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Human mobility drives a variety of physical phenomenon in the modern world. Our understanding
of human mobility has been dominated by two theoretical models: the gravity model and the inter-
vening opportunities (IO) model. In this thesis we derive these models with spatial network theory
formalism and consider their application to the London Cycle Hire Scheme (LCHS). We demon-
strate theoretically why an opportunistic model is more appropriate than the Gravity model and
show that the most appropriate opportunistic model is an intervening opportunities model modified
with a theory of Spatial Dominance (IOSD) for the case of LCHS. Furthermore, we also challenge
the convention of ignoring self-loops commonly employed when analysing physical networks, and we
show how self-loops found in the LCHS can be successfully assimilated into the application of the
IOSD.

I. BACKGROUND

Although it is a difficult task, modelling human mo-
bility is extremely important if we hope to understand
a diverse range of physical systems from modelling virus
pandemics [2] to traffic flows [3]. The difficulty stems
from the myriad of unknown factors associated with both
human-decision making and the physical systems them-
selves. However, it has been shown that strong spatial
and temporal patterns can exist [1] - in human mobility
and models have been developed that successfully de-
scribe a variety of networks.

The understanding of human mobility is limited by the
ability to collect data about individuals. Given the in-
creasingly sophisticated ability to track individuals, mod-
elling human mobility has seen rapid progression, and it
is now possible to test models against complex systems
with interesting dynamics (e.g. Levy flights [1]). How-
ever the field is still dominated by two theoretical mod-
els developed in the early studies of human mobility, the
gravity model and intervening opportunities (IO) model.
The gravity model has existed for a significant time, first
introduced to describe trade flows in 1781 by Monge [5],
with its modern form appearing in a 1946 paper by Zipf
[6]. The IO model was introduced in 1940 by Stouffer
[4] as an alternative theoretical model to predict human
migration.

In Section II of this report, we give a brief descrip-
tion of simple networks and a brief description of the
mathematical formulations we use to describe physical
systems. Whilst the models are independent of any spe-
cific mathematical representation, for our application in
understanding physical systems, we have chosen to use
network theory formalism. In the following sections, we
derive the gravity model (Section III) and IO model (Sec-
tion IV). Furthermore, in Section V, we describe a mod-
ification to the IO model known as the theory of spatial
dominance to form the intervening opportunities model

with spatial dominance (IOSD), that acts to include ele-
ments of the gravity model into the IO model.

In Section VI, we investigate the application of the
IO and IOSD models to the London Cycle Hire Scheme
(LCHS). We first discuss how we are able to model the
LCHS as a mathematical network and justify certain pa-
rameter choices we make in translating physical proper-
ties to mathematical objects. Following this, we discuss
our choice of models for the network. In a recent paper by
Austwick et al. [7], they chose to model the LCHS with
a gravity model approach. We, however, chose to use a
opportunistic approach. We will discuss our motivations
for suggesting, from first principles, why an opportunis-
tic model would be more appropriate than the gravity
approach presented by Austwick et al. [7]. Furthermore,
after generating an IO trip distribution for the LCHS,
we demonstrate that an IOSD model is more appropri-
ate theoretically and generates a better trip distribution.

In Sections VII and VIII we delve deeper into under-
standing the LCHS system. In Section VII we follow
Austwick et al. [7] in treating weekend trips and week-
day trips separately and discuss the differences between
the trip distributions. In Section VIII we discuss the na-
ture of self-loops and the typical treatment of ignoring
them in physical systems. Furthermore, we assimilate
self-loops into our IOSD model as applied to the LCHS.

II. NETWORKS

Before we consider physical networks, we first discuss
basic network (graph) theory and how we have used it to
describe simple networks.

Networks vary in complexity depending on how one
chooses to model them. In its most basic representation,
a network consists of a collection of nodes connected by
edges. A network can be represented as a labelled graph
or via incident or adjacency matrices [8] (examples of
which are shown in Fig. 1).
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(a) Simple Network
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(b) Directed network
with multi-edges
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(c) Directed network
with weighted edges

0 1 1 0 1
1 0 1 1 1
1 1 0 1 0
0 1 1 0 0
1 1 0 0 0


(d) Adjacency
matrix for (a)


1 2 0 0 0
0 0 1 1 0
0 0 1 3 0
0 1 0 0 0
1 1 0 0 0


(e) Adjacency
matrix for (b)


3 4 0 0 0
0 0 1 1 0
0 0 1 7 0
0 4 0 0 0
10 12 0 0 0


(f) Adjacency matrix

for (c)

FIG. 1: Various networks represented graphical and by cor-
responding adjacency matrices. (a) A simple graph i.e. a
graph that is undirected, unweighted, has no multi-edges and
no self loops. (b) A non simple graph with multi-edges and
self-loop. (c) A non simple weighted graph, where each edge
label represent the weight of the edge. (d) Adjacency matrix
representation of graph shown in (a). (e) Adjacency matrix
representation of graph shown in (b). (f) Adjacency matrix
representation of graph shown in (c).

Two nodes are considered “adjacent” if an edge con-
nects them. From this we can define the adjacent matrix
as:

Aij = n, (1)

where n is the number of edges connecting node i to node
j. Incident matrix representation is an analogous repre-
sentation where we consider two edges to be “incident” if
a node connects them. Incident matrix representation is
of little interest in physical application where edges are
not well-defined, as is the case of the LCHS.

Furthermore, networks are sub-classified as directed
and undirected. A directed network is where flows are
restricted to a single direction across edges, and undi-
rected are where flows are bidirectional along edges. Note
that adjacency matrices for undirected networks must be
symmetric, and for networks with no multi-edges the ad-
jacency matrix is only populated with 0s and 1s. We
restrict our discussion to undirected networks with no
multi-edges.

Before being able to understand the trip-distribution
models, we must first choose how we define three im-
portant network characteristics, node importance, edge
length and self-edges.

Node Importance : In most physical networks, the
nodes are not equal. This inequality is due to either cer-
tain zones experiencing greater flows or, certain zones be-
ing more “well connected” than others (e.g. some nodes
have greater numbers of edges originating from them).

One can use measures of node importance to help char-
acterise these differences.

There are many ways of measuring node importance.
The simplest definition is to define a node’s importance
as its “population”. In the case of a city, this could be the
human population; or in the case of a traffic network, this
could be the number of trips originating or terminating
at the zone. More complicated definitions define this as a
function of other parameters. For example, we will later
define node importance as a function of time of day when
applying models to the LCHS.
Edge Length : In any network, nodes are connected by

edges, and these do not remain uniform between different
zone pairs. This is of great importance when considering
spatial networks as edge length is often used to represent
the topography of the surface the network is embedded.

There are a variety of ways of transforming physical
connections between nodes to the mathematical edges
that we need to model. Simple definitions include a linear
relationship of Euclidean distance between pairs of zones
to their respective edge length, whereas more complex
definitions account for specific characteristics of routing
distances and factors that affect journey time.

Self-Edges (Self-Loops): Self-edges, also known as
self-loops, occur when an edge connects a node to itself.
They are represented by non-zero elements in the diago-
nal of the adjacency matrix A (see Fig.1) Self-loops can
be very problematic in understanding spatial networks.
Most investigations ignore self-loops, as either the flows
through the loops are small compared to the non-zero
non-diagonal elements of A, or they will not mathemati-
cally affect parameters being calculated. Further, in the
case of the LCHS, due to the method of tracking used,
they make it very difficult to properly model the network.
At first, we will ignore self-loops in our application to the
LCHS, but we will return to them later in Section VIII.

III. THE GRAVITY MODEL

As its name suggests, the gravity model is based on
the functional form of the Newton’s law of Gravitation.
Gravity-law based models appear in a variety of social
and natural sciences, and human mobility is no excep-
tion. The gravity model has been used to describe trip
distributions from as early as the 18th century by Monge
[5]. The way in which it is presented today can be traced
back to Voorhees’ application of the gravity model to
traffic in urban areas [9].

The gravity model states that the trip-interchange be-
tween two nodes is directly proportional to the attrac-
tion between the two nodes and inversely proportionally
to some function of the spatial separation between the
nodes. The model assumes trip makers will aim to min-
imise the ‘cost’ of a trip. The “cost” of a trip is usually
a function of spatial separation that also contains the
information on other parameters that affect the trip dis-
tribution [9].
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To derive the gravity model for trip distribution, we
first consider the gravity model of Newtonian physics
that relates the force, Fij , between objects i and j, to
the objects masses, mi and mj , and the respective sepa-
ration, dij , between the bodies:

Fij = G
mimj

d2ij
, (2)

By analogy, we take equation (2) and make the following
changes to instead predict the number of trips, Tij , be-
tween mi and mj . Consider i and j as nodes instead of
bodies; replace the mi term with Oi, where Oi represents
the number of trips originating from node i; replace the
mj term with Dj , where Dj represents the number of
trips that terminate at node j; replace the dependence

of dij with a cost friction factor, Cβij (where β is some

constant, which is measures empirically) that is designed
to incorporate the distance between the zones and any
other parameters that affect the trip distribution. This
gives:

Tij = θ
OiDj

Cβij
, (3)

where θ is some proportionality constant.
A more general form of the gravity model is given as:

Tij =
OiDjf(Cij)Kij∑
nDn(Cin)Kin

, (4)

where Kij are “zone-to-zone adjustment factors”, Kij .
Although originally introduced with no theoretical basis,
attempts have been made to attribute them to “socioeco-
nomic influences on travel otherwise unaccounted for in
the model” [15]. Derivation of equation (4) from (3) can
be seen in appendix A. There are two commonly used
functions for f(Cij):

f(Cij) = C−β
ij , (5)

f(Cij) = exp(−βCij), (6)

Equation (6), known as the “doubly constrained gravity
model” [10], was initially derived by Wilson [11] to solve
the divergence issue that occurs with equation (5) for
small values of Cij .

IV. THE INTERVENING OPPORTUNITIES
(IO) MODEL

The opportunistic approach to modelling networks was
first proposed by Stouffer [4], who applied this approach
to migration patterns between services and residences.
The theory was further developed by Schneider [12] to
the general framework that is used today.

The law of intervening opportunities as proposed by
Stouffer [4] states “The number of persons going a given

distance is directly proportional to the number of oppor-
tunities at that distance and inversely proportional to the
number of intervening opportunities.” An “opportunity”
is a destination that a trip-maker considers as a possible
termination point for their journey and an “intervening
opportunity” is an opportunity that is closer to the trip
maker than the final destination but is rejected by the
trip-maker [4]. Mathematically, we have:

Tij = k
Dj

Vj
, (7)

where k is a proportionality constant, Dj represents the
total number of opportunities at node j, and the quantity
Vj is the number of intervening opportunities between
nodes i and j.

Schneider proposed a modified Stouffer hypothesis [12]:
“The probability that a trip will terminate in some vol-
ume of destination points is equal to the probability that
this volume contains an acceptable destination times the
probability that an acceptable destination closer to the
origin of the trips has not been found.”

This was represented mathematically by Ruiter [13] as

dP = L[1− P (V )]dV, (8)

where dP is the probability that a trip will terminate
when considering dV possible destinations; the ‘sub-
tended volume’ V is the cumulative total number of des-
tination opportunities considered up to the destination
being considered; dV is an element of the subtended vol-
ume at the surface of the volume; P (V ) represents the
opportunity that a trip terminates when V destinations
are considered; L is a constant probability of a possible
destination being accepted if it is considered. The solu-
tion of equation (8) is

P (V ) = 1− exp(−LV ), (9)

With the expected trip-interchange, Tij , we get

Tij = Oi[P (Vj+1)− P (Vj)], (10)

where Oi represents the total number of opportunities
at node i. Note that Eash [14] showed that the gravity
and IO models are “fundamentally the same” and are
both derivable from entropy maximization theory. Eash
also noted that the difference is how the “cost” of travel
is considered [14]. Although the gravity model consid-
ers this “cost’ as a function of distance, the opportunity
model considers the “cost” as the difficulty to satisfy a
trip’s purpose. The gravity model then treats the dis-
tance variable as a continuous cardinal variable, whilst
the opportunity model treats the distance as an ordinal
variable.

At this juncture it is necessary to recognise the ma-
jor shortcoming of the conventional intervening oppor-
tunities model. As described by Pooler [16]: ”The
model implies that the linear distance between nodes
has no direct effect on the perception of opportunities,
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and that, decision-makers perceive all opportunities with
equal clarity, which is very unlikely Harris (1964) [18];
Okabe (1976) [19]”. This issue is addressed with the in-
troduction of the spatial dominance into the model that
assimilates features from the gravity model into the in-
tervening opportunities model to create what is known as
the “Intervening Opportunities model with Spatial Dom-
inance” (IOSD).

V. IOSD - INTERVENING OPPORTUNITIES
WITH SPATIAL DOMINANCE

The IOSD was introduced by Pooler [17] in 1992. He
used the theory of Spatial Dominance to model the idea
that “decision-makers are influenced not just by the size
of a destination or distance but rather by these two fac-
tors in combination”. To do this, one applies the func-
tional dependence on distance seen in the gravity based
models to the ranking process of the intervening models.
We define the“theoretical spatial dominance”, pij of a
destination j on an origin i [17] in equation (11).

pij =
Djf(dij)∑m
j=1Djf(dij)

, (11)

where dij is the distance between nodes i and j; Dj is the
attractivity of node j. Once pij has been determined for
all nodes, we use this as a basis for the ordinal ranking
required in the IO model. In essence, this redefines an
intervening opportunity as “the destination which exerts
the greatest amount of spatial dominance on an origin’
[17].

By applying the theory of spatial dominance, we hope
to address the problem that trip-makers, are unlikely to
perceive every opportunity equally.

We can assimilate the gravity models functional depen-
dence on dij (dependancies of the form given in equations
(5) and (6) in place of f(dij) in equation (11).

VI. MODELLING LONDON CYCLE HIRE
SCHEME (LCHS)

Background : The London cycle hire scheme (offi-
cially known as Barclays Cycle Hire [20]) is a bicycle
sharing scheme launched in July 2010 across the city
of London and surrounding boroughs [21]. Originally,
it consisted of 315 docking stations that with approxi-
mately 5,000 bicycles [21], however it has since grown to
720 stations and 10,000 bikes in 2013 [22]. We have ac-
quired data that consist of approximately 5,000,000 trips
that occurred on the scheme between 31 May 2011 and 4
February 2012. Full information about the network and
data analysed are in Table I

As mentioned in Section III, a recent paper by Aust-
wick et. al [7] applies the gravity model to the LCHS and
compares results against the same analysis of a variety of

other similar schemes in major cities situated in the US.
Although this is reasonably successful, we postulate that
the opportunistic model is more appropriate; our moti-
vation for suggesting the IO model as more appropriate
lies with the assumption of how decisions are made by
trip makers with regards to their journeys.
Choice of Model : The gravity model for trip distri-

bution is derived by modifying Newton’s law of gravita-
tion hence, in its derivation it does not attempt to jus-
tify trip distributions from a microscopic level. Rather,
it focuses on a macroscopic understanding of the system,
with the basic premises that trip-interchange decreases
with increasing distance and increases with increasing
node importances. The IO model, however, is derived
on assumptions that outline a core mechanism, i.e. the
Stouffer hypothesis [4], that drive the macroscopic prop-
erties of the system.

Furthermore, we postulate that trip-makers do not
view distance as a cardinal variable when making their
decisions but rather as an ordinal variable. Our rationale
is based on two facts: trip-makers are not restricted to
using the cycle scheme to complete their journeys; trip-
makers likely have a final destination that is not situated
exactly at a single station but in proximity of many sta-
tions.

To illustrate the first reason, there exists comprehen-
sive bus and metropolitan (“Tube”) networks that cover
the same region as the cycle network and have stations in
comparable locations and density to the cycle network.
This, in theory, mitigates the dependance of the trip dis-
tribution on the relation between physical exertion and
distance travelled. Such a relationship would likely treat
distance as a cardinal variable in a similar method to the
gravity model.

Our second point - of final destinations being proxi-
mate to many stations - supports the core idea of using
intervening opportunities as the driving force behind a
trip-maker’s decision-making. If this is the case, trip-
makers typically have to judge a few destinations and
determine - based on their proximity to a final destina-
tion - their suitability for termination of their cycle jour-
ney. This resembles Stouffer’s hypothesis [4], which we
described in Section III.

However, there is an inherent problem with the IO
model that suggests it will have difficulty describing a
modern mobility network. It assumes that trip-makers
do not judge potential destinations based on their im-
portance. We guess that trip-makers consider destination
size when ranking destinations. That is, trip-makers will
travel further to destinations of great importance. The
perceived distance of a destination should decrease with
node importance. This suggests that the IOSD model
(see Section IV) will better describe the network than
the IO model.
Modelling Parameters: Before applying the IO

model, we need to discuss what we consider an “oppor-
tunity” and how we would model the edge length.
Opportunties: The number of opportunities at any
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LCHS information
Period Of Analysis 31/03/2011–4/02/2012
Number of Stations at end of period 496
Number of Bikes 5000
Period Number of Trips % of all Trips
For entire period: with self-loops 4,761,197 100
For entire period: without self-loops 4,588,207 96.4
For entire period: only self-loops 172,990 3.6
Weekdays only without self-loops 3,322,792 69.8
Weekends only without self-loops 1,265,415 26.6

TABLE I: A table containing the parameters (number of nodes, period of analysis, number of bikes, total numbers of trips for
given subsets) of the LCHS that is the subject of the analysis of this thesis.

FIG. 2: Plots of the daily mean number of trips departing per hour throughout the period (31/03/2011–4/02/2012) for the
following data sets: all days including self-loops; all days not including self-loops; weekdays not including self-loops; weekends
not including self-loops.

given node is a difficult parameter to estimate from the
data we have for the LCHS. In general, it would be dif-
ficult to estimate as the definition of an “opportunity”
varies between trip-makers. We choose to use Ruiter’s
definition [13] that the number of opportunities at a sta-
tion is the number of trips that originate at that station.

Distance Variable dij : Due to the large number of
stations that we need to consider (496) and the space
in which they are embedded, determining the distances
to use between stations is a challenging task. The sim-
plest definition is a Euclidean distance between each sta-
tion. However, it is evident that trip-makers cannot fol-

low straight lines for their journeys. Ideally, we would use
the distance between each pair of stations following the
most common route that trip-makers take. In principle,
this information is accessible, however due to limitations
on relevant services and software required for this task,
the time required to generate this information is beyond
the timescale for this project. In Section IX, we suggest
this as a course for future research.

We thus take the mean journey time between two sta-
tions for the period measured as the distance between
stations. This is an irregular choice, because distance pa-
rameters typically are not temporally-based. However,
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the models do not require that the distance parameter
must be a spatial one. Furthermore, journey time con-
tains relevant information, that we argue makes mean
journey time a more appropriate a metric than physical
distance. This is largely due to the idea that trip makers
are likely to be sensitive to journey time, and that traf-
fic effects are likely to change the “perceived distance”
between nodes. Furthermore, this allows us to consider
changing edge lengths (that are functions of time of day).

Austwick et. al took the approach of using Eu-
clidean/Great Circle distances as edge lengths as, in their
opinion, “Euclidean/Great Circle distance is at least free
from these additional assumptions”, where “these addi-
tional assumptions” refer to assumptions that would have
to be made if routing information was used instead. Our
use of mean journey time would also be subject to simi-
lar assumptions. However, this is not as great a problem
as we are using an opportunistic model where we treat
distance as ordinal rather than cardinal i.e. since we do
not care about the absolute values of distances between
nodes (rather we only care about the relative order of
distance length) we are able to make assumptions about
edge length as long as they do not greatly affect the rank-
ings of destinations.

Model results: Given the definitions for the oppor-
tunities of each node and the edge length between each
pair of nodes, we can now analyse the data to determine
the nature of the trip distributions and compare against
the results found by Austwick et. al.

When applying our model, we to consider the network
at each hour of the day. We split our data into hour
sets by considering only trips that departed their origin
in that hour. We calculated the mean journey time be-
tween each pair of nodes and created a ranking matrix
that ranked destinations, j, for each origin, i, based upon
the “temporal distance” between them. We then follow
the theory given in Section IV for the IOs model to deter-
mine the probability, P (V ), of a trip terminating, after V
opportunities are considered. Then the probability is ob-
tained by dividing the number of trips occurring against
the total number of trips.

When fitting distributions to the data, we applied
a nonlinear least-squares method Mathworks Matlab
Curve Fitting ToolboxTM[23]. The methodology behind
the fit is given in Appendix B.

Upon plotting the model, we noticed two distinct
behaviours (Fig. 3) throughout the day. From
(23:00–06:00), we see the behaviour demonstrated in Fig.
3a for each hour segment. It is evident that this probabil-
ity distribution follows the expected distribution given by
equation (9), so we can apply the model to generate a set
of L values for each hour segment in the period. For the
hours of (06:00–23:00) we see the behaviour given by Fig.
3b for each hour segment. It is evident that this probabil-
ity distribution does not follow the expected probability
distribution given by equation (9). We give the results
of the fitting procedure for IO model in Table III.

We also employed the IOSD model (see Section V).

We chose to consider both spatial dominance functions
that we discussed earlier [see equations (5) and (6)].
After observing the results we qualitatively determined
that d−bij produced distributions that better fit the pre-
dicted model. We trialled the following values for β:
0.5, 1, 2, 3, 5, 10, 100, 1000 and determined that the trip-
distirbution best resembled the IOSD model prediction
when β was in the range 1–3 (within this range the choice
of beta did not affect the rank-ordering). We settled with
β = 2 and plotted the hour segments shown in Figs. 3c
and 3d, representing the corresponding hours shown in
Figs. 3a and 3b for the IO model. We give the results of
the fitting procedure for the IOSD model in Table III.

Discussion : From examination of the total number
of trips as function of time of day (see Fig. 2), it is
clear that the network has two distinct periods of use
primary period, (06:00–23:00), and the secondary period,
(23:00–06:00).

First, considering the IO model, it is evident from the
construction that the model only predicts the behaviour
well for the secondary period, Fig. 3a. However, for the
primary period, we can see from Fig. 3b that the dis-
tribution deviates greatly from the predicted behaviour
(seen by the large dip underneath the predicted distri-
bution). This is troubling, as the period (06:00–23:00) is
the period, when the vast majority of the journeys occur,
where the secondary period (23:00–06:00) is of less inter-
est. This is strong evidence to suggest that a basic IO
model using a temporal distance variable is not suitable
for the LCHS network.

The IOSD model is able to resolve this issue. From
Fig. 3c and Table III, we see that the model not only
retains the characteristic form of the secondary period
(23:00–06:00) for the IO model, but produces a better
fit, as indicated by a lower RMSE (standard error) for
this secondary period. Furthermore, comparing Fig. 3d
to Fig. 3b, suggests that the IOSD models resolves the
“dip” in the basic IO model and has a form that better
resembles the produced behaviour seen in equation (8).
However, qualitatively, it is clear that deviations of the
trip distribution from the expected model still exist and
the IOSD model requires further modification to provide
a comprehensive description of the network.

If we consider the subtle differences of the IO and IOSD
models, the success of the IOSD model must be due to
how trip-makers rank possible destinations. This sup-
ports the notion that trip-makers consider both a des-
tination’s size as well as its distance when deciding a
journey destination.

Comparison to Austwick et. al paper “The
Structure of Spatial Networks and Communitied
in Bicycle Sharing Systems” [7] As mentioned in
previous sections, Austwick et. al take the approach of
applying a gravity model to five cycle sharing schemes
around the world. Rather than test the validity of
their model, their focus is comparison of the results of
their model between the schemes and then a more de-
tailed look at certain characteristics of the networks:
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(a) (b)

(c) (d)

FIG. 3: Plots of the probability distributions for both IO and IOSD models representing the two behaviours demonstrated by
the models. (a) IO model plot of hour (01:00–02:00) demonstrating the general behaviour of network in the period (23:00–06:00).
(b) IO model plot of hour (16:00–17:00) demonstrating the general behaviour of network in the period (06:00–23:00). (c) IOSD
model equivalent plot of (a). (d) IOSD model equivalent plot of (b).

time-dependance; seasonality; detection of communities
(“subregions within the bike sharing flow networks which
are linked to one another more strongly than nodes
from other subregions”). Furthermore, Austwick et. al.
choose to use a Euclidean/Great Circle method for cal-
culating distances.

Austwick et. al are able to show that all the schemes
they analysed behave similarly, with trip distributions
bearing reasonable similarity. They show the overall
shape of the “probability mass function of journeys”
(probability distribution function of trips made against
Euclidean distances) is consistent between schemes, but
there exists a large deviation between the networks that
suggests that a better model exists for cycle schemes.
Furthermore, their calculated model’s dependance on dis-
tance is not a standard functional dependance as we
would expect from the gravity model (see equations 5
and 6).

In comparison, although our model suffers similar
problems, we are able to generate trip distributions of
the overall functional form expected of our IOSD model.
However, during the secondary period, the data clearly
deviates from the expected model. Our IOSD model re-
sults offer a slight improvement in that we are able to
fit the standard form for the IOSD model to our trip
distribution.

Furthermore, we have been able to show our model
is viable, whilst using a more complex distance variable
than Austwick et al. Our use of mean journey time over
Euclidean distance is preferable as it includes the effect of
other important characteristics of the cycle hire schemes,
namely traffic conditions.

There are a few factors that might be the cause of the
discrepancies between the IO and IOSD models. The
more likely issue is the use of “mean journey time”
as the distance variable. However, as we have seen in
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Network Characteristics Number of Trips Number of Edges
With Self-Loops Without Self-Loops With Self-Loops Without Self-Loops

Hour of Day Everyday Everyday Weekdays Only Weekends Only Everyday Everyday Weekdays Only Weekends Only
“Primary Period” (06:00–23:00)

06:00–07:00 668.6 676.4 748.8 468.3 12963 12669 10604 5245
07:00–08:00 1337.0 1350.6 1484.1 970.2 30872 30503 26941 14245
08:00–09:00 1126.1 1143.1 1220.4 890.8 53215 52811 47688 27380
09:00–10:00 677.5 700.5 682.2 665.8 57465 57054 50209 29836
10:00–11:00 592.2 623.3 558.0 677.3 55230 54807 45976 27945
11:00–12:00 713.3 752.1 676.5 805.0 56766 56340 45822 29449
12:00–13:00 831.8 876.2 789.1 938.2 61210 60777 50051 32749
13:00–14:00 837.0 884.3 780.9 976.8 64754 64327 53462 35729
14:00–15:00 816.3 867.2 762.0 951.7 65665 65242 53891 36590
15:00–16:00 992.2 1044.2 950.3 1096.8 65400 64970 53582 36038
16:00–17:00 1478.4 1528.1 1520.1 1374.6 68736 68308 56946 39058
17:00–18:00 1429.6 1470.1 1525.7 1189.8 78613 78192 68057 44514
18:00–19:00 1012.3 1047.5 1073.6 859.5 79754 79337 70394 42091
19:00–20:00 625.4 653.1 646.5 572.8 70701 70286 61682 34767
20:00–21:00 400.2 418.7 406.4 384.5 57123 56708 28298 26220
21:00–22:00 310.5 325.1 306.4 320.8 44570 44160 36739 18947
22:00–23:00 247.3 259.6 224.5 304.0 37529 37122 30154 16034

“Secondary Period” (23:00–06:00)
23:00–00:00 124.8 130.8 101.3 183.5 31804 31406 23875 15017
00:00–01:00 110.5 118.4 97.5 142.9 19440 19074 12884 9828
01:00–02:00 85.4 91.0 72.7 117.1 18316 17963 9733 8371
02:00–03:00 61.8 66.1 52.9 83.9 15031 14680 7502 7033
03:00–04:00 41.3 44.1 35.7 55.3 11610 11300 5212 5113
04:00–05:00 46.4 48.4 45.1 49.7 8227 7967 4571 3532
05:00–06:00 187.3 190.7 206.7 138.8 6796 6566 10604 2786

TABLE II: Daily mean number of trips departing their origin per hour and the number of edges in the network per hour for
the following data sets: All days including self-loops; All days not including self-loops; Weekdays only not including self-loops;
Weekends only not including self-loops.

Fitting Results Without Self-Loops With Self-Loops
IO IOSD IOSD Weekdays only IOSD Weekends only IOSD Everyday

Hour of Day L(10−5) RMSE (10−5) L(10−5) RMSE (10−3) L(10−5) RMSE (10−5) L(10−5) RMSE (10−5) L(10−5) RMSE (10−5)
“Primary Period” (06:00–23:00)

06:00–07:00 2.1 71.3 4.0 5.6 5.5 5.2 31.5 10.3 4.0 6.4
07:00–08:00 0.8 111.9 1.4 19.6 1.9 17.5 10.2 12.7 1.4 19.8
08:00–09:00 1.1 100.8 1.5 36.6 2.0 31.7 10.6 23.4 1.5 36.6
09:00–10:00 2.0 91.5 2.6 47.3 4.1 40.2 16.1 32.3 2.6 47.2
10:00–11:00 2.3 94.6 3.0 45.6 5.1 38.9 15.0 34.1 2.9 45.3
11:00–12:00 1.6 102.4 2.3 43.7 3.8 37.4 11.1 34.3 2.2 44.1
12:00–13:00 1.3 104.3 1.8 41.5 3.0 34.9 8.6 32.3 1.7 42.1
13:00–14:00 1.3 102.4 1.7 42.3 2.9 36.1 7.8 31.8 1.7 42.1
14:00–15:00 1.3 99.7 1.7 39.5 3.0 32.6 7.9 30.3 1.7 40.0
15:00–16:00 0.9 105.5 1.4 31.7 2.4 24.8 6.4 27.0 1.4 32.2
16:00–17:00 0.5 121.9 0.9 27.4 1.3 21.7 4.6 23.3 0.9 27.2
17:00–18:00 0.5 115.9 0.8 33.4 1.2 27.7 5.3 24.3 0.8 33.0
18:00–19:00 0.9 99.5 1.3 33.2 1.9 26.6 8.8 22.2 1.3 32.5
19:00–20:00 1.9 81.8 2.6 29.6 3.9 22.8 16.9 19.5 2.5 29.3
20:00–21:00 3.7 62.8 4.7 28.2 7.6 22.1 32.6 11.3 4.6 26.9
21:00–22:00 5.3 49.5 6.7 20.8 11.3 16.0 41.5 3.4 6.4 19.9
22:00–23:00 7.6 43.0 9.6 15.9 18.6 12.7 46.7 2.6 9.1 15.6

“Secindary Period” (23:00–06:00)
23:00–00:00 23.6 21.8 31.4 2.1 80.4 1.6 120.2 5.7 30.0 2.3
00:00–01:00 28.8 6.5 31.7 3.3 70.8 1.7 183.6 7.8 29.1 3.2
01:00–02:00 37.0 10.7 55.8 5.5 134.9 8.7 253.2 11.9 49.6 5.5
02:00–03:00 63.1 7.0 95.1 8.7 229.9 7.8 470.0 11.1 85.4 7.3
03:00–04:00 133.5 3.0 190.5 7.4 455.6 6.7 944.0 10.1 169.5 8.4
04:00–05:00 152.5 8.8 278.6 6.6 580.7 5.9 1718.9 8.1 250.0 7.4
05:00–06:00 16.3 23.2 35.2 1.1 47.2 10.0 373.0 9.6 34.4 10.0

TABLE III: Fitted L values and associated standard error (RMSE) for IO and IOSD models as applied to the London Cycle
Hire Scheme

the secondary period (23:00–06:00), the models that use
this “temporal-distance” are able to describe the trip-
distribution well. This suggests that there are other pos-
sible issues, the first being the effect of recreational vs
professional use, and the second being the ignorance of

self-loops. Both of these are likely to have effects and are
discussed in Sections VII and VIII.
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VII. WEEKDAY VS WEEKEND USE

Following the example of Austwick et. al, we investi-
gate the difference between weekday and weekend use.
We predict a difference between trip distributions for
weekdays and weekends to reflect that we expect greater
commuter use during weekdays and greater leisure use at
the weekend.

Examination of Fig. 2 (daily mean of number of trips
departing their origin per hour for different data sets)
demonstrates there is a difference in use of the LCHS
between weekdays and weekends.

Both data sets show two peaks in trip numbers
during the same hours of the day (04:00–10:00) and
(16:00–21:00). Weekends have maxima at (07:00–08:00)
and (16:00–17:00), whilst weekdays have maxima at
(07:00–08:00) and (17:00–18:00). Furthermore, the week-
day peaks are equally tall and both wider and taller than
the corresponding weekend peaks. This supports the no-
tion that weekday use of the LCHS is dominated by com-
muter use, as the peaks are situated at the hours directly
before and after the working day (typically 09:00–17:00).
Furthermore, the morning peak for weekend use is 30%
smaller than the afternoon peak, and during periods be-
tween peaks (07:00–08:00) and (16:00–17:00), there is
greater use than that seen during weekdays. The combi-
nation of these, provides evidence the idea of commuter
use being less dominant during weekends.

We applied the IOSD model via the same method as
applied to the full data set, detailed in section VI. Fitting
results of this process for both weekdays and weekends
are given in Table III, whilst plots of the total number of
trips as a function of hour of day are give in Fig. 2.

As in Section VI, we examined the fits and were able
to determine that the behaviour of the network for both
weekday use and weekend use were not qualitatively dif-
ferent from the the overall network use. For both data
sets there is a clear difference in behaviour during the
“primary period” (06:00–23:00) and “secondary period”
(23:00–06:00). Furthermore, there was little difference
between weekday and weekend use, beyond the differ-
ence in total trip use throughout the day, as discussed in
the previous paragraph.

This leads us to conclude that beyond evidence of
greater commuter use during the weekday morning pe-
riod, the network can be modelled similarly throughout
the week.

VIII. SELF-LOOPS

We will now return to discussing self-loops. As dis-
cussed in Section II, self-loops are situations where an
edge connects a node directly to itself, represented as a
non-zero diagonal element in the adjacency matrix. They
are difficult to understand in physical systems where we
only have origin-destination data on trip-makers, as is the
case of the LCHS. With typical treatment of journeys,

they appear as journeys for which the distance dij = 0.
Application of a zero dij to the standard gravity model
(5) provides a nonsensical result due to the divergence of
the model as dij approaches zero.

Choosing to ignore self-loops when applying network
theory is typically used as a solution as often flows along
self-loops are small compared to flows along other edges.
In Austwick et. al’s paper [7] on cycle hire schemes, they
take this approach with the justification that “displace-
ments are not reasonably calculable for these journeys”
[7].

In prior sections, we took the same approach as Aust-
wick et. al in our treatment of self-loops. Self-loops con-
stitute 3.6% (see Table I) and thus cannot be consid-
ered insignificant for this network. Therefore, our IOSD
model without self-loops provides an incomplete under-
standing of the network as a whole and needs to be ad-
dressed.

Typically, we are unable to assimilate self-loops into
standard gravity models and IO models, as the available
data does not allow us to know the edge length of any
trip that starts and ends at the same destination. How-
ever, our choice of using mean journey time as the edge
length offers a solution to this problem. Using the same
treatment for self-loops as we have for the rest of the net-
work, we model each node’s self-loop with an edge length
equal to the mean journey time for all self-loop trips and
then follow the steps detailed in Section V.

Using the IOSD model (as used in Section VI), the fit-
ted results of the modelling of the network are shown
in Table III and the self-loop distributions for hours
(01:00–02:00) and (16:00–17:00) are shown in Fig. 4a
and 4b, alongside the distributions without self-loops in-
cluded.

From Fig. 4, we observe that our inclusion of self-
loops with identical treatment to the other trips does
not cause any significant deviation from the distributions
without self-loops. Furthermore, the small difference of
fitted L values between with and without self-loops data
sets (see Table III), this suggest that self-loops do not af-
fect the trip-distributions greatly and ignoring self-loops
is a reasonable approach when attempting to understand
the global properties of the network. However, the differ-
ence supports our premise that self-loops are relevant for
a complete understanding go the system. In summary,
the exclusion of self-loops causes an our model to under-
estimate the probability that a trip will terminate when
a trip makers considers an opportunity.

IX. SUMMARY

The aim of this project was to assess the suitability
of the intervening opportunity (IO) model as an alter-
native to the gravity model for describing human mobil-
ity patterns seen in the LCHS. By applying the model,
we showed that the IO model can successfully model
the trip distribution during the daily “secondary pe-
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(a) (b)

FIG. 4: Plots of the probability distributions for the IOSD models with and without self-loops. (a) IOSD model plot of hour
(01:00–02:00) comparing the distributions with and without self-loops. (b) IOSD model plot of hour (16:00–17:00) comparing
the distributions with and without self-loops.

riod” (23:00–06:00), but unsuccessful in predicting the
behaviour of the LCHS during the “primary period”
(06:00–23:00). In efforts to adapt the model to better
describe trip makers motivations for journey choice, we
employed Pooler’s theory of spatial dominance [16] to
form an Intervening Opportunities Model with Spatial
Dominance (IOSD), that was shown to resolve the “dip”
deviation of the IO model seen when modelling the pri-
mary period, whilst retaining the IO model’s success in
modelling the secondary period.

We then investigated the network in more detail by
considering the validity of treating weekday and week-
end use independently and the validity of ignoring self-
loops when modelling the network. Our investigations
into daily use revealed that there is a difference between
weekday and weekend use, specifically related to morn-
ing use (08:00–10:00) that we attributed to commuter
use during weekdays. We also demonstrated that ignor-
ing self-loops is unlikely to affect results from modelling
the network significantly.

For further investigations, it would be most interest-
ing from a theoretical perspective to produce a spatial
distance matrix that represents the shortest routes be-
tween origins and destinations. Doing this would allow
comparisons to be drawn between the changing temporal
distance and the fixed spatial distances to better under-
stand how trip makers perceive changing conditions (e.g
traffic, etc.). Furthermore, because routes are likely to be
one way accessible, so it would be interesting to employ
directed networks rather than the undirected ones that
we examined in this report.

It is also worth investigating other models. Most no-
tably, the recently developed radiation model of human
migration in [25] is of interest, because it aims to derive

from first principles a model of human migration that
does not have any of the problems associated with the
popular gravity models.

Throughout this project, we have demonstrated our
understanding of the LCHS is limited. In our application
of the IOSD model, we demonstrated that the an oppor-
tunistic understanding of LCHS is reasonable. However,
further information about the network (complex routing
and distance information) would allow us to produce a
more evolved model that generates more precise predic-
tions of trip-interchange and further our understanding
of the use intervening opportunities in understanding hu-
man mobility.
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Appendix A: Gravity model

Starting with equation (3), we can eliminate θ by en-
forcing the conservation of origins. The conservation of
origins states that the total number of trips from an ori-
gin to all destinations must be equivalent to the origina-
tions from zone i, or mathematically
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Oi =

n∑
j=1

Tij , (A1)

We can then find θ from equations (3) & (A1):

Oi =

n∑
j=1

Tij =

n∑
j=1

θ
OiDj

Cβij
, (A2)

This gives θ as:

θ =

k∑
j=1

Dk

Cβij
, (A3)

We now rewrite Cβij as f(Cij), which, from equation

(3) yields:

Tij =
OiDjf(Cij)∑
n
Dn(Cin)

, (A4)

This is, in fact, the first form of the gravity model as
applied to trip distributions. However, it is important
to note that this is not the most common form of the
model. It is actually the case that historically, this form
tended not to yield accurate predications and hence it is
normally slightly modified to improve accuracy. This is
done by introducing zonal adjustment factors, Kij that
have no theoretical basis and must be empirically deter-
mined from the data:

Tij =
OiDjf(Cij)Kij∑
n
Dn(Cin)Kin

, (A5)

Appendix B: Nonlinear Least Squares Fitting

Throughout our analysis we have employed nonlinear
least square fitting with a Trust-Region-Reflective least
squares algorithm as provided by Mathworks Matlab
Curve Fitting ToolboxTM [23].

The following information regarding the fitting used in
this report is sourced from Mathworks Documentation
Center [23].

Mathworks defines least squares as “the problem of
finding a vector x that is a local minimiser to a func-
tion that is a sum of squares, possibly subject to some
constraints”:

min
x
||F (x)||22 = min

x

∑
i

F 2
i (x), (B1)

Upon generating a fit, we use the root mean squared
error (RMSE) to determine the goodness of each fit.
The RMSE is defined as the root of the sum of squares
due to error (SSE):

RMSE =
√
SSE/v, (B2)

where v is the number of independent pieces of infor-
mation invoking the n data points that are required to
calculate the sum of squares and SSE is defined as:

SSE =

n∑
i=1

wi(yi − ŷi)2, (B3)

where xi are actual observations, x̂i are the estimated
values and wi is the weighting factor.
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