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Abstract

We present a numerical study of solitary waves in one dimen-

sional (1D) granular lattices. Our system consists of an array of

deformable spheres which we model using Hertzian interactions

between neighbouring bodies. A general discussion of the origin

of solitary waves is presented. We then provide an analysis of the

Hertz force. For the case of a uniform chain of spheres, we derive

an approximate solution in the asymptotic limit to the system

equations. The solution is a solitary wave and numerical simula-

tions verify this result. A scaling analysis is used to determine a

relation between wave speed and amplitude. We find vs ∝ F
1/6
peak,

where vs is the wave speed and Fpeak the amplitude and this is

corroborated using simulations. We then proceed from uniform

chains to those containing a defect. A study of the effect of defect

size and material properties (i.e. Young’s modulus E and Poisson

ratio ν) on a propagating solitary wave is performed. Finally, we

outline the origin of intrinsic localised modes in granular lattices.

These objects cause the scattering of incoming waves which can

lead to interesting resonance phenomena. We probe the inter-

action of both solitary and plane waves with these modes. The

transmission coefficient for plane waves is measured as a function

of wavenumber q in order to observe whether the system permits

behaviour analogous to Fano resonance. The results obtained do

not clearly correspond to the Fano resonances observed in other

systems. Thus, further studies are required to explain the mech-

anism of a plane wave’s interaction with a localised mode.
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1 Introduction

This dissertation investigates the dynamics of a one dimensional chain of

spherical balls. The system can be modelled as a series of coupled nonlinear

oscillators, and as such exhibits many fascinating phenomena such as solitary

waves [22] and intrinsic localized modes [8]. Studies of nonlinear oscillator

chains began over fifty years ago with the Fermi-Pasta-Ulam (FPU) problem

and today it is still an active area of research [27].

One of the most interesting properties of these chains of nonlinear oscil-

lators is that they support the propagation of solitary waves. Waves of this

type are examples of nonlinear waves. Nonlinear waves have been studied

since the nineteenth century, for example by Stokes, Korteweg and deVries,

Boussinesq, and others [30]. Specifically, the solitary wave discovered exper-

imentally by John Scott Russell on a Scottish canal in the 1830s was shown

to be a solution to the following equation

ψt + (c0 + c1ψ)ψx + νψxxx = 0. (1.1)

In this equation, ψ denotes the displacement, the subscripts x and t indicate

partial derivatives with respect to those quantities, and c0, c1 and ν are

constants. This equation was initially introduced by Korteweg and deVries to

describe long waves in water of relatively shallow depth. However, Equation

(1.1), known as the KdV equation, has since been applied to other systems

due to it being one of the simplest equations to combine nonlinearity and

dispersion. The effect of these phenomena is discussed in detail in Chapter

2. However, the KdV equation is not alone in having solitary wave solutions

- the sine-Gordon and nonlinear Schrödinger equations have also been found

to yield such waves.

Solitary waves have been discovered in a variety of physical contexts,

from optics to waterways and many others. A recently observed occurrence

is in a system of discrete, barely touching spheres which interact via the

nonlinear Hertz force (see Section 2.4.1). Solitary waves in these Hertzian

lattices were first investigated by Nesterenko [23] and have since been probed

by experiments [3], numerical simulations [12], and by analytical calculations

[2]. Such a system is of interest for a variety of reasons: from understanding
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Figure 1.1: The displacement ψ(x) for a string fixed at both ends (i.e. at x = 0
and x = 1) is given by ψ(x) = A sin(nπx), where the amplitude A is set to one and
n is an integer. The first three modes of vibration, corresponding to n = 1, 2, 3,
are shown in this diagram.

the basic physics of the wave propagation, to investigating the role of defects,

and also potential industrial applications. As mentioned above, the study of

nonlinear granular lattices was inspired by the FPU problem and we now

describe this groundbreaking research.

At the Los Alamos Scientific Laboratory in 1955, Enrico Fermi, John

Pasta and Stanislaw Ulam introduced a model consisting of a chain of non-

linear oscillators [7]. They were interested in studying the equilibration of

energy among the different modes in the system. We can explain the con-

cept of modes by considering a string fixed at both ends. When the string

is plucked it will vibrate. There are an infinite number of vibration modes

at which the string may oscillate (see Figure 1.1). The first mode is the

fundamental mode, followed by the second harmonic, third harmonic and so

on. A string is a linear system and so if a vibration is set up at, say, the

fundamental frequency then this mode will continue to oscillate for all time

(neglecting dispersion and assuming the vibration is undamped). The reason

for this is that the individual modes cannot interact with each other. In a

nonlinear system however, mode-mode interactions are possible. This allows

energy to be transferred between modes. FPU assumed that their system,

after a certain period of time, would thermalise i.e the energy of the sys-
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tem would eventually be equipartioned between all the modes in the system.

However, after running simulations on their system they did not observe

equipartioning. To the astonishment of the researchers, the results showed

that although energy was initially shared between a number of modes, after

a period of time the system returned to a state that was close to the initial

state. In the 1960s the connection between the FPU problem and the work

performed on nonlinear waves by Korteweg-de Vries and others, was made

by Norman Zabusky and Martin Kruskal. Introducing a continuum model

of the FPU system, they realised that the partial differential equation de-

scribing the motion of the system was, in fact, the KdV equation which had

originally been derived more than sixty years previously. The solutions they

found were a particular type of solitary wave which they called a soliton1.

Although the motion of solitons in an FPU chain can be quite regular, the

system can also show chaotic behaviour depending on the initial conditions.

If the energy provided to the system is sufficiently high then chaos can al-

low energy to be transferred between modes leading to equipartition. The

complex behaviour and striking nonlinear effects observable in this seemingly

simple system have inspired extensive research and this problem is still being

investigated today [26].

Our investigations will begin with a system that is very similar to the

original FPU setup. We will examine the properties of a uniform chain of

spheres. The Hertz force will be introduced and an approximate solution to

the equations of motion of the system will be derived. We will also solve the

system numerically.

In Chapter 3, we introduce a defect to our lattice. Such impurities can

dramatically alter the behaviour of the granular chain. Using numerical

simulations, we vary the properties of this defect and investigate the effects

on the propagation of the solitary wave.

In addition to solitary waves, Hertzian systems have also been shown to

support intrinsic localised modes (ILMs), which are also known as discrete

breathers (DBs) [28]. These are spatially localised solutions to the equations

of motion which arise due to the combination of nonlinearity and discreteness

1The commonly used term soliton is a special case of a solitary wave. Solitons have an
additional amazing property which is that if two solitons collide they retain their properties
and emerge intact [19].

3



in the system (see Section 4.3). Chapter 4 focuses on the interaction of

solitary and plane waves with a DB. Motivated by the observation of Fano

resonances in waveguide arrays [21], we numerically investigate the possibility

of a nonlinear “Fano-like” resonance due to the interaction of plane waves

with the DB. We term such a resonance as Fano-like because Fano resonance

itself is a linear phenomenon, this will be explored further in Chapter 4.

We end with our conclusions followed by the Appendices which contain

the Matlab codes used to perform the simulations for Chapters 2 and 3.
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2 Solitary Waves in Hertzian Chains

2.1 What is a Solitary Wave?

In this chapter, we will begin by introducing the concept of nonlinear waves

and explaining how they arise. Following that, a description of the granular

lattice system that is the focus of this dissertation will be given. We will then

derive an approximate solution to the system’s equations of motion before

presenting the results of numerical simulations. In addition, we include a brief

discussion of the techniques used to investigate these systems experimentally.

As mentioned in Chapter 1, a 1D chain of spherical balls may support the

propagation of a solitary wave. Solitary waves are fundamentally different

to most of the waves we encounter in everyday life. Most waves, such as

sound waves and electromagnetic waves, are linear waves. Linear waves are

characterised by having a return force which is linearly dependent on the

displacement. Solitary waves, however, are nonlinear waves - the return force

is not directly proportional to the displacement from equilibrium [19]. This

can be illustrated more clearly by considering the equation for a sinusoidal

travelling wave, which we write as

u(x, t) = A sin(qx− ωt+ φ) (2.1)

where u is the displacement from equilibrium, A is the wave amplitude, q

the wave number, ω the angular frequency and φ an initial phase shift. We

know that ω = vq where v is the wave speed. An important point to note

is that Equation (2.1) is a solution to the equation for a harmonic oscillator,

i.e.

ü(x, t) ≡ d2u

dt2
= −ω2u(x, t) (2.2)

where the dot represents the derivative with respect to time. This equation

shows that the restoring force is linearly dependent on the displacement.

Another important property of linear waves is that the wave speed is in-

dependent of the wave amplitude, it depends only on the properties of the

material through which it passes [27].

However, not all return forces are linear. We will consider nonlinear forces

of the form
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ü = k(uα), α > 1 (2.3)

where k is a constant. Such nonlinear forces, combined with a phenomenon

known as dispersion (we will give a detailed discussion of dispersion in Section

2.2) can allow solitary waves to propagate in a given medium and this will

be illustrated in Section 2.3.

2.2 Wave Dispersion

In order to understand the origin of solitary waves, we must explain the

phenomenon of dispersion. A dispersive system is one in which the velocity

of a wave depends on its frequency. This dependence is expressed by a

dispersion relation that relates ω to q for a particular system.

2.2.1 Non-Dispersive Waves

First, we will consider non-dispersive waves. The non-dispersive wave equa-

tion is written as

∂2u

∂t2
= v2∂

2u

∂x2
. (2.4)

This equation admits travelling wave solutions. A particular class of these

solutions are sinusoidal travelling waves, an example of which is given by

Equation (2.1). Sinusoidal travelling waves are just a subset of the d’Alembert

solutions to Equation (2.4). D’Alembert’s general solution to Equation (2.4)

is written as

u(x, t) = F (x+ vt) +G(x− vt) (2.5)

where F and G are functions. This solution is interpreted as two waves with

speed v moving in opposite directions along the x-axis.

We use sinusoidal waves as an example to highlight the properties of

non-dispersive systems. These solutions can also be expressed as

u(x, t) = C exp[i(ωt− qx)] + C∗ exp[−i(ωt− qx)] (2.6)

where C is a constant (with complex conjugate C∗). Inserting this expression

into Equation (2.4) we see that in order for the solution to be valid, ω and
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q must satisfy ω = ±vq. If we consider waves described by Equation (2.6)

to be travelling along a piece of string, for instance, then it is obvious that

each point on the string vibrates at the same angular frequency ω. Another

important property of these waves is the phase velocity vφ. For sinusoidal

travelling waves, vφ is given by [19]

dx

dt
=
ω

q
≡ vφ. (2.7)

This quantity describes the velocity at which the entire wave profile moves.

For the waves we are currently discussing, vφ depends only on the properties

of the medium and not on the properties of the wave itself, such as its fre-

quency. For a sinusoidal travelling wave, constant values of the phase angle

move either to the left or to the right (if we consider a string, for example)

with a velocity v. As d’Alemberts solution (2.5) shows, this behaviour can

be generalized to non-sinusoidal waves which do not undergo harmonic vi-

brations. We now note that the phase angle will remain constant as long

as the variable Z ≡ x ± vt does so [19]. Any function u(x, t) in which x

and t appear only in the form x± vt will satisfy Equation (2.4) and also the

relation

∂u

∂t
± v

(
∂u

∂x

)
= 0. (2.8)

This shows that any disturbance of the string from its equilibrium shape

may propagate along the string, with the entire waveform moving at velocity

v and thus not distorting its shape over space and time. This property of

non-dispersion is unique to Equation (2.4) and a system which obeys this

equation is said to be non-dispersive. An example of a physical system that

approximately obeys Equation (2.4) are longitudinal disturbances of a gas

within a cylinder (an example of an acoustic wave) [19].

2.2.2 Dispersive Waves

Non-dispersive waves are very special however. Returning to our example of

a string, when we described this system as non-dispersive we assumed that

the string was perfectly flexible, i.e. that the only transverse force was due

to tension. However, real strings are ‘stiff’, in that they tend to straighten
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themselves even in the absence of tension. This additional force adds a

higher order term to Equation (2.4) and makes the system dispersive. By

considering the forces acting on a stiff string, we write the following equation

[19]

∂2u

∂t2
= v2

(
∂2u

∂x2
− α∂

4u

∂x4

)
, (2.9)

where α is a positive constant dependent on the shape of the cross-section

and the elasticity of the string. We compare this to the non-dispersive wave

equation (2.4) and note the additional higher order term. We wish to know

whether such a system can still support the propagation of a travelling wave

and so we substitute the expression (2.6) for a sinusoidal travelling wave into

Equation (2.9) and find that ω and q must satisfy the following dispersion

relation

ω = ±vq(1 + αq2)1/2. (2.10)

For a perfectly flexible string (i.e. α = 0), this relation reduces to ω = vq

which is the dispersion relation for the non-dispersive systems we previ-

ously described. For a slightly stiff string with a wavelength that is not

too small, αq2 � 1 and we can write Equation (2.10) in the approximate

form ω ≈ ±vq(1 + 1
2
αq2). We rewrite this expression as ω = cq − dq3, which

is an expression for the dispersion relation of a slightly dispersive system.

Substituting the equation for a sinusoidal travelling wave into this dispersion

relation, we can convert Equation (2.9) into

∂u

∂t
+ v

(
∂u

∂x

)
+ d

(
∂3u

∂x3

)
= 0. (2.11)

This is an example of a travelling wave equation for a slightly dispersive

system. We may use the dispersion relation (2.10) to determine the phase

velocity vφ as we did for non-dispersive systems (see Equation (2.7)). For

the dispersive system we are considering, vφ is given by

|vφ| = v(1 + αq2)1/2. (2.12)

We note that the phase velocity depends on q. Thus, a travelling wave group

composed of a superposition of sinusoidal waves will not retain its shape as it
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Figure 2.1: The dispersion relation for a
non-dispersive system, with ω = vq and
where we have assigned v = 1.

Figure 2.2: The dispersion relation for a
slightly dispersive system, with ω = cq−
dq3, where c = 1 and d = 0.008.

moves through a dispersive medium. This is due to the different components

of the wave group moving at different velocities and is characteristic of a

dispersive system. In the following section we will show how dispersion can

combine with nonlinearity to allow a wave to propagate without a distortion

in shape, i.e. a solitary wave.

2.3 A Balance of Nonlinearity and Dispersion

In nonlinear systems, the return force is not directly proportional to the

displacement, as expressed by Equation (2.3). The characteristic speed of

a wave is determined by the stiffness and the mass of the material through

which it is travelling, so for a nonlinear system the speed will vary with

the displacement u(x, t). An example of an expression for the so-called local

speed, vl, in a nonlinear wave is [19]

vl = v0(1 + bu), (2.13)

where v0 is the wave speed at equilibrium (i.e. at u = 0) and b is a constant

which depends on the particular properties of the system. The local speed

vl is the absolute speed with which a particular point in the wave signal

travels through space. It differs from the wave speed which defines the speed

relative to the medium. Local speed is easily understood in the context
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of longitudinal waves where the medium moves back and forth along the

direction of propagation with an instantaneous speed u̇. If we denote the

wave speed as c then the local velocity can be written as vl = c+u̇. Assuming

the dispersion is negligible, the derivative u̇ is in phase with the displacement

u which leads to the approximate form of vl given by Equation (2.13).

As described previously in the case of a linear system, in order for a signal

to travel undistorted in the positive x direction the displacement u(x, t) must

be a function of vt−x and must satisfy Equation (2.8). For a nonlinear system

with a wave velocity which varies as in Equation (2.13), the following holds:

∂u

∂t
+ v0(1 + bu)

∂u

∂x
= 0. (2.14)

Neglecting dispersion, nonlinearity causes a signal to be distorted as it moves

through the material. If we add dispersion to the system, it might seem rea-

sonable to assume that a material which is both dispersive and nonlinear

is likely to distort the shape of a signal. However, dispersion and nonlin-

earity can sometimes cancel each other out, allowing a stable waveform to

propagate indefinitely. We return to Equation (2.11), the wave equation for

a slightly dispersive system, and substitute in Equation (2.14) containing

the nonlinear term. This gives us the following wave equation which ap-

proximately describes the propagation of a wave in a slightly nonlinear and

slightly dispersive material

∂u

∂t
+ v0(1 + bu)

∂u

∂x
+ d

(
∂3u

∂x3

)
= 0. (2.15)

The equation above is in fact an expression of the KdV equation, initially

introduced in Chapter 1 (see Equation (1.1)). This equation may be solved

by a particular type of travelling wave, a solitary wave.

As shown previously, for a waveform u(x, t) to propagate without any

distortion of its shape, u must be a function of the variable Z. Using Z, we

transform Equation (2.15) from a partial differential equation (PDE) to an

ordinary differential equation (ODE), yielding

(v − v0)u′ − bv0uu
′ − du′′′ = 0, u′ ≡ du

dZ
. (2.16)

Directly integrating this equation twice gives
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Figure 2.3: A plot of Equation (2.17)
which is a solitary wave solution. We
have set the constants β and γ equal to
one.

Figure 2.4: A schematic diagram showing
two neighbouring spheres under compres-
sion. The spheres repel each other via the
Hertz force F , where F ∝ δ3/2

i,i+1.

1

2
(v − v0)u2 − 1

6
bv0u

3 − 1

2
du′2 + Cu+D = 0,

where C and D are constants of integration. Assuming that our solitary

wave solution is localised, we require C = D = 0 to ensure that u, u′ → 0 as

Z → ±∞. We can now rewrite the equation as

du′2 = (v − v0 −
1

3
bv0u)u2.

The equation may be simplified to

(u′)2 = (A−Bu)u2

where A = (v − v0)/d and B = bv0/3d. This ODE has the solution

u = β sech2(γZ) (2.17)

where β = A/B and γ = 1
2
A1/2. This is the solitary wave solution and is

plotted in Figure 2.3. Using the condition for a maximum (i.e. u′ = 0) we

can also deduce the wave speed v = v0(1+ 1
3
bumax). Equation (2.17) gives us a

simple qualitative understanding of the effect of dispersion and nonlinearity

on our solitary wave: The more dispersive the medium (i.e larger d) the

11



Figure 2.5: A 1D chain of spheres with an immovable wall at one end. The spheres
interact on compression via the nonlinear Hertz force. The system may be set up
in various ways. Two common initial conditions (ICs) are the “zero loading” case
where the spheres are barely touching one another, and the precompressed state
where there is overlap between the spheres possibly due to the chain being clamped.

broader the pulse; the greater the degree of nonlinearity (i.e. larger b) the

narrower the pulse [19].

2.4 Hertzian Chains

2.4.1 The Hertz Force

The system investigated in this dissertation consists of a one dimensional

chain of deformable spheres, shown schematically in Figure 2.5. We outline

the properties of these chains before showing how solitary waves are obtained

as approximate solutions to the equations of motion.

One of the key features of this system (along with asymmetry) is that

the interaction force between the spheres, the Hertz force, is nonlinear. This

repulsive force between two adjacent spheres under compression is expressed

as

F = kδ3/2, (2.18)

where the stiffness constant k can be expressed as a function of the properties

of the interacting spheres and δ is the overlap between neighbouring spheres

12



(see Figure 2.4) [27]. Expressing this more formally, consider two spheres in

contact, labelled i and i + 1. These bodies have radii Ri and Ri+1, Young’s

moduli Ei and Ei+1, and Poisson ratios νi and νi+1 respectively. Young’s

modulus E is a constant for a given material. It is used to express the

relationship between stress σ and strain ε in a body via Hooke’s Law: σ = Eε.

Poisson’s ratio can be understood by considering a bar that is loaded in

tension along its axis. There is lateral contraction εx (i.e. the bar becomes

‘thinner’) in addition to axial elongation εz (i.e the bar becomes longer). The

Poisson ratio is defined as ν = −(εx/εz).

When the spheres are barely touching, the distance between the centres

is given by Ri +Ri+1. Under compression, the spheres overlap by a distance

defined by δi,i+1 ≡ Ri +Ri+1 − (ui − ui+1), where ui is the absolute position

of sphere i. The potential energy associated with this compression is given

by the Hertz potential

V (δi,i+1) =
2

5Di,i+1

√
RiRi+1

Ri +Ri+1

δ
5/2
i,i+1 ≡ ai,i+1δ

5/2
i,i+1, (2.19)

where

Di,i+1 =
3

4

(
1− ν2

i

Ei
+

1− ν2
i+1

Ei+1

)
.

The following derivation of this Hertz potential (from Sen et al. [27]) is

informal, though more detailed versions are also available [17, 18].

First, we wish to find an expression for the pressure between two identical

spheres of radius R, with Young’s modulus E and with a shared contact area

proportional to r̃2, where r̃ is the radius of the contact area. We define

r ∝ δ

r̃

as a measure of the deformation. Thus the pressure P experienced by the

sphere is

P = Er =
F

r̃2

where F is the Hertz force between the spheres. From a purely geometrical

argument we can also state

r̃2 ∝ δR

13



Combining the above expressions, we find that

E

(
δ

r̃

)
∝ F

δR
⇒ E

(
δ

R

)1/2

∝ F

δR
.

Thus,

F ∝ ER1/2δ3/2.

We note the force is proportional to δ3/2, which is characteristic of the Hertz

law. Force is related to potential via the relation F = −dV/dδ, so

VHertz(δ) ∝ ER1/2δ5/2.

In contrast, the linear return force described by Hooke’s law has a potential

which is quadratic in δ, VHooke(δ) ∝ δ2. As shown in Figures 2.6 and 2.7,

this results in the Hertz force being weaker than the Hooke force for small

overlaps, and stronger for larger overlaps.

The Hertz law described above is a static law. However, we will be apply-

ing it to a dynamic system and thus must consider the following restrictions

[22]:

1. The maximum shear stresses experienced by an individual sphere must

be less than the elastic limit.

2. The sizes of the contact surfaces are much smaller than the radii of

curvature of the particles.

In this model, we also neglect restitutive losses. This dissipation of energy in

the system is due to the molecular nature of the interacting spheres - not all

of the energy in the solitary wave will be transmitted due to part of it being

absorbed by molecules in the spheres. This causes amplitude attenuation of

the wave. There is currently no clear consensus on how best to incorporate

these losses into the system models, with various dissipative terms being

proposed [1]. For a discussion of these losses, see Ref.[1] and Section 4 of

Ref.[27].
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Figure 2.6: This plot shows a comparison
of F (δ) for Hooke’s law and Hertz’s law.
We see that for small δ, FHooke > FHertz

but the opposite is true at larger δ.

Figure 2.7: V (δ) for the Hooke and Hertz
potentials. For lower δ, the Hooke system
contains more potential energy but this is
reversed for higher values of δ.

2.4.2 Equations of Motion and the Solitary Wave Solution

We now use the Hertz force to model the dynamics of our 1D granular lattice.

A system of N identical interacting spheres can be described with a set of

coupled nonlinear equations. We can write down the equation of motion for

the ith sphere as

miüi = Ai−1,i(∆ + ui−1 − ui)3/2
+ − Ai,i+1(∆ + ui − ui+1)

3/2
+ , (2.20)

where Ai,i+1 ≡ (5/2)ai,i+1, ∆ arises due to an initial precompression, and the

index + indicates that the Hertz force is zero when the spheres are not in

contact [27]. An approximate solution to this system was first obtained by

Nesterenko [23]. Here we present a version of this solution used initially by

Chatterjee [2].

First, we are considering a chain of identical spheres so the force constants

Ai,i+1 are the same for 1 ≤ i ≤ N − 1. We denote this value k. The masses

are also identical so mi ≡ m, 1 ≤ i ≤ N . We are also going to assume there

is no precompression (i.e. the “zero loading” case) and thus ∆ = 0. Systems

such as this, where there is no linear force term, are known as “strongly

nonlinear”. We can now rewrite Equation (2.20) as

15



¨̂ui = (ûi−1 − ûi−1)3/2 − (ûi − ûi+1)3/2, 1 < i < N (2.21)

where ûi(t) ≡ (k/m)2ui(t). In order to establish our solution, we assume that

when the chain of spheres is perturbed, this disturbance travels as a solitary

wave. Thus, the displacement of each sphere can be described by the same

function, albeit one which must be calculated at different times as the wave

moves through the chain. By this consideration, we can write

ûi(t) = ûi+1(t+ b), (2.22)

where b > 0 is a constant. Using Equation (2.22) and choosing an arbi-

trary sphere as a reference, we can rewrite Equation (2.21) in terms of the

displacement of this sphere as

¨̂u = [û(t+ b)− û(t)]3/2 − [û(t)− û(t− b)]3/2. (2.23)

Performing a power series expansion of û(t+ b), we obtain

û(t+ b) = û(t) + b
dû

dt
+
b2

2!

d2û

dt2
+ . . . .

We note at this point that we may also formulate this approximate solution

using a long-wavelength approximation, where it is assumed that the char-

acteristic spatial size of the perturbation is much greater than the distance

between spheres. This approach is taken by Nesterenko [23], Porter et al.

[25], and others.

Substituting the above expression into Equation (2.23) and then expand-

ing in powers of b we obtain

d2û

dt2
=

3

2
b5/2

√
dû

dt

d2û

dt2
+

1

8
b9/2

√
dû

dt

d4û

dt4

+
1

8
b9/2 d2û/dt2√

dû/dt

+
1

64
b9/2 (d2û/dt2)3

(dû/dt)3/2
+O(b13/2).

(2.24)

We now truncate our series by ignoring terms of order O(b13/2) and higher.

We note that this is not mathematically rigorous, we are just attempting
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Figure 2.8: A temporal plot of the velocity of an arbitrary sphere in our 1D chain
(Equation (2.26)).

to obtain an approximate solution that corresponds to experimental results

[27]. Setting the parameter b = 1 this equation becomes

d2û

dt2
=

3

2

√
dû

dt

d2û

dt2
+

1

8

√
dû

dt

d4û

dt4

+
1

8

d2û/dt2√
dû/dt

+
1

64

(d2û/dt2)3

(dû/dt)3/2
.

(2.25)

Equation (2.25) is satisfied by the expression [2]

v(t) =
dû

dt
=

25

14
cos4

(
2t√
10

)
, t ∈ (−

√
10π/4,

√
10π/4) (2.26)

and outside this interval for t we set v(t) ≡ 0. Figure 2.8 shows a plot of this

function.

A characteristic of nonlinear waves is that, unlike linear waves, the wave

speed depends on the amplitude. This speed-amplitude relation can be found

by a scaling analysis of the equation of motion for the ith sphere, i.e. [27]

miüi = Ai−1,i(∆ + ui−1 − ui)3/2
+ − Ai,i+1(∆ + ui − ui+1)

3/2
+ .

Using the estimates
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Figure 2.9: A schematic diagram of a
sensor sphere used to measure force-time
curves (adapted from [5]).

Figure 2.10: The forces acting on a sensor
sphere under compression (also adapted
from [5]).

üi ∼
L

T 2
, (∆ + ui±1 − ui)3/2

+ ∼ L3/2

where L and T are, respectively, the scaling parameters of displacement and

time and assuming mi and Ai−1,i are fixed, we find

L ∝ T−4.

The impulse velocity vi, which represents the solitary wave amplitude, scales

as vi ∝ L/T ∝ T−5. The speed of the wave itself, vs, has a scaling vs ∝ 1/T .

Thus,

vs ∝ v
1/5
i .

For the Hertz force we know that Fpeak ∝ δ3/2 and so has the scaling Fpeak ∝
L3/2. Combining these scaling relations gives us the speed-amplitude relation

vs ∝ F
1/6
peak. (2.27)

This result is verified numerically in Section 2.6 (see Figure 2.14).

2.5 Experimental Setup

In addition to the extensive numerical simulations carried out on this Hertzian

system [2, 12, 25] (simulations will be discussed in Section 2.6) there has also
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Figure 2.11: A schematic diagram of an experimental setup to investigate a 1D
lattice with zero loading. The striker impacts the end of the chain with a velocity
vinit sending a nonlinear wave propagating through the chain. The force at various
points is measured using piezo-sensors embedded within spheres and is relayed to
the oscilloscope. Figure adapted from Ref.[14].

been significant experimental work performed [15, 14, 25]. In this section we

provide a brief account of the experimental methods used.

Figure 2.11 shows the setup for a zero loading experiment. Force-time

measurements are made using piezo-sensors connected to oscilloscopes [25].

Whereas for numerical simulations a system consisting of hundreds of spheres

may be investigated; experimentalists are restricted to using smaller chains.

For instance, Job et al. use a maximum of fifty spheres [14] whilst Daraio et

al. investigate chains of seventy to eighty spheres [25]. Experimental setups

vary depending on the goals of the specific research, but it is typical to use

sensors to measure the force versus time for several spheres in the lattice. The

wave speed can also be obtained through “time-of-flight” measurements. One

technique for incorporating the sensor into the system is to insert it into the

middle of a sphere which has been sliced in half. It is important that the

properties of this “sensor sphere”, such as its mass and stiffness, are almost

identical to those of the other spheres in the lattice. Figure 2.9 is a schematic

diagram of a sensor sphere. In order to compare numerical and experimental

studies of the system, it is important to relate the forces measured by the

sensors to those calculated during simulations. This is described extensively

by Daraio et al. [5] and the following discussions are based on those in that
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Figure 2.12: A spatiotemporal plot show-
ing the propagation of a solitary wave
through the lattice. The colour bar rep-
resents the force (in Newtons).

Figure 2.13: Force on three spheres in a
uniform steel chain (each sphere has a ra-
dius of 0.0024 m). The striker was given
an initial velocity of 0.443 ms−1.

paper.

Figure 2.10 shows the forces on a sensor sphere which is under compres-

sion. We can relate the forces acting on the sides of the sphere at the contacts

with neighbouring spheres (F1 and F2) to those acting on the sides of the

sensor (F3 and F4) via the equations [5]

F3 =
F1 + F2

2
+
F1 − F2

2

m

2M +m
(2.28)

F4 =
F1 + F2

2
− F1 − F2

2

m

2M +m
. (2.29)

For the case of a light sensor m � M , where m is the mass of the sensor

and M the mass of the cap, the forces on the sensor are very close to the

average of the contact forces on the sphere i.e. F1 + F2 ≈ F3 + F4. Thus

we may assume that the forces measured numerically (F1 and F2) and those

measured experimentally (F3 and F4) are equivalent.

2.6 Simulations and Results

Our system consists of N + 2 particles with the i = 0 particle being a sphere

that initially strikes the end of the chain (this is the striker) and the i = N+1

particle representing the wall. We consider a horizontal chain of spheres

with zero loading i.e. initially the spheres are barely touching each other
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(δi,i+1 = 0, 1 ≤ i ≤ N). The initial velocities vi of the spheres 1 ≤ i ≤ N + 1

are set to zero. In order to instigate the propagation of a solitary wave in

the chain, the striker is given an initial velocity. The wall at the end of the

chain of spheres is modelled as an immovable sphere with infinite radius.

This system of coupled ODEs is solved numerically using a fourth-order

Runge-Kutta (RK) finite difference scheme. Thus, our scheme is fourth-order

accurate in time. For a more detailed discussion of the accuracy of this nu-

merical solution see Appendix A of Ref.[2]. This RK method is implemented

in the Matlab code given in Appendix A. This code initialises the system

and integrates forward in time. Figure 2.13 shows the numerical solution

of our ODE system for N = 100, where the striker and all the spheres in

the chain are made of steel (a uniform lattice). The properties of steel, and

other materials, are given in Table 1. Figure 2.12 is a spatiotemporal plot

of our uniform chain. In both figures, we can clearly observe a solitary wave

propagate through the chain without dispersing, as predicted by the analysis

in Section 2.4.2.

We also investigate numerically the speed-amplitude relation that was

derived in Section 2.4.2. Equation (2.27) indicates that the wave speed vs

varies with force amplitude Fpeak according to the vs ∝ F
1/6
peak. The results

of numerical simulations, shown in Figure 2.14, confirm the accuracy of this

relation. The wave speed is calculated using time-of-flight measurements.

Table 1: Properties of various materials used in simulations (values from Ref.[25]).
Material ρ(kg m−3) E (GPa) ν

Steel 7780 193 0.3
PTFE 2178 1.46 0.46
Rubber 1383 0.03 0.49
Brass 8500 103 0.34
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Figure 2.14: The scaling relation between solitary wave velocity and amplitude
(expressed by Equation (2.27)) is verified by numerical simulations, with the results
shown in this diagram.

3 Defects in Granular Lattices

3.1 Overview of Granular Defects

We showed in Chapter 2 how a 1D chain of spheres, interacting via a Hertzian

potential, can display nonlinear localisation effects. For instance, a precom-

pressed chain is dispersive and allows perturbations to propagate as weakly

nonlinear acoustic waves. By contrast, in a chain where the spheres are

barely touching one another an initial impulse will travel as a highly non-

linear solitary wave. As described in Section 2.3, this solitary wave solution

arises due to a balance between nonlinearity and dispersion in the system.

These results apply to homogeneous chains of spheres i.e. those where

the constituents all have identical size and material properties. However,

most real systems will contain defects. Such a heterogeneity may unbalance

the dispersion and nonlinearity of the system, breaking the solitary wave

symmetry. This can be clearly seen in Figures 3.1 and 3.2. Various kinds

of heterogeneities exist, affecting the propagating impulse in different ways.

For example, a pulse travelling through a chain with decreasing sphere size

will develop a long tail. This has the effect of extending the momentum

transfer in time. A potential application of this phenomenon is in the design

of impact protection systems [15]. Additionally, chains containing periodic
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Figure 3.1: Force versus time for two
spheres in a chain with N = 100. The
defect is a steel sphere of radius 0.1R lo-
cated at i = 50 in an otherwise homoge-
neous steel chain. The second red peak
indicates reflection from the defect. We
also observe that the solitary wave loses
its symmetry after passing through the
mass defect.

Figure 3.2: Here, the defect is made
of polytetrafluoroethylene (PTFE) and is
placed at i = 50 in an otherwise homoge-
neous steel chain. The properties of both
these materials are given in Table 1. The
radius matches that of the other spheres
in the chain. Once again, we see partial
reflection of the wave and a transmitted
portion that has lost its symmetry.

arrangements of different masses, such as dimers and trimers, have been

shown to support localised nonlinear waves [25].

There has been much interest in these systems due to the fact that the

properties of granular lattices are tunable. In addition to including particles

of various masses to the lattice, the behaviour of the system may also be con-

trolled by the addition of different materials with specific material properties

(i.e Young’s modulus E, Poisson ratio ν, and density ρ). These properties

alter the coefficients Ai,i+1 between spheres which are given by the formula

Ai,i+1 =
4EiEi+1

3[(Ei+1(1− ν2
i ) + Ei(1− ν2

i+1)]

(
RiRi+1

Ri +Ri+1

)1/2

.

The ability to tune the response of granular systems to perturbations has

led to a plethora of potential applications including sound and shock ab-

sorbers, sound focusing devices, and scramblers [27]. In addition to tailoring

the system’s response for various industrial devices, it is also important to

understand the basic interactions of nonlinear pulses with various defects.
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Figure 3.3: A spatio-temporal plot show-
ing the propagation of a solitary wave
through a lattice that contains a light
defect located at site 100 (Rdefect =
0.1Rchain, where Rdefect is the defect ra-
dius and Rchain is the radius of the other
spheres in the chain). We note the sec-
ondary waves that are created when the
solitary wave interacts with the defect.

Figure 3.4: Plotted above is the displace-
ment of the light defect in an otherwise
homogeneous chain. We observe that the
propagating solitary wave causes the de-
fect to shift suddenly and then oscillate
rapidly. These oscillations cause the de-
fect to collide with neighbouring spheres,
creating the secondary waves we see in
Figure 3.3.

Such an understanding can enable us to probe the internal composition of

solid objects in a nondestructive manner [13].

It is the impact of the size and material properties of defects on wave

propagation in Hertzian lattices that is the primary focus of this chapter.

We perform numerical simulations that probe the effect of different defects

on the properties of the solitary wave that propagates through the chain.

These results are presented below.

3.2 Results and Discussion

Initially we consider a steel defect of varying size in an otherwise homo-

geneous chain of steel spheres. The behaviour of the granular system is

remarkably different depending on whether the impurity is larger or smaller

than the other spheres in the chain. We now examine both these cases [12].
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3.2.1 Light and Heavy Defects

As we just alluded to, a granular lattice with an embedded defect will show

very different behaviour depending on the size of that defect. These differ-

ences manifest themselves as different patterns of scattered waves. Firstly

we consider the effect of a light defect. By a light defect, we mean a sphere

that is lighter than the others in the chain (but which has the same values of

E and ν). Such a system is characterised by a backscattered solitary wave

followed by a succession of so-called secondary waves with successively de-

creasing amplitudes. The source point of these secondary waves is the defect

location. A portion of the initial impulse’s energy is transmitted by the de-

fect and this wave is also followed by secondary waves. These features can

be seen in Figure 3.1. Figure 3.4 shows the displacement of the defect versus

time. We see that the solitary wave propagating through the chain causes the

defect to oscillate. These oscillations are damped due to the defect colliding

with its nearest neighbours. It is these collisions that generate the secondary

waves that propagate through the chain in both directions, with the light

defect acting as a wave source. Figure 3.3, which is a spatio-temporal plot

of the forces on the chain spheres, also illustrates the behaviour of the light

defect. We observe the solitary wave travel through the lattice and encounter

the defect located at site 100. As we have outlined, this causes oscillations

of the defect, generating secondary waves of decreasing amplitude in both

directions. By looking at the slopes of the travelling wave patterns, we see

that these reduced-amplitude secondary waves travel at lower velocities than

the initial impulse. This is a typical nonlinear phenomenon and one which

we considered in Section 2.4.2. In that discussion, we used scaling analysis

to find the relation vs ∝ F
1/6
peak which was then verified numerically.

The interaction of a solitary wave with a heavy defect produces behaviour

that is markedly different from that described above. Instead of exciting os-

cillations, the wave shifts the heavy defect in the direction of its propagation.

This causes the lattice to be split in two, with pulses propagating in each

part. Figure 3.5 shows this clearly. Beyond the defect we observe many

pulses of decreasing amplitudes. In front, there is just a single pulse of large

amplitude. The collision of the solitary wave with this heavy defect causes

it to fragment into solitary waves of decreasing amplitudes.
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Figure 3.5: This is a spatio-temporal plot of a solitary wave propagating through
a steel chain which contains a large defect at site number 100. The defect has
Rdefect = 3Rchain.

Figures 3.6, 3.7 and 3.8 show the effect of defect size on solitary wave

amplitude, width and velocity respectively. In all these simulations, the

defect has been placed in the middle of an otherwise homogeneous chain of

steel spheres. The size of the defect is varied but the Young’s modulus E

and Poisson ratio ν remain constant. In Figure 3.6 we see that maximum

transmission occurs when the defect is the same size as the other spheres

in the chain i.e. the chain is homogeneous. Fragmentation of the solitary

wave by the defect cuases its amplitude to be decreased. We also observe a

secondary peak in the transmission curve below the primary peak at Rdefect =

Rchain. The origin of this additional peak is not clear and deserves further

investigation. A similar peak, though less pronounced, is seen in Figure 3.7.

This diagram shows that defects cause the propagating pulse to widen. The

velocity of the solitary wave as a function of defect size is shown in Figure 3.8.

The velocity is calculated by time-of-flight measurements between two fixed

spheres, one on either side of the defect. Thus we are effectively measuring

the average speed of the wave between these spheres. The velocity is a

maximum for Rdefect = Rchain. For Rdefect 6= Rchain there are secondary pulses

produced which has the effect of reducing the solitary wave amplitude and

consequently, because of the relation vs ∝ F
1/6
peak (which has been verified for

the uniform chain), its velocity.
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Figure 3.6: This plot shows the vari-
ation of transmitted solitary wave am-
plitude with defect radius, Rdefect. The
defect is inserted into a steel chain and
has material properties identical to the
other spheres. We note that there is com-
plete transmission when Rdefect matches
the radii of the other spheres, Rchain.

Figure 3.7: Here we see the variation of
the full width at half maximum (FWHM)
of the solitary wave with defect radius.
This is a measure of the spatial extent of
the pulse. The term FWHMbefore denotes
the width before the interaction with the
defect and FWHMafter is the width after
this interaction.

Figure 3.8: This diagram shows the dependence of the velocity of our solitary wave
with Rdefect. The velocity is calculated using time-of-flight-measurements and we
see that the wave has its highest velocity when Rdefect = Rchain.
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Figure 3.9: The variation of Fpeak/Fmax

with Young’s modulus E is plotted above.
The size and other properties of the de-
fect are kept constant and equal those of
the other spheres.

Figure 3.10: This time we vary the Pois-
son ratio ν and measure the transmitted
amplitude of the incoming solitary wave.
We again note that transmission is max-
imised for νdefect = νchain.

3.2.2 The Effect of Young’s Modulus E and Poisson Ratio ν

In the previous section we considered a defect to be a sphere of varying size,

with all its other properties matching those of the chain. Now we consider

the effect of holding the defect size constant and varying, in turn, the Young’s

modulus E and Poisson ratio ν. The results are plotted in Figures 3.9-3.14.

In Figures 3.9 and 3.10 the transmitted solitary wave amplitude is plotted

as a function of E and ν respectively. Due to a material defect, the energy of

the solitary wave is not conserved as it moves through the granular lattice.

The interaction of the wave with the defect produces secondary waves that

carry away some of the original solitary wave’s energy [24]. It also causes the

amplitude of the wave to be decreased, as seen in Figures 3.9 and 3.10. The

variations are much smaller than those observed in Figure 3.6 indicating that

the defect’s mass is the predominant property when considering transmission.

The width of our solitary wave is measured both before and after inter-

action with the defect. The ratio FWHMbefore/FWHMafter is calculated for

varying E and ν. We observe that the pulse broadens as these properties

deviate from those of the other spheres in the chain.

Figures 3.13 and 3.14 show the variation of the wave velocity with E and

ν respectively. As the defect becomes “stiffer”, i.e. as E increases, the speed

28



Figure 3.11: The FWHM of the propa-
gating wave is measured as a function of
E. The ratio FWHMbefore/FWHMafter is
plotted here.

Figure 3.12: In this instance we vary the
Poisson ratio of our defect in order to ob-
serve its effect on the width of the solitary
wave.

increases. We can understand this qualitatively by considering that because

the defect is not compressed to the same degree, it transfers the incoming

energy more quickly [25]. Similar behaviour is observed for ν (see Figure

3.14). Recall that the formula for the Poisson ratio is ν = −εx/εz, where εx is

the lateral contraction and εz is the axial elongation. Increasing ν effectively

means that εz is decreasing relative to εx, i.e. the sphere is compressed less.

This leads to the solitary wave passing more quickly through the defect.
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Figure 3.13: This plot shows the varia-
tion of wave velocity with E.

Figure 3.14: The effect of ν on the wave
velocity is plotted here.

4 Wave Interactions with Discrete Breathers

4.1 Introduction

Investigations of FPU systems (previously described in Chapter 1) have

shown how energy can be localised in a finite number of modes, despite

interaction between all the modes in the system. Previous to these studies,

it was presumed that such systems would eventually thermalise i.e. after

a certain period of time the energy would be evenly distributed amongst

all the modes [26]. Further to these observations, FPU systems have been

shown to allow for solutions in which the energy is not localised in certain

modes but rather it is localised in real space. In the context of the granu-

lar lattices being investigated here this means that the energy is not shared

amongst all the spheres in the chain but rather it is shared by a subset of the

constituents. Solutions of this form are known as intrinsic localised modes

(ILMs), or discrete breathers (DBs). ILMs/DBs are time-periodic and spa-

tially localized solutions that arise due to the interplay between nonlinearity

and discreteness

4.2 The Phenomenon of Resonance

Resonance is an important phenomenon that appears in various guises through-

out physics. One form of resonance is the response of a system to an external

30



excitation at a certain frequency [20]. An example is the response of a lightly

damped harmonic oscillator to a periodic force (see Figures 4.1 and 4.2). We

consider the harmonic driving force with angular frequency Ω to have the

form

F (t) = F0 cos Ωt,

where F0 is the amplitude of the driving force. The equation of motion of

the oscillator can then be described by

mψ̈ = −kψ − bψ̇ + F0 cos Ωt

where ψ is the displacement of the oscillator, m is the mass, k is the usual

force constant and b is a resistance term due to the damping. Dividing

through by m gives the usual form of this ODE

ψ̈ = −Ω2
0ψ − γψ̇ + (F0/m) cos Ωt. (4.1)

Here we have defined Ω2
0 ≡ k/m and γ ≡ b/m. The quantity Ω0 is simply

the angular frequency of the free, undamped oscillator. After a period of

time, we expect the system to reach a steady state in which the mass m is

vibrating harmonically at the same frequency as the driving force. In light

of this assumption, we say that the displacement of our oscillator is given by

ψ = A(Ω) cos(ωt+ φ),

where A(Ω) is a frequency-dependent amplitude and φ is the phase constant.

The dependence of A on Ω gives rise to resonance in the system. It may be

shown that

A =
F0

m

(
1

(Ω2
0 − Ω2)2 + γ2Ω2

)1/2

. (4.2)

Equation (4.2) is plotted in Figure 4.2. We clearly see that A reaches a

maximum for Ω ≈ Ω0 and we thus define ν0 ≡ Ω0/2π to be the resonance

frequency [19].

We extend this discussion to a system comprising of a driven oscillator

coupled to another oscillator. In such a setup, there are two resonant fre-

quencies corresponding to the fundamental frequencies Ω1 and Ω2 of each
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Figure 4.1: This diagram shows the forces
acting on a lightly damped, driven os-
cillator. The driving force is periodic in
time and has the form F (t) = F0 cos(Ωt).
kψ is the usual return force, and bψ̇ is a
resistance force.

Figure 4.2: This is an example of a re-
sponse curve for a lightly damped oscil-
lator. We see that the amplitude A of the
driven mass is a maximum for Ω ≈ Ω0.
ν0 = Ω0/2π is known as the resonance
frequency for the system.

oscillator. The forced oscillator experiences the usual resonance (as just de-

scribed) for Ω = Ω1. This resonance is characterised by a symmetric profile

and is described by a Lorentzian function2. However, for Ω = Ω2, i.e. at the

resonant frequency of the oscillator to which it is coupled, there is a second

resonance which is characterised by an asymmetric profile [20]. This is a

Fano resonance and was explained by Ugo Fano in his celebrated paper of

1961 [6]. Recently, Fano resonances have been predicted for weakly nonlinear

systems such as nonlinear waveguide arrays and in Bose-Einstein condensates

[21]. We investigate the possibility of observing analogs of Fano resonances

in our highly nonlinear system, the Hertzian lattice. We now discuss Fano

resonance in greater detail.

4.3 Fano Resonance

As mentioned previously, Fano resonances are characterised by an asymmet-

ric profile. Fano explained the origin of these “strange looking shapes” in

2The Lorentzian function (also known as the Cauchy-Lorentz distribution) is given by
f(x) = 1

π

[
γ

(x−x0)2+γ2

]
. The parameter x0 defines the position of the curve and γ defines

its width.
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terms of the interaction of a localised state with a continuum of propagation

modes. His description was initially introduced to explain sharp, asymmet-

ric profiles in atomic absorption spectra which had been observed by Beutler

[20]. Fano hypothesised that the unexpected profiles arose due to the inter-

action of a discrete excited state of an atom with a continuum which shared

the same energy. The interaction results in interference and the observed

profiles.

A qualitative understanding of these novel resonances was provided by

Fano in terms of the absorption of radiation by atoms. We now present

an account of this explanation based on the description given in Ref. [20].

Quantum theory tells us that electrons in atoms may only have certain energy

values i.e. the energy spectrum is discrete rather than continuous. Electrons

may move between different energy levels by absorbing or emitting packets

of radiation called photons. The energy of a photon is given by Ephoton = ~ω.

If Ephoton = E2 − E1, where E1 and E2 are the energies of levels 1 and 2

respectively, then an electron may move between these levels by absorbing

or emitting a photon of this frequency. Thus if we shine light of varying

frequency on a sample of atoms, there will be absorption resonance curves

at values of ω corresponding to various energy gaps. These absorption peaks

are symmetric and may be represented using the Lorentzian function defined

in the previous section.

However, a different situation can arise whereby absorption of radiation

occurs via a different mechanism. The Auger effect describes how an electron

from the inner core of an atom can be removed by high energy radiation (such

as an X-ray) leaving a vacancy in the core. An electron from a higher energy

level may relax into this “electron hole” resulting in a release of energy.

Sometimes this energy can be emitted in the form of a photon but often it is

transferred to another electron which is above the ionisation threshold and

this electron will escape from the atom. Due to the superposition principle,

the Auger effect can interfere with the normal relaxation processes in an

atom and this manifests itself as an asymmetric peak in the spectra of that

atom (Fano resonance).

An important concept in the understanding of Fano resonance (and of

wave scattering in general) is that of “channels”. In an atom, an excited
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Figure 4.3: Various resonance profiles plotted using Equation (4.3) for various
values of p. Adapted from Ref.[20].

state consists of an electron in a higher energy level (referred to as a bound

state in one sub-band) co-existing with an electron hole in a lower level

(an unbound state in another sub-band). In atomic physics, one can think

of separate sub-bands as channels. This is a useful way to formulate our

system, as it allows us to explain Fano resonances in terms of interference

between various scattering channels.

Although Fano’s original explanation was applied to atomic spectra, the

great strength of his theory is that it can be generalised to describe asymmet-

ric profiles in terms of interference, regardless of the nature of the particular

system. Fano wrote down a formula for the shape of the resonance curve

which has since been used to interpret a variety of experimental data

σ =
(Er + p)2

E2
r + 1

. (4.3)

Here, p is a shape parameter and Er is a reduced energy. For |p| → ∞,

Equation (4.3) describes a Lorentzian curve and for p = 0 it gives an inverted

Lorentzian. For 0 < p <∞ the profile is asymmetric, as we expect for Fano

resonance (see Figure 4.3).

We will now introduce a model for Fano resonance, known as the Fano-

Anderson Model, which we use to derive a formula for the transmission co-

efficient which has the form of the equation originally written down by Fano

(4.3).
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4.3.1 The Fano-Anderson Model

A relatively simple model that can be often invoked to explain the physics of

Fano resonance is the Fano-Anderson model. This is a discrete model which

can be described by the following Hamiltonian [20]

H =
∑
n

Cφnφ
∗
n−1 + EF |ψ|2 + VFψ

∗φ0 + complex conjugates, (4.4)

where the asterisk denotes the complex conjugate and H describes the energy

of two subsystems. The first is a linear discrete chain with field amplitude φn

at site n. The symbol C denotes the coupling constant between neighbouring

sites. This system allows the propagation of plane waves with the dispersion

relation ωq = 2C cos q. The state of the second subsystem is denoted ψ and

has an energy value EF , where EF denotes the Fermi energy. The interaction

between the subsystems is described by the coupling term VF from the state

ψ to site 0 of the discrete chain, φ0. Using Equation (4.4) the following

dynamical equations can be obtained:

iφ̇n = C(φn−1 + φn+1) + VFψδn0

iψ̇ = EFψ + VFφ0

(4.5)

where δn0 denotes the Kronecker delta. Due to the gauge invariance of these

equation, the time dependence can be removed using the ansatz

φn(t) = Ane−iωt,

ψn(t) = Be−iωt.
(4.6)

These expressions inserted into Equations (4.5) give the following static equa-

tions

ωAn = C(An−1 + An+1) + VFBδn0,

ωB = EFB + VFA0.
(4.7)

Given the dispersion relation for the linear system, i.e. ωq = 2C cos q, we

should look to solve the above system of equations using frequencies from
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the propagation band i.e. ω = ωq. We are dealing with a wave scattering

problem so we can impose the following boundary conditions on An:

An =

{
IFanoeiqn + rFanoe−iqn, n < 0
TFanoeiqn, n > 0

(4.8)

where IFano, rFano and TFano are the incoming, reflected and transmitted wave

amplitudes respectively. We use the second equation in the system (4.7) to

obtain

B =
VFA0

ωq − EF
.

Our system (4.7) can now be reduced to

ωqAn = C(An−1 + An+1) +
V 2
F

ωq − EF
A0δn0. (4.9)

Examining Equation (4.9), we see that the magnitude of the scattering po-

tential V 2
F /(ωq − EF ) is dependent on the plane wave frequency ωq. This is

important, as we note that for ωq = EF , the scattering potential is infinite

and prevents transmission of the incoming wave. This is a key feature of

Fano resonance.

We can derive an expression for the transmission coefficient T = |TFano/IFano|2

using a transfer matrix approach as described in Ref.[29]. First, write Equa-

tion (4.9) in the form of a transfer matrix

C

(
An+1

An/C

)
= Tn

(
An
An−1

)
(4.10)

with

Tn =

(
ωq −

V 2
F

ωq−EF
δn0 −C

1 0

)
. (4.11)

If there are n = Nleft sites to the left of site n = 0 and n = Nright sites to

the right, then we can write

C

(
ANright

ANright−1/C

)
= PNright

(
A−Nleft+1

A−Nleft

)
(4.12)

where
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PNright
= TNright

TNright−1 · · ·T1T0T−1 · · ·T−Nleft
.

Using Equations (4.8) and (4.12) an expression for T may be derived. This

is given in Ref.[20] as

T =
α2
q

α2
q + 1

, (4.13)

where

αq = cq(EF − ωq)/V 2
F , cq = 2C sin q.

We note that Equation 4.13 corresponds to the formula introduced by Fano

(Equation (4.3)) to explain the unusual atomic absorption lines observed by

Beutler. Transmission vanishes for ωq = EF .

These discussions have shown the possibility of waves travelling through

a the linear chain interacting with those in the discrete state leading to Fano

resonance.

4.4 Discrete Breathers

As we have discussed in previous chapters, nonlinear lattices can support the

propagation of weakly and strongly nonlinear waves. These are solutions to

the equations of motion of the system, which are characterised by Hertzian

interactions between neighbouring spheres. Another family of solutions are

DBs, which are spatially localised and often time periodic excitations of the

lattice. In this chapter, we consider DBs in a precompressed chain. Snapshots

of an oscillating DB are shown in Figure 4.4. DBs are similar to solitary

waves with the added property of being periodic in time. They arise due

to the interplay of nonlinearity and discreteness in the system. Nonlinearity

indicates that the DB amplitude and localisation length are dependent on

the frequency of oscillation, Ωb, and can therefore be tuned. Discreteness

means that there is an upper bound, ωq, on the frequency spectrum of the

waves that can propagate through the chain [9].

The phenomenon of localised modes, and DBs in particular, is quite

widespread and such states have been experimentally observed in fields as

diverse as nonlinear optics, Josephson junctions, magnetic systems, and in

the lattice dynamics of crystals [9].
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Figure 4.4: Snapshots of an oscillating discrete breather at various times. We note
the spatial localisation of this mode. This DB has a frequency of 21300 Hz and
was originally used by Theocharis et al. [28].
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We begin a more quantitative description of DBs by considering the total

energy of our precompressed granular lattice i.e. the Hamiltonian H of the

system. The Hamiltonian will have kinetic energy (arising from the motion of

the spheres) and potential energy (due to sphere-sphere interactions) terms,

and we express it as

H =
∑
n

(
1

2
p2
n +W (un − un−1)

)
. (4.14)

As in previous chapters, un denotes the displacement of sphere n from equi-

librium. The momentum is given by pn = u̇n ≡ dun/dt and W (u) is the

interaction potential between spheres. The following conditions apply to

W (u); W (0) = W ′(0) = 0 and additionally we assume that W ′′ is positive

for small displacements, W ′′(0) > 0. The classical Hamilton equations of

motion are written as

u̇n =
∂H

∂pn
, ṗn = − ∂H

∂un
,

which lead us to a familiar set of coupled ODEs

ün = −W ′(un − un−1) +W ′(un+1 − un). (4.15)

We expand W as a power series

W (u) =
∞∑
m

φm
m
um. (4.16)

Considering only small velocities and amplitudes, one can neglect all nonlin-

ear terms from the equations of motion and assume that φm = 0 for m > 2.

Thus, the coupled ODEs are now linear and have the form

ün = φ2(un+1 + un−1 − 2un). (4.17)

The solution to this ODE can be written as a superposition of plane waves

where each is given by

un(t) = Aq cos(ωqt− qn+Bq), (4.18)
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Figure 4.5: A plot of the dispersion re-
lation given by Equation (4.19). The re-
lation is sinusoidal and thus periodic in
q with an upper bound given by |ωq| ≤
ωπ ≡ 2

√
φ2 [8]. Figure adapted from

Ref.[8].

Figure 4.6: A schematic representation
of the one-channel scattering of a plane
wave by a DB. The breather with fre-
quency Ωb behaves as a time-periodic po-
tential for the incoming wave of frequency
ωk thus generating new channels.

where ωq is the plane wave frequency. Here, Aq and Bq are constants. For

this system, the dispersion relation is given by Equation (4.19) below and

plotted in Figure 4.5

ωq = ±2
√
φ2 sin

(q
2

)
. (4.19)

We now consider the DBs themselves. We look for time-periodic DBs,

and so seek solutions to Equation (4.15) which have the form

ûn(t+ Tb) = ûn(t), p̂n(t+ Tb) = p̂n(t), (4.20)

where Tb = 2π/Ωb is the period of the DB oscillations. These solutions satisfy

the conditions

ûn→±∞ → c±, p̂n→±∞ → 0. (4.21)

The difference c+ − c− characterises the lattice deformation induced by the

DB. The first condition above indicates that the DB solution is localised and

we choose c− = 0. We can represent ûn as a Fourier series expansion with

respect to time
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ûn(t) =
+∞∑
j=−∞

AjneikΩbt (4.22)

and the localisation condition given by Equation (4.21) becomes

Aj 6=0,n→±∞ → 0, Aj=0,n→±∞ → c±. (4.23)

Substituting Equation (4.22) into the original system (4.15), a linearisation

of the expressions for Ajn and the boundary conditions (4.23) leads to the

nonresonance condition

jΩb 6= ωq (4.24)

for all i. This condition implies that Ωb > ωq (excluding the case where

j = 0).

An important property of localised modes is their stability, which can be

analysed by adding a small perturbation to the DB solution ûn:

un(t) = ûn + εn(t)

Inserting this expression into Equation (4.15), and retaining only the terms

that are linear in εn, we obtain the first order ODE system

ε̈n = −W ′′(ûn − ûn−1)(εn − εn−1) +W ′′(ûn+1 − n̂)(εn+1 − εn). (4.25)

Integration of these equations relate ε(t) and ε̇(t) at t = Tb to the initial

conditions at t = 0 [4]. It also defines the following map(
ε(Tb)
ε̇(Tb)

)
= F

(
ε(0)
ε̇(0)

)
(4.26)

where we have defined ε ≡ (ε1, ε2, . . . ) and F is a symplectic Floquet ma-

trix. In general,a symplectic matrix A is a square matrix which satisfies

ATΓA = Γ, where Γ is a nonsingular, skew-symmetric matrix. Floquet the-

ory relates to ODEs which have the form ẋ = B(t)x, where B(t) is a periodic

function. For a detailed discussion of Floquet matrices in the context of DBs

see Section VIII.A of Ref.[11]. The eigenvalues λ and eigenvectors ~y of F
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provide information on the stability. A DB is said to be linearly stable if all

of the eigenvalues of its Floquet matrix F lie on the unit circle. This means

that any small perturbation to the system will not grow exponentially with

time [4]. In this case, the eigenvalues can be written as eiθ. The eigenvectors

are solutions to the Equation (4.25) and satisfy the Bloch condition [16]

εn(t+ Tb) = e−iθεn(t) (4.27)

where θ = ±ωqTb are the Floquet phases [10]. Using the Bloch condition, we

may now write solutions of Equation (4.25) in the form

εn(t) =
+∞∑
j=−∞

εnje
i(ωq+jΩb)t. (4.28)

In Section 4.2 we introduced the idea of channels. The DB acts as a

time-periodic scattering potential for the incoming wave of frequency ωq and

as such, generates new channels of propagation at frequencies ωq + jΩb. If

ωq + jΩb 6= ωq′ for nonzero j then all channels are “closed” except for the

“open” channel j = 0. This situation corresponds to elastic scattering i.e.

the energies of the transmitted and reflected waves are equal. Otherwise, the

scattering is inelastic [8]. These channels are shown schematically in Figure

4.6.

4.5 Results and Discussion

The simulations performed focused firstly on the interaction of a solitary wave

with a DB. The DB used in these simulations has a frequency of 21300 Hz.

As in the setups for Chapters 3 and 4, the propagation of a solitary wave is

instigated by the impact of a striker. Figure 4.11 consists of various spatio-

temporal plots that show the propagation of the solitary wave and its in-

teraction with the DB. The oscillations of the DB can also be clearly seen.

Figure 4.9 shows the transmitted amplitude of the solitary wave as a function

of striker velocity. Figure 4.10 depicts the ratio of the amplitude of the DB

before interaction with the solitary wave to the amplitude after, again as a

function of striker velocity. By plotting these figures, we are attempting to

gain an understanding of the effect of a DB on the properties of a solitary
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Figure 4.7: The other scenario we study
is the interaction of an impulse, gener-
ated by a striker, with a DB.

Figure 4.8: This diagram shows the ini-
tial setup of our simulation to investigate
a plane wave’s interaction with a DB.

Figure 4.9: The transmitted amplitude of
the solitary wave as a function of striker
velocity. Fmax is the initial amplitude
and Fpeak the amplitude after interaction
with the DB.

Figure 4.10: The ratio of the maximum
amplitude of the DB before interaction
with the solitary wave to the maximum
amplitude after, as a function of striker
velocity.
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wave, and vice versa. Further research in this area is needed, perhaps using

additional DBs and solitary waves of different widths and amplitudes.

Finally, we examine the interaction of an attenuated plane wave with the

DB. Our goal is to create a plot analogous to Figure 3 of Ref. [21], which

shows the transmission coefficient of a plane wave interacting with a nonlinear

impurity mode as a function of wavenumber q. This figure shows the pos-

sibility of observing Fano resonances in saturable waveguide arrays. We are

interesting in investigating whether a nonlinear analogy of Fano resonance

can be observed in our system. Figure 4.8 shows an incoming attenuated

plane wave and the DB. The transmitted amplitude as a function of q is

given in Figure 4.12. Although there appear to be certain resonances in the

system, there is not a direct correspondence between these results and those

presented in Figure 3 of Ref. [21]. Consequently, we are unable to confirm

whether Fano resonances are possible in this granular system. Further stud-

ies will be necessary to investigate this system in greater detail in an effort

to explain the features of Figure 4.12.
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Figure 4.11: These spatio-temporal plots show the propagation of a solitary wave
through the lattice and the interaction with a DB. The DB is centered at site
forty and we observe the periodic oscillation of this mode. The DB causes partial
reflection of the incoming pulse.
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Figure 4.12: We performed simulations using attenuated plane waves with different
q values. The transmitted amplitude of this wave was measured and is plotted
above.

5 Conclusions

Over the course of this dissertation, we examined the propagation of solitary

waves in a variety of granular lattices. In each of the systems that were stud-

ied, the sphere interactions were modelled using Hertzian interactions. First,

we investigated a chain of uniform steel spheres where a striker was used to

instigate the pulse. An approximate solution to the system of coupled ODEs

describing the lattice was derived based on the analysis of Chatterjee [2].

The system was also probed using a fourth order Runge-Kutta finite differ-

ence scheme that was implemented in Matlab (see Appendix A). Results

of these simulations clearly show the propagation of a non-attenuating, non-

dispersive wave through the lattice. We then proceed to derive a relation

between wave speed, vs, and wave amplitude Fpeak using a scaling analysis.

The relation is vs ∝ F
1/6
peak and this result is verified by numerics.

The second part of the dissertation studies the role of a defect in the

granular lattice. The properties of this defect, i.e. the size, Young’s modulus

E and Poisson ratio ν, are varied and the effect of these variations on the

solitary wave’s profile are measured. In particular we monitor the amplitude,

FWHM and the speed of the wave, and the results are plotted in Figures 3.3

-3.14. Qualitative explanations for several of these curves are provided in

Chapter 3. However, some interesting features notably the secondary peak
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observed in Figure 3.6 (and to a lesser extent in Figure 3.7) are not clearly

understood. A qualitative and quantitative description of these diagrams

should be a goal of future work in this area.

In Chapter 4 we introduced the concept of localised modes, specifically

DBs. The scattering of plane waves off DBs has been shown to produce

interesting resonance phenomena. Work by Naether et al. on waveguide

arrays had shown that Fano resonance could be observed in these systems

[21]. Using this work as a reference, we investigated whether our granular

lattice would show similar results. We employed the same numerical setup

as that used by Theocharis et al. [28] in which a DB is established in the

middle of a precompressed chain. We scatter plane waves with varying q off

the DB and measure the transmitted amplitude (see Figure 4.12). However,

there is not a direct correspondence between these results and those produced

by Naether et al.. Nevertheless, there appear to be interesting features in

Figure 4.12 that we don’t yet understand physically and this will be a focus

of future work.
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A Simulation Code

A Matlab code is used to simulate our 1D array of spheres. There are four

components to the code:

1. The main file

2. A routine containing the fourth-order Runge-Kutta scheme

3. Initialisation file

4. Function to check for contacts between neighbouring spheres

Main file:

1 % This code investigates the case of a chain of steel balls in
2 % a horizontal row with zero loading (barely touching).
3

4 clear all
5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 % DEFINITIONS
9

10 time steps = 40000;
11 ∆ t = 5e−8;
12 N = 200; % Number of balls
13 init vel = 0.443; % Striker velocity
14 num alpha = 1; % Number of alpha values to be tested
15 defect pos = 100; % Position of the defect
16 alpha = linspace(3, 3, num alpha); %
17

18 % We loop over alpha (this is a parameter that varies a
19 % quantity in our system, e.g. defect radius):
20

21 for k = 1:length(alpha)
22

23 % Keep track of how far along the simulation is:
24 if ( mod(k,5) == 0 )
25 disp(['Step ' int2str(k) ' out of ' ...
26 int2str(num alpha)])
27 end
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30

31 % INITIALISATION
32
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33 %This function creates matrices for position, velocity,
34 %acceleration that will store the values of these
35 %variables for each ball at each step.
36

37 [mass, E, R, poisson, position, velocity, acceleration, ...
38 overlaps, A,...
39 force 30, force 60, distance 30 60] = ...
40 initialise(time steps, N, init vel, alpha(k), ...
41 defect pos);
42

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 % Iterating forward in time:
45 for i = 2 : time steps
46

47 %We call a 4th order RK routine which integrates our
48 %equations forward in time:
49 [velocity(i,:), position(i,:), overlaps(i,:)] = ...
50 RK(position(i−1,:), ...
51 velocity(i−1,:), j, N,...
52 R, ...
53 mass, E, poisson, i, ∆ t,...
54 position(1,N), A);
55

56 %Calculate the forces on each ball:
57 force(1,i−1) = .5*(A(1).*overlaps(i,2).ˆ(3/2));
58 force(N,i−1) = .5*(A(N−1).*overlaps(i,N).ˆ(3/2));
59 force(2:N−1,i−1)= .5*(A(1:N−2).*overlaps(i,2:N−1)...
60 .ˆ(3/2)+A(2:N−1).*overlaps(3:N).ˆ(3/2));
61

62 end
63

64 end

Runge-Kutta routine:

1 function [v new, x new, overlaps new] = RK(x old, v old, j,...
2 N, R, ...
3 mass, E, poisson, i, ∆ t, Nth ball init pos, A)
4

5 % This function will integrate our equations of motion forward
6 % in time using a 4th order Runge−Kutta method. This is a new
7 % function, based on MAP's code.
8

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 % Firstly, we must create vectors for the k x and k v values:
11 k1 x = zeros(1,N); k1 v = zeros(1,N);
12 k2 x = zeros(1,N); k2 v = zeros(1,N);
13 k3 x = zeros(1,N); k3 v = zeros(1,N);
14 k4 x = zeros(1,N); k4 v = zeros(1,N);
15
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16 % And we also create a matrix for the overlaps:
17 k overlaps = zeros(4, N+1);
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 % Calculate k1 x:
20 k1 x = ∆ t * v old;
21

22 % Check for contacts:
23 [k overlaps(1, :)] = ...
24 contacts(N, Nth ball init pos, x old, R);
25

26 overlaps new = contacts(N, Nth ball init pos, x old, R);
27

28 % Calculate k1 v:
29 k1 v(1) = ∆ t*(−(A(1))*k overlaps(1,2)ˆ(3/2)/mass(1));
30 k1 v(2:N)=∆ t*((A(1:(N−1))).*k overlaps(1,2:N)...
31 .ˆ(3/2)./mass(2:N) − ...
32 (A(2:N)).*k overlaps(1,3:(N+1)).ˆ(3/2)./mass(2:N));
33

34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 % Define the new variables:
36 xx = x old + 0.5 * k1 x;
37 vv = v old + 0.5 * k1 v;
38

39 % Calculate k2 x:
40 k2 x = ∆ t * vv;
41

42 % Check for contacts between balls, using the new xx values:
43 [k overlaps(2, :)] = ...
44 contacts(N, Nth ball init pos, xx, R);
45

46 % Calculate k2 v:
47 k2 v(1) = ∆ t*(−(A(1))*k overlaps(2,2)ˆ(3/2)/mass(1));
48 k2 v(2:N)=∆ t*((A(1:(N−1))).*k overlaps(2,2:N)...
49 .ˆ(3/2)./mass(2:N) − ...
50 (A(2:N)).*k overlaps(2,3:(N+1)).ˆ(3/2)./mass(2:N));
51

52 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 % Define the new variables:
54 xx = x old + 0.5 * k2 x;
55 vv = v old + 0.5 * k2 v;
56

57 % Calculate k3 x:
58 k3 x = ∆ t * vv;
59

60 % Check for contacts between balls, using the new xx values:
61 [k overlaps(3, :)] = ...
62 contacts(N, Nth ball init pos, xx, R);
63

64 % Calculate k3 v:
65 k3 v(1) = ∆ t*(−(A(1))*k overlaps(3,2)ˆ(3/2)/mass(1));
66 k3 v(2:N)=∆ t*((A(1:(N−1))).*k overlaps(3,2:N)...
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67 .ˆ(3/2)./mass(2:N) − ...
68 (A(2:N)).*k overlaps(3,3:(N+1)).ˆ(3/2)./mass(2:N));
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 % Define the new variables:
71 xx = x old + k3 x;
72 vv = v old + k3 v;
73

74 % Calculate k4 x:
75 k4 x = ∆ t * vv;
76

77 % Check for contacts between balls, using the new xx values:
78 [k overlaps(4, :)] = ...
79 contacts(N, Nth ball init pos, xx, R);
80

81 % Calculate k4 v:
82 k4 v(1) = ∆ t*(−(A(1))*k overlaps(4,2)ˆ(3/2)/mass(1));
83 k4 v(2:N)=∆ t*((A(1:(N−1))).*k overlaps(4,2:N)...
84 .ˆ(3/2)./mass(2:N) − ...
85 (A(2:N)).*k overlaps(4,3:(N+1)).ˆ(3/2)./mass(2:N));
86 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 % Now we go forward in time:
88 v new = v old + (1/6) * ( k1 v + 2*k2 v + 2*k3 v +k4 v );
89 x new = x old + (1/6) * ( k1 x + 2*k2 x + 2*k3 x +k4 x );
90 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialisation file:

1 % This is the initialising function
2

3 function [mass, E, R, poisson, position, velocity, ...
4 acceleration, ...
5 overlaps, A, force 30, force 60, distance 30 60] = ...
6 initialise(time steps, N, init vel, alpha, defect pos)
7

8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % Parameter definitions

10 rho steel = 7780; % Density of steel
11 rho PTFE = 2178; % Density of PTFE
12 rho brass = 8500; % Density of brass
13 E steel = 1.93*10ˆ11; % Young's mod for steel
14 E rubber = 30000000; % Young's mod for rubber
15 E brass = 1.03 * 10ˆ11;
16 E PTFE = 1.46*10ˆ9;
17 rad = 0.00476/2; % Ball radius
18 poisson steel = 0.3; % Poisson ratio for steel
19 poisson rubber = 0.49; % Poisson ratio for rubber
20 poisson brass = 0.34;
21 poisson PTFE = 0.46;
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 %Creating vectors which will store the material properties
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24 %of the balls
25 mass = zeros(1,N);
26 E = zeros(1,N); %Young's modulus
27 R = zeros(1,N); %Radius
28 poisson = zeros(1,N); %Poisson ratio
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 % All steel balls
31 for i = 2 : N
32 E(i) = E steel;
33 R(i) = rad;
34 poisson(i) = poisson steel;% Value for steel
35 mass(i) = 0.00045;% Value for steel
36 end
37

38 % Insert 1 defect (steel ball):
39 R(defect pos) = alpha * rad;
40 mass(defect pos) = (4/3) * pi * (R(defect pos)ˆ3)...
41 * rho steel;
42 E(defect pos) = E steel;
43 poisson(defect pos) = poisson steel;
44

45 %The first ball (the striker) is made from steel
46 E(1) = E steel;
47 R(1) = rad;
48 poisson(1) = poisson steel;
49 mass(1) = 0.00045;
50

51 %We give the wall ball an 'infinite' radius, and it's
52 %made from brass
53 E(N+1) = E brass;
54 %R(N+1) = 1000;
55 poisson(N+1) = poisson brass;
56 %mass(N) = (4/3)*pi*rho steel*(R(N))ˆ3;
57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59

60 %Creating the matrices that will store the variables
61 position = zeros(N,time steps)';
62 velocity = zeros(N,time steps)';
63 acceleration = zeros(N,time steps)';
64

65 %We also create a matrix to store the overlaps between
66 %neighbouring balls. This will have N columns, and a row for
67 %each time step. Initially, due to our placement of the balls,
68 %all overlaps will be zero.
69 overlaps = zeros(N+1,time steps)';
70 %The overlap of the 1st ball with its left neighbour is always
71 %zero:
72 overlaps(:,1) = 0;
73

74 % Putting the balls in position (all equilibrium positions are
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75 % initially zero, no loading in the system)
76 position(1,1) = 0;
77

78 % Initialising the velocities:
79 % The first ball in the chain is given an initial velocity,
80 % the others are all at rest (so just need
81 % to change this first value)
82

83 velocity(1,1) = init vel;
84

85 % All accelerations initially zero, so we don't have to do
86 % anything
87

88 % We may also calculate all the force coefficients at this
89 % point:
90 A = zeros(1, N);
91

92 A(1:(N−1)) = 4*E(1:(N−1)).*E(2:N).*sqrt(R(1:(N−1))...
93 .*R(2:N)./
94 (R(1:(N−1))+R(2:N)))./(3*E(2:N).*...
95 (1−poisson(1:(N−1)).ˆ2)+
96 3*E(1:(N−1)).*(1−poisson(2:N).ˆ2));
97 A(N) = (4*E(N)*E(N+1)*sqrt(R(N)))/(3*E(N+1)*...
98 (1−poisson(N)ˆ2) +
99 3*E(N)*(1−poisson(N+1)ˆ2));

100

101 end

Contact checking function:

1 % We determine whether any balls are overlapping
2 function [new overlaps] = contacts(N, Nth ball init pos, xx, R)
3

4 new overlaps = zeros(1,N+1);
5

6 % The first ball has no overlap on its LHS
7 new overlaps(1) = 0;
8

9 % We now calculate the overlaps of the other balls
10 new overlaps(2:N) = max( 0, xx(1:(N−1)) − xx(2:N) );
11

12 % Dealing with the Nth−ball/wall interaction
13 new overlaps(N+1) = max(0, xx(N) − 0);
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