect multilayer net-

work in which waiting time is weighted twice more than in-vehicle time, could give
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a more realistic indication of the paths that passengers are most likely to take.

Alternatively, this can be done by the construction of a set of ‘desirable’ paths in

which shortest paths, but also paths with other desirable properties (e.g. lower

ticket cost or fewer transfers), are included.

In conclusion, we believe that the application of the method to a real public

transportation network is the first step to be taken in further research. Further-

more, we find that there are a variety of interesting directions that can be pursued

in future work.
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Appendix A

GTFS data description

Description of data contained in a General Transit Feed Specification file.
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Appendix B

London underground connections

Table containing the edge information for connections between London stations

using the London Underground. The edges are assumed to be undirected.

Station Station Time
Amersham Chalfont and Latimer 3
Brixton Vauxhall 4
Chalfont and Latimer Harrow-on-the-Hill 20
Ealing Broadway Shepherdś Bush 15
Elephant & Castle London Bridge 3
Farringdon Moorgate 4
Finsbury Park Seven Sisters 3
Greenford Shepherdś Bush 16
Harrow-on-the-Hill Farringdon 31
Highbury & Islington Finsbury Park 2
Kentish Town London Euston 5
London Liverpool Street Stratford 8
London Bridge Old Street 5
London Charing Cross London Waterloo 2
London Euston Charing Cross 7
London Euston London Kings Cross 1
London Euston London St Pancras International 1
London Kings Cross Highbury & Islington 2
London Kings Cross London Euston 1
London Liverpool Street West Ham 13
London Paddington London Victoria 14
London Paddington Marylebone 3
London St Pancras International Highbury & Islington 2
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Station Station Time
London St Pancras International London Euston 1
London Victoria London Cannon Street 12
London Victoria London Liverpool Street 18
London Victoria London Euston 33
London Waterloo Elephant & Castle 4
London Waterloo Balham 17
London Waterloo London Bridge 2
Old Street London St Pancras International 5
Old Street London Kings Cross 5
Marylebone London Charing Cross 9
Moorgate London Liverpool Street 2
Seven Sisters Tottenham Hale 2
Shepherdś Bush London Liverpool Street 27
South Ruislip Greenford 4
Stratford West Ham 3
Tottenham Hale Walthamstow Central 5
Vauxhall London Victoria 28
Wembley Central London Paddington 22
West Ham London Bridge 13
West Hampstead London Waterloo 14
West Ruislip South Ruislip 3
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Appendix C

Monoplex network types

Undirected

1

2

3

4

Directed

1

2

3

4

Weighted (undirected)

1

2

3

4

10 5

19

7

Strongly connected

1

2

3

4

Weakly connected

1

2

3

4
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Appendix D

Dijkstra’s algorithm visualization

A visualization of Dijkstra’s algorithm is provided for a monoplex network. White

nodes are unvisited. Black nodes have been visited. A grey node is the current

source node, red vertices give the current shortest paths in the network. The

node values correspond to the current shortest distance from the source node.
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Appendix E

Dijkstra’s algorithms

Algorithm 1 Dijkstra’s algorithm [12]

Input: Network G and source node s
Output: Dictionary d with the distance to the source node of all nodes in the

network and a dictionary a containing the ancestor information
1: for each vertex i in V do
2: d(i) =∞ % initializes distance to source node
3: a(i) = −1 % initializes ancestor
4: end for
5: d(s) = 0 % initializes distance for source node
6: S = ∅ % set of visited nodes
7: Q=V % set of unvisited nodes
8: while Q 6= ∅ do
8: u = EXTRACT-MIN(Q) % extracts node with the smallest distance to

the source node.
8: S = S ∪ {u}
9: for each vertex v in G.Adj[u] do

10: if d(v) > d(u) + w(u, v) then
10: d(v) = d(u) + w(u, v) quad
10: a(v) = u
11: end if
12: end for
13: end while
14: return d, a
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Algorithm 2 Dijkstra’s algorithm on underlying graph

Input: Network G and source tuple γ
Output: Dictionary d with the distance to the source tuple of all tuples in the

network and a dictionary a containing the ancestor information
1: for each tuple κ in VM do
2: d(κ) =∞ % initializes distance to source node
3: a(κ) = −1 % initializes ancestor
4: end for
5: d(γ) = 0 % initializes distance for source tuple
6: S = ∅ % set of visited tuples
7: Q=VM % set of unvisited tuples
8: while Q 6= ∅ do
8: (α) = EXTRACT-MIN(Q) % extracts tuple with the smallest distance

to the source tuple.
8: S = S ∪ {α}
9: for each tuple β ∈ G.Adj[α] do

10: if d(β) > d(α) + w(α, β) then
10: d(β) = d(α) + w(α, β)
10: a(β) = α
11: end if
12: end for
13: end while
14: return d, a
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Algorithm 3 Adjusted Dijkstra’s algorithm for underlying graph

Input: Network G and source tuple γ
Output: A dictionary d̂ with the distance from the aggregated tuple to all aggre-

gated tuples in the network, a dictionary â containing the elementary layer(s)
that provide the shortest paths, a dictionary d with the distance to the source
tuple(s) of all tuples in the network, and a dictionary a containing the ancestor
information
for each tuple κ in VM do
d(κ) =∞ % initializes distance to source node
a(κ) = −1 % initializes ancestor
d̂(κ̂) =∞
â(κ̂) = −1

end for
d(γ) = 0 % initializes distance for source tuple that can be mapped to γ̂
d̂(γ̂) = 0
M = ∅ % set of visited tuples
U=VM % set of unvisited tuples
M̂ = ∅ % set of visited aggregated tuples
Û=V̂M % set of unvisited aggregated tuples
while Û 6= ∅ do
α = EXTRACT-MIN(Q) % extracts tuple with the smallest distance to
the source tuple.
S = S ∪ {α}
for each tuple β ∈ G.Adj[α] do

if d(β) > d(α) + w(α, β) then
d(β) = d(α) + w(α, β)
a(β) = α
if d(β) < d̂(β̂) then
d̂(β̂) = d(β) % β̂ is the aggregated tuple
â(β̂) = α

end if
end if

end for
end while
return d̂, â, d, a
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