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Abstract

Network science is an insightful approach to studying data gained from fMRI scans. In this
thesis we attempt to see if it is appropriate to make a distinction between "Task-positive" (TP)
and "Task-negative" (TN) networks based on these scans, where the former is associated with
the subjects' brain states when performing cognitive tasks and the latter when not performing
cognitive tasks. The data used to study these networks was fMRI data parcellated to involve
600 regions of the brain across 94 human subjects. We use task-positive and task-negative region
assignments that already exist in literature. We examine simple network diagnostics. We then
study two more complex methods; spectral clustering and multilayer community detection. We
�nd inconclusive results based on the simple network diagnostics, but promising results in spectral
clustering. We generalise the already existing concept of �exibility and �nd that attention tasks
generally have higher average �exibility in the task-negative network. We also �nd a correlation
between ordinal and categorical �exibility.
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1 Introduction

1.1 Motivation

A network is a set of nodes connected by edges, and network science is the study of these networks.
This thesis will involve an investigation, from a network science perspective, into two speci�c networks
of brain regions, which are associated with di�erent types of brain activity - the �Task-positive network�
and the �Task-negative network.� The idea of these networks dates back to 1929 when Hans Berger,
the inventor of the electroencephalogram, proposed the idea that the brain is continually active, even
in resting state, that is, the state of the brain when it is not performing an explicit task. His ideas
were not taken seriously by neurologists; the general perception at this point was that the brain (or
at least a portion of it) only became active when performing an explicit task [37, 43]. At the very end
of the 20th century, research by Shulman et al. identi�ed a brain network, the default mode network,
associated with task-induced deactivation or, more simply, a brain network in which activity in resting
state di�ers from activity when performing an explicit task [40]. This was supported by Raichle et al.
in 2001 [38].

In this thesis, we focus on the two terms �Task-positive network� and �Task-negative network�
which were introduced by Fox et al. in 2005 [15]. These networks are composed of regions known to
become more active (task-positive), and regions known to become less active (task-negative) during
the task relative to their behavior in resting state. The activity in these networks have been shown
to underpin attention [31] and memory [25, 19] processes. Furthermore, disruptions to these networks
have been observed in certain neurological disorders [18, 5, 24, 27]. In relation to these networks,
several questions have been posed [20]:

• Do the strength of the connections within and between these networks vary systematically across
resting state and task-driven cognitive states?

• How does the anatomical organisation of the brain a�ect this variation?

• Does the relationship between anatomical structure and brain function shape behaviour?

These questions motivate rather specialised research which would span several disciplines, and because
of this we are not able to answer them in this thesis. However we will use a variety of methods
from network science to examine these task-positive and task-negative networks in order to provide
a solid mathematical basis from which such research could bene�t. This is motivated by several
recent criticisms on the origin of task-positive and task-negative networks. R Nathan Spreng notes the
following in his opinion article [42]:

• Recent studies [45, 34] show that the task-positive network actually consists of at least two
functionally and anatomically distinct networks which serve di�erent roles in cognition.
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• The task-negative network is often engaged during goal-directed cognition but depends on the
nature of the task, hence the �task-negative� label is not entirely appropriate.

• Recent work [42] demonstrates that the components of these networks interact di�erently with
one another depending on the task at hand. Such interactions challenge the veracity and utility
of a �task-positive network versus task-negative network� comparison.

Although R Nathan Spreng writes many criticisms about the classi�cation of task-positive and task-
negative networks, his judgment is based upon the de�nition of these networks and not their existence.
As we will see later, the assignment of these task-positive and task-negative nodes (the nodes which
together make up the task-positive and task-negative networks) seems rather speci�c, and because the
human brain is an extremely complex organ, these assignments could interact with subject variability.
The methods for de�ning these networks are not entirely rigorous [15] and would bene�t from more
research, especially from the perspective of network science. Again, although we will not be directly
answering the questions posed, we take a basic approach and study these networks from the ground
up. At the same time, wherever possible, we will attempt to relate these results to the questions posed
by other authors.

1.2 Network Science

Network science is an extremely useful tool that allows mathematicians and scientists alike to model
complex organisation structures from a mathematically sound perspective. In particular, it is well
suited to the study of neuroscienti�c data [30, 6, 7]. On a microscopic level the structure of the brain
is built from neurons which are connected physically via synapses. This automatically gives rise to a
mathematical network. If we were to model the brain this way, we would have access to an enormous
amount of information about both the anatomical structure and function of the brain. However, the
human brain is estimated to have approximately 1011 neurons and 1014 synapses [46]. This causes
an immediate problem as neuroscientists do not yet have the methods to physically identify such a
large number of entities, and computers are currently not powerful enough to be able to process this
data. The only species to have been modeled this way is Caenorhabditis elegans, which has around
300 neurons and 7,600 synaptic edges [7].

We can however produce brain networks by a wide a variety of methods, which are able to approx-
imate the underlying system by measuring activity from an area inside the brain. The type of brain
activity is dependent on the method. These methods include functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), and magnetoencephalography (MEG), single-photon emission
computed tomography (SPECT) and positron emission tomography (PET). The choice of method is
typically dependent on what types of property one wishes to study. For example, EEG recording has
the advantages of cost, lack of dependency on subject health and responsiveness in measuring the
brain's reactions to stimuli, especially when compared to, say, fMRI. However, the data gleaned from
fMRI analysis is of higher spatial resolution and, most importantly, the area in the brain from which a
signal oringiates can be identi�ed with greater precision [41]. This renders the data from fMRI analysis
particuarly suitable for this thesis, as the physical location of the task-positive and task-negative nodes
occupy very speci�c areas of the brain and we are required to identify them. For this reason, it is fMRI
data that we will use in order to explore the �Task-positive network (TPN)� versus �Task-negative
network (TNN)� debate discussed in Section 1.1.

4



1.3 The Data

The data involves parcellated time series of fMRI blood oxygen level-dependent (BOLD) signals
recorded from 95 subjects performing one of three tasks:(i) an attention task, (ii) a memory task
and (iii) a resting state task [20]. Despite predictions that resting-state neural activity would appear
noisy and uncontrolled, the human brain exhibits patterns of correlated neural activity even when the
subject has not been instructed to perform any task [48, 14, 38]. Such correlations in this resting state
are thought to support the functional organization of the brain [14]. The resting state will be compared
to the other tasks as if it were a directed task itself1. In prior studies, the data has been �parcellated�
which involved selecting regions by subdividing the Automated Anatomical Labeling (AAL) Atlas into
600 regions of similar volume [44]. This is an important step, as this step directly a�ects the size and
nature of the networks which will be produced in Section 2.2, and di�erent parcelations can reveal
di�erent structures in the brain [8]. After this step, we have a 600×T matrix of values for each subject,
where T is the number of time points, giving the BOLD signal for each of these 600 ROIs (regions of
interest) across a series of time points. There are 240 time points for the attention tasks and 140 in
the resting state, but there is no available time series for the memory tasks, as this data has already
been pre-processed with wavelet correlation at scale 2 (this will be outlined in Section 2.2). The data
includes two versions of the same attention task for each subject and both versions will be included
in all the discussions that follow. We will name these two versions �Attention task 1� and �Attention
task 2.� We expect that we will �nd similar results in these two versions. There are also two types
of memory task; a �face memory� task and a �word memory� task. We will refer to these as �Memory
task 1� and �Memory task 2.� Again, we will include both types of memory task in all calculations.
The data includes the co-ordinates of each of the 600 regions (see 2.2).

Each of the 600 ROIs has been assigned exactly one of the following labels: (i) �Task-positive,�
(TP) (ii) �Task-negative,� (TN) and (iii) �Other.� As mentioned in Section 1.1, Fox et al. identi�ed
certain non-overlapping areas of the brain which were labeled �Task-positive� or �Task-negative�. The
co-ordinates of each of our 600 regions have been compared to co-ordinates of these TP and TN regions
and were assigned accordingly. There are 368 such regions, 240 task-positive and 128 task-negative.
The remaining 232 regions are assigned the �Other� label.

2 Constructing the Networks

2.1 Formal De�nition of a Network

The simplest type of network is an undirected and unweighted graph. An unweighted graph will be
referred to as a binary graph. Such a simple graph consists of a set of entities called nodes (or ROIs)
that are connected to each other by an edge. An edge between nodes i and j will be denoted by (i, j).
The number of nodes will always be denoted by N , and a network with N nodes will be said to have
size N . An unweighted network can be represented by an N ×N adjacency matrix A, where

Aij =

{
1, if there is an edge between i and j

0, otherwise.

1However, although we say we will be comparing the tasks, we will in fact be comparing the condition of the brain of
the subjects during these tasks. It is important to make this distinction.

5



In this thesis we will usually study weighted networks, an example of which is shown in Fig. 1. A
weighted network has its �topology� given by an unweighted adjacency matrix and its �geometry� given
by a weighted adjacency matrix. A weighted adjacency matrix is de�ned in the same way, except that
we now denote it by W, and Wij represents the strength of the edge connecting i and j. In the brain
networks we will be studying, we will take Wij ∈ [0, 1]. The procedure for obtaining these matrices is
detailed in Section 2.2. It will be assumed that all networks in this thesis are undirected, hence W
will be symmetric, i.e. WT = W, and hence W will have real eigenvalues [33].
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Figure 1: An example of an undirected, weighted network with its respective adjacency matrix. The
values along the edges correspond to the weights.

2.2 Obtaining The Adjacency Matrices from the Data

Before investigating the networks, we need to create them. The steps we will be discussing are shown
in Fig. 2. As outlined in Section 1.3, the data was previously �parcellated� by selecting regions. The
regions were selected by subdividing the Automated Anatomical Labeling (AAL) Atlas into 600 regions
of similar volume [44]. This is the �rst step in Fig. 2; it identi�es 600 ROIs which will constitute the
nodes of our network. Each node i therefore has a location in the brain speci�ed as a vector (xi, yi, zi).
This location is the same across all subjects, and adjustment has been made for di�erently sized brains.
The form of the data at this stage is a 600 × 240 matrix (where 240 is the number of time points2)
giving the BOLD signal for each node over a series of time points. This matrix is visualised in Fig. 3.

The second step in Fig. 2 is to estimate a similarity between each pair of nodes. We can choose to
create a single network over the entire time interval. However, if we want to study how the network
evolves over the time period, we will have to �chop� the time interval into a speci�ed number of
windows, and then we will estimate an adjacency matrix for each time window. These windows can
either be overlapping or non-overlapping. Our time windows to be non-overlapping for simplicity. If
the time interval chosen is too short, we are more prone to noisy data skewing the similarity between
the nodes. However if it is too long, we will not have su�ciently many adjacency matrices to study

2There are 140 for the resting state case.
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Figure 2: The three steps from raw fMRI data to the adjacency matrices. The �rst step, the parcel-
lation, was done for us. There are many ways to perform the second step, which is calculating the
weighted adjacency matrices (in the picture, blue represents weaker connections while red represents
stronger). We use wavelet correlation at scale 2, which has been successful in extracting important
information in other studies with similar data [29] and also used in a study on the same data [20]. The
�nal step is thresholding, which is outlined in Section 2.3. This �gure is from Ref. [3] and is used with
permission.

the structure of the network over the time period [13]. Hence we will show results for three di�erent
choices of time windows: 24, 8, and 4 time windows of size 10, 30, and 60 time points respectively.
These time windows are visualised in Fig. 3.

We use wavelet correlation at scale 2 (0.06�0.125Hz) to estimate similarity between each pair of
ROIs. This uses the partial maximal overlap discrete wavelet transform, and then the correlations are
estimated by calculating the correlation coe�cient rij ∈ [0, 1] of each pair of nodes i and j. We use
the WMTSA Wavelet Toolkit for matlab3.

For the two attention tasks and the resting state task4, we run this method over the entire time
interval for each subject individually. We remove all data for subject 56 from all 5 tasks due to a
missing signal from a node. We are left with �ve sets of ninety-four 600 × 600 fully weighted, fully
connected matrices giving a correlation coe�cient representing the weight of the edge (i, j) between
each pair of nodes i and j. The matrices produced in matlab are not actually symmetric at machine
precision. The values rij and rji usually di�er by a value of less than 10−16. This causes complications
with some programs in matlab, hence we force the matrices to be symmetric by taking the upper
triangular part UW of the correlation matrix W and setting W = (UT

W + UW)/2. Because of the

3http://www.atmos.washington.edu/~wmtsa/
4Except the memory tasks, since the memory data has already been processed with wavelet correlation at scale 2

over the whole time interval.

7



nature of the wavelet correlation method, we are left with negative correlations for a small portion of
the edges. There are usually very few negative values and this is typical of wavelet correlation processed
fMRI data [29]. The large prevalence of positive correlations is due to a �global signal� from the blood
�ow in the subject's neck. Negative correlations could be due to the pooling of deoxyhaemoglobin in
the veins carrying oxygen away from the brain [40].

There are a few ways to factor in these negative values. One option is to set Wij := |rij | . This
appears to be a natural choice, though we can no longer make a distinction between the negative
correlations with equally strong positive correlations. The method we will use is to set Wij := (rij +
1)/2. This has the advantage of still making a distinction between negative and positive correlations5.
We also remove self-edges (i.e. we set Wii = 0 for all nodes i).

To produce adjacency matrices over the time series, we follow a similar process as above except we
apply the wavelet correlation method to each time window instead. We will only perform this process
for attention task 1.

We now have our weighted adjacency matrices. The third step in Fig. 2, thresholding, is outlined
in Section 2.3 and we will perform this later when required.

window of 10 points

window of 30 points

window of 40 points

240 time points

{ {

N1
N2

N600

S1 S240S2 ... ...

...600 nodes {
Figure 3: A visualisation for the 600×240 BOLD signal matrix. For practical purposes there are fewer
than 240 signal bars shown in this picture. The 600× 1 signal vector for node i is represented by Si.
Three lengths of the �rst window are shown below the matrix. For example, if we choose our window
size to be 10, we use wavelet correlation to compute an adjacency matrix �rst on [S1, S2, . . . , S10] which
will become our �rst adjacency matrix. The second will be computed from [S11,, . . . , S20] and so on.
Note that the brackets are not to scale and do not correspond exactly to the number of signal vectors.

5There is also the option of using wavelet coherence instead of wavelet correlation to produce the correlation coe�-
cients, as negative values are �ltered out. We do not follow this method here due not having the time series data for the
memory tasks.
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2.3 Thresholding

In most cases we will be dealing with fully connected (i.e, an edge exists between each pair of distinct
nodes), weighted networks. However it will be sometimes necessary to study unweighted networks.
One reason may be that we need to extract topological information from certain ranges of weights.
Another case arises when analysing certain results created from the weighted matrices, in that the
results could be somewhat dependent on the average strength of the network, hence studying the
unweighted case removes this possibility. Thresholding is a process which transforms our weighted
networks into binary ones.

We will use a common type of thresholding [28] . It involves choosing a single threshold percentage
parameter p ∈ [0, 1], and given a weighted network W with size N , we calculate pN . In most cases
pN will not be an integer, so we take dpNe. We then order the edges by weight and set the strongest
dpNe edges to 1 and set all others to 0. It is also possible to produce a weighted version of this type
of thresholding, which is simply just setting a certain percentage of the edge weights to 0. However in
most cases in this thesis, when using thresholding we will have an active interest in the binary matrices
as we will be wanting to remove the possibility of higher connectivity contributing bias towards results.

Varying p produces di�erent binary networks. A disadvantage of this type of thresholding is that
it based on the assumption that edges with weights below τ are signi�cantly di�erent to those above.
Therefore, the choice of p is an important one but is usually chosen arbitrarily, and when this type of
thresholding is used we will show results over a range of p.

2.4 Constructing The TPN and TNN Sub-Networks

The next step is to de�ne our sub-networks. A sub-network of a network W is a network WS whose
nodes are a subset of the nodes of W. As stated in Section 1.3, every region is assigned exactly one
of: (i) TP, (ii) TN, or (iii) Other. We will consider six sub-networks. We keep their associated edges
the same but we if remove a node in the process, we also remove all its associated edges. We will
de�ne them in a similar way to other research on this data [20]. We create the networks by deleting
the asociated edges and nodes from the original 600× 600 adjacency matrices. We will name them the
following:

1. Task-positive network (TPP-N),

2. Task-negative network (TNN-N),

3. �Other� network (TOO-N),

4. Task-positive-negative network (TPN-N),

5. Task-positive-other network (TPO-N),

6. Task-negative-other network (TNO-N).

These sub-networks are visualised in Fig. 4. To produce sub-network (1), we remove all of the non
task-positive nodes from the original 600 × 600 adjacency matrices and all of the edges associated
with the respective nodes. There are 128 + 232 = 360 such nodes, and therefore we are left with a
fully connected (except on self-edges; these values are 0), weighted 240× 240 adjacency matrix. This
network is denoted by �TPP�, because we are preserving only the connections between task-positive
nodes and other task-positive nodes. Cases (2) and (3) are analogous. The TNN-N has size 128 and
the TOO-N has size 232.
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Cases (4), (5), and (6) are constructed in a similar, but not identical, way. In sub-network (4),
we remove all the �other� nodes, and all of their associated edges. We are left only with the edges
connecting task-positive and task-negative nodes to task-positive and task-negative nodes. We are left
with a fully connected, weighted 368×368 adjacency matrix. Again, the other two cases are analogous,
the TPO-N is of size 472 and the TNO-N is of size 360.

We apply the process above to all 94 subjects across both versions of the attention task, the
resting state task and both memory tasks. Table 1 shows all the combinations of sub-networks and
their associated dimensions. Figure 4 shows a visualisation of the di�erent connections in each of the
sub-networks.

We note that some of the network diagnostics that we will compute (see Sections 3 and 4.0.5) will
scale with network size. We therefore have to be careful when making comparisons between columns in
Table 1, as the sub-networks have di�erent sizes. Comparing rows causes no immediate complications.

TPN-N

TNO-N

TPO-N

Task-positive

Task-negative

TOO-N

TNN-N

Other

TPP-N

Figure 4: A visualisation of the connections in each of the sub-networks de�ned in Section 2.4. This
�gure shows the three types of nodes, with a typical edge in each of the sub-networks. Note that the
TPO, TNO and TPN networks also include the connections in the TPP, TNN and TOO networks
respectively.
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PP-N NN-N OO-N

Attention task 1 240× 240 128× 128 232× 232
Attention task 2 240× 240 128× 128 232× 232
Resting state 240× 240 128× 128 232× 232
Memory face 240× 240 128× 128 232× 232
Memory word 240× 240 128× 128 232× 232

PN-N PO-N NO-N

Attention task 1 368× 368 472× 472 360× 360
Attention task 2 368× 368 472× 472 360× 360
Resting state 368× 368 472× 472 360× 360
Memory face 368× 368 472× 472 360× 360
Memory word 368× 368 472× 472 360× 360

Table 1: The six possible sub-networks across all �ve tasks. We expect to see similar results in
attention tasks 1 and 2, because they represent two versions of the same task. We also expect to see
similar results in both memory tasks, because although the tasks themselves are di�erent, it has been
demonstrated that they activate similar areas of the brain [17].

3 Simple Network Diagnostics

Here we will explore some simple network diagnostics and their results after applying them to our
networks. Recall the size of a network W is denoted N .

3.0.1 Connectivity

The degree of a node i is the number of edges associated with it, and is denoted ki. In our fully
connected adjacency matrices, ki = N − 1 for all nodes i. The strength of a node i is given by the
column sum (or row sum, because our adjacency matrices are symmetric) of the adjacency matrix:

Si =

N∑
j=1

Wij .

The normalised strength is

S
′

i =
1

N

N∑
j=1

Wij . (1)

This gives the possibility to compare connectivity between columns in Table 1. The connectivity of
a network W is the average of the normalised strength of all nodes i [29], and it will be denoted by
ConnecW.

We also de�ne the density of a network W [33] to be:

densityW =
number of edges in Wthat exist
total possible number of edges .
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We will also study the average strength of the task-positive, task-negative and �other� nodes. This
is di�erent to studying the connectivity of the respective sub-network since we consider the weights of
all edges associated with the respective node label.

3.0.2 Clustering coe�cient

The local clustering coe�cient for a node i in a network with a binary adjacency matrix A is

Cbini =
1

ki(ki − 1)

∑
j,m

AjmAjiAmi. (2)

This formula counts the number of �closed triangles� for which node i participates in, divided by the
maximum number of possible �closed triangles�. More precisely, for distinct nodes i, j, and k, if (i, j)
and (j, k) exist, then we can form a path between i and k, we will choose the notation [ijk] to denote
this. If (i, k) also exists, we can form the path [ijki] which forms a closed triangle. Averaging over

all nodes i, the global clustering coe�cient CbinA of a network with binary adjacency matrix A is the

mean of Cbini over all nodes i.
There are numerous generalisations for the clustering coe�cient of a weighted network W [39]. We

use the one de�ned by Onnela et al. [35]. The local clustering coe�cient for a node i in a weighed
network W is

Ci =
1

ki(ki − 1)

∑
j,k

(ŴijŴikŴjk)
1/3, (3)

where

Ŵij =
Wij

max(W)

and the global clustering coe�cient CW is the mean over Ci over all nodes i.

3.0.3 Centrality

The centrality of a vertex measures the relative importance within the network. There are several
types of centrality measures [12] but we will focus on two of them.

The geodesic betweenness centrality considers the shortest paths within a network, known as the
geodesic paths. We de�ne geodesic betweenness centrality only for a binary networkA, because geodesic
betweenness centrality is not a suitable diagnostic for a fully connected weighted network, for reasons
which we will explore after the de�nition.

A geodesic path γij between nodes i and j is the path of shortest length. We de�ne σij to be the
number of geodesic paths between distinct nodes i and j. We also de�ne σij(k) to be the of geodesic
paths between distinct nodes i and j that contain node k. We then de�ne geodesic betweenness
centrality for a node i in a binary network A as

12



Bi =
∑
i,j,k

σjk(i)

σjk
, (4)

where i, j, k are distinct nodes in A. The geodesic betweenness centrality BA is the average of Bi over
all nodes i.

There are several complications which occur when applying this de�nition to a weighted network.
One of them is that the notion of a geodesic path between nodes i and j for a fully connected network
W becomes meaningless; all nodes are connected to all other nodes hence the geodesic path length
between all nodes will be equal to 1. We would therefore have to use the weight information to de�ne
the length between two nodes and use an algorithm to �nd the shortest path. Another complication
is that nodes with very high strengths typically have short edges to all other nodes and will therefore
participate in most of the shortest paths in a network. Hence except for a very small set of nodes,
a node i in the network will typically have Bi ≈ 0. We therefore will use the thresholding technique
de�ned in Section 2.3 when computing geodesic betweenness centrality.

Eigenvector centrality is another type of centrality measure and it is de�ned recursively. We assign
a relative score to a node based on the relative score of the nodes in which it is connected to. Thus for
a weighted network W (in the binary case we can replace W by A) we de�ne the eigenvector centrality
e(i) of a node i to be proportional to the sum of the eigenvector centralities of the nodes connected to
it:

e(i) =
1

λ

∑
j∈M(i)

e(j) =
1

λ

∑
j

Wije(j)

where M(i) is the set of nodes that i is directly connected to and λ is a non-zero constant. Using the
notation e = (e(i))1≤i≤N we rearrange to obtain

We =λe

which is the eigenvector equation for the matrix W with eigenvector e corresponding to its eigenvalue
λ. Perron-Frobenius theorem states that a real square matrix with positive entries has a unique largest
real eigenvalue and that the corresponding eigenvector has strictly positive components [33]. Thus if we
choose e to be the eigenvector corresponding to largest eigenvalue of W we are guaranteed a positive
value for each e(i). We normalise e so that |e| =1. We could de�ne eigenvector centrality EW of a
network W (W can represent a weighted or a binary network) to be the average of e(i) over all nodes
i, however as |e| = 1, EW is directly correlated with the size of W as N → ∞ [22]. We can however
calculate the average eigenvector centrality for the task-positive, task-negative and �other� nodes in
the original 600× 600 networks.

3.1 Results

3.1.1 Connectivity

We �rst calculate the average connectivity, de�ned in Section 3.0.1, of the 94 subjects of the original
600 × 600 weighted adjacency matrices for each task. We also calculate the standard deviation σ of

13



the group average for each task, via the matlab command std, this range (2σ) is shown as an error
on the displayed result charts. The results for the original 600× 600 are shown in Fig. 5. We observe
no distinctions between the tasks.

We now calculate the average connectivity of the 94 subjects, for each of the weighted six sub-
networks de�ned in Section 2.4, and for all tasks. The results are shown in Fig. 6 for the TPP, TNN
and TOO sub-networks, and in Fig. 7 for the TPN, TPO and TNO sub-networks.

At �rst glance it appears that the memory tasks have a higher connectivity across all sub-networks.
However, the error bars are far too large to make any real distinctions. We also observe no di�erences
between any of the sub-networks nor between any of the tasks.
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Figure 5: Average connectivity of the 94 subjects in the original 600× 600 adjacency matrices.

We now calculate the average strength of the task-positive, task-negative and �other� nodes in the
original 600 × 600 networks. We then average over all subjects in each of the tasks and include the
standard deviation over the subjects. Note that as stated in Section 3.0.1, this calculation di�ers from
connectivity in that we consider the weights of all connections associated with each node type. The
results are shown in Fig. 8. We observe no signi�cant di�erences, neither between any of the types of
node nor between any of the tasks.
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Figure 6: Average connectivity of the 94 subjects in each of the tasks for the TPP, TNN and TOO
networks.
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Figure 7: Average connectivity of the 94 subjects in each of the tasks for the TPN, TPO and TNO
networks.
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Figure 8: Average strength for each node assignment in the original 600× 600 networks.
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3.1.2 Clustering Coe�cient

We mirror the procedure in Section 3.1.1 but using the clustering coe�cient as de�ned in Section 3.0.2.
We calculate the average clustering coe�cient of the 94 subjects for the original 600 × 600 networks,
and for each of the weighted six sub-networks. The results are shown in Fig. 9 for the original 600×600
matrices, in Fig. 10 for the TPP, TNN and TOO sub-networks, and in Fig. 11 for the TPN, TPO and
TNO sub-networks. We make the same observation as in Section 3.1.1; because of the large error bars
we recognise no signi�cant di�erences between any of the tasks nor between any of the sub-networks.
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Figure 9: Average clustering coe�cient of the 94 subjects in the original 600×600 adjacency matrices.

We now calculate the average clustering coe�cient of the task-positive, task-negative and �other�
nodes in the original 600 × 600 networks. We then average over all subjects in each of the tasks and
include the standard deviation over the subjects; the results are shown in Fig. 12. We again observe
no signi�cant di�erences, neither between any of the types of node nor between any of the tasks.
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Figure 10: Average clustering coe�cient of the 94 subjects in each of the tasks for the TPP, TNN and
TOO networks.
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Figure 11: Average clustering coe�cient of the 94 subjects in each of the tasks for the TPN, TPO and
TNO networks.
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Figure 12: Average clustering coe�cient for each node assignment in the original 600× 600 networks.
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3.1.3 Eigenvector Centrality

We now explore eigenvector centrality. Recall from Section 3.0.3 that if we were to calculate the
average eigenvector centrality of the 94 subjects for any network or sub-network we would obtain a
similar result across all tasks, as EW is dependent only on network size. This is con�rmed in Fig. 13.
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Figure 13: Average eigenvector centrality of the 94 subjects in the original 600×600 adjacency matrices.

We will calculate the average eigenvector centrality of the task-positive, task-negative and �other�
nodes in the original 600×600 networks. We average the eigenvector centrality of each node assignment,
and for each subject in each of the tasks. We include the standard deviation of the average over the
subjects; the results are shown in Fig. 14. We are then able to make a comparison between tasks,
because each network has size 600. We observe that the task-positive nodes have greater eigenvector
centrality in attention tasks 1 and 2 and memory tasks 1 and 2, compared to task-negative nodes. We
also observe that the task-positive nodes have greater eigenvector centrality than the �other� nodes in
the resting state task.

3.1.4 Thresholding

Because the results examined in Sections 3.1.1 and 3.1.2 show no separation between tasks and sub-
networks, we now explore connectivity, clustering coe�cient and betweenness centrality using the
thresholding technique as outlined in Section 2.3. Our aim is to analyse only the topology of the
networks; the weights of the edges are now all equal and we focus on the connections that remain.

To make the chart easier to digest, we de�ne thresholding strength j as 1/j = p. Thus a thresholding
strength of 1 corresponds to p = 1, which sets all the weights (except self edges) in a network W to
be equal to 1. A thresholding strength of j = 20 corresponds to p = 1/20 = 0.05, which sets the 5%
strongest edges in W to be equal to 1, and all others to 0. We explore the range j ∈ {1, 2, . . . , 20}.
Our thresholded networks are binary. Connectivity is not a suitable diagnostic for binary networks as
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Figure 14: Average eigenvector centrality for each node assignment in the original 600× 600 networks.

all networks of a given size will have the same connectivity for the same thresholding strength. We
will also not be showing results for eigenvector centrality; our only option would be to calculate the
eigenvector centrality for the node assignments in the 600× 600 networks, as thresholding would give
a huge variance to the number of connections each node would be left with, which would skew the
results.

We start by showing results for the clustering coe�cient. We use the binary clustering coe�cient
as de�ned in Section 3.0.2. We note that because of the large amount of information, there are many
ways to represent these results in charts. We take the approach that is most visually appealing; we
show the thresholding results across the range j ∈ {1, 2, . . . , 20} across all tasks for each sub-network
separately. This has the disadvantage of not being able to visually compare across sub-networks. This
comparison was done, however we will not explore the results in order to not overload this section with
too many charts. No results were found across sub-networks.

Figure 15 shows the average clustering coe�cient of the TPP sub-networks of the 94 subjects for
each task over a range of thresholding strengths. The standard deviation error bars are shown for
each task and for each thresholding strength. We observe no distinction between any of the tasks at
all thresholding strengths; if there were to be any distinction we would at least see some separation
between the error bars. We �nd similar results in the TNN, TOO, TPN, TPO and TNO sub-networks.
We show the TPP and TNN sub-network results in Fig. 16, the TOO and TPN results in Fig. 17 and
the TPO and TNO results in Fig. 18.
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Figure 15: Average clustering coe�cient of the TPP sub-network of the 94 subjects for each task over
a range of thresholding strengths.

0.3900

0.4900

0.5900

0.6900

0.7900

0.8900

0.9900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
lu

st
e

ri
n

g 
co

ef
fi

ci
e

n
t

Thresholding Strength

TPP networks

Att1

Att2

Rest

Mem1

Mem2

0.3700

0.4700

0.5700

0.6700

0.7700

0.8700

0.9700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
lu

st
e

ri
n

g 
co

ef
fi

ci
en

t

Thresholding Strength

TNN networks

Att1

Att2

Rest

Mem1

Mem2

Figure 16: Average clustering coe�cient of the TPP (also shown in Fig. 15) and TNN sub-networks
of the 94 subjects for each task over a range of thresholding strengths.
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Figure 17: Average clustering coe�cient of the TOO and TPN sub-networks of the 94 subjects for
each task over a range of thresholding strengths.
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Figure 18: Average clustering coe�cient of the TPO and TNO sub-networks of the 94 subjects for
each task over a range of thresholding strengths.
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Figure 19: Average betweenness centrality of the TPP sub-network of the 94 subjects for each task
over a range of thresholding strengths.

We now move on to betweenness centrality as de�ned in Section 3.0.3. Our thresholded networks
are binary, hence betweenness centrality is a suitable diagnostic. As in Section 3.1.4 we show the results
for each sub-network separately over the same range of thresholding strengths (i.e. j ∈ {1, 2, . . . , 20}).
The results for the TPP network are shown in Fig. 19. We are not able to make any distinction
between the tasks, however we can observe that the standard deviation grows as the thresholding
strength increases. We �nd similar results in the TNN, TOO, TPN, TPO and TNO sub-networks. We
show the TPP and TNN sub-network results in Fig. 20, the TOO and TPN results in Fig. 21 and the
TPO and TNO results in Fig. 22. Betweenness centrality scales with network size [22] hence we are
not able to compare between sub-networks.

There is one sub-network which is distinct from the rest, the TNN sub-network. We take a closer
look; the larger chart is shown in Fig. 23. It appears that the resting state task breaks away from
the other tasks, however the error bars become too large to make any proper distinctions. We can
however state that the error bars become larger than in the other sub-networks as thresholding strength
increases.

Our initial conclusion is that we are unable to distinguish between tasks and sub-networks based
on connectivity, clustering coe�cient and betweenness centrality alone. There exist other types of
thresholding methods [28] and many other diagnostics [2, 7] but we do not have the space in this thesis
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Figure 20: Average betweenness centrality of the TPP (also shown in Fig. 19) and TNN sub-networks
of the 94 subjects for each task over a range of thresholding strengths.
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Figure 21: Average betweenness centrality of the TPP and TNN sub-networks of the 94 subjects for
each task over a range of thresholding strengths.
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Figure 22: Average betweenness centrality of the TPO and TNO sub-networks of the 94 subjects for
each task over a range of thresholding strengths.
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Figure 23: Average betweennesse centrality of the TNN sub-network of the 94 subjects for each task
over a range of thresholding strengths.
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to explore these fully. We are thus motivated to explore the more complex methods, spectral clustering
and community detection. Our hope is that these methods are able to distinguish between the tasks
and sub-networks.
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4 Spectral clustering

One of the most important aims in many disciplines is to separate a set of objects in to groups such that
objects within each group are similar and objects in distinct groups are dissimilar. The general task is
called cluster analysis and it is a rich subject, with a wealth of methods to choose from [23]. We focus
on one in particular; spectral clustering, and we follow the method speci�ed in the paper by Higham et.
al [21], with a few modi�cations for our purposes. We choose this method due to its previous success
with other fMRI data [8]. Spectral clustering makes use of the spectrum of the Laplacian matrix of
the adjacency matrix of a network. This method can be applied directly to the adjacency matrices but
it is suggested that the communicability matrices, which we will de�ne in Section4.0.6, give the most
e�ective results [10].

4.0.5 The Spectral Clustering Method

Consider a network W (the network can be weighted or binary). We proceed by performing eigenvalue
decomposition on the Laplacian of W, which is de�ned as

L = DW −W, (5)

where DW = diag(Si). We will also use the normalized Laplacian

Lnorm = D
− 1

2

W (DW −W)D
− 1

2

W .

The Laplacian matrix is symmetric and positive semi-de�nite (i.e. all of its eigenvalues are positive).
The smallest eigenvalue is 0 and the corresponding eigenvector is1 (the vector with all elements equal
to 1) [33]. We order the eigenvalues as follows:

0 = λ1 < λ2 < λ3 ≤ . . . ≤ λS ,

and each eigenvector corresponds to the respective mutually orthonormal eigenvectors

v1,v2, . . . ,vS .

We stipulate a normalisation; v1 = 1/
√
S.

The normalised Laplacian matrix is also symmetric and positive de�nite with smallest eigenvalue

0, but the corresponding eigenvector is D
1
2

W1. We order the eigenvalues as follows:

0 = µ1 < µ2 < µ3 ≤ . . . ≤ µS ,

with mutually orthonormal eigenvectors

w1,w2, . . . ,wS
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This time the normalisation is w1 = D
1
2

W1/ ‖ D
1
2

W1 ‖2. We refer to v1 as the Fiedler vector and

to D
− 1

2

W w2 as the normalised Fiedler vector. The sum of all the Fiedler vector components must
equal 0 [21], however this is not the case for the normalised Fiedler vector. The information in these
eigenvectors form the basis for the clustering process and have the potential to di�erentiate between
the nodes of the network. This is done by sorting the components of the Fiedler vector in to ascending
order and identifying which group each component belongs to. We call this the sorted Fiedler vector.

It is also possible to study v3,v4, and so on, in the unnormalised case and D
− 1

2

W w3, D
− 1

2

W w4, and so
on, in the normalised case [1]. We will restrict our attention to the Fiedler vectors in this thesis.

4.0.6 Communicability

Many properties of networks are based on the assumption that most of the transport in the network
�ows along the shortest paths (for example, geodesic betweenness centrality as de�ned in Section 3.0.3).
However, there are di�erent scenarios in which other paths are important, especially in brain networks
[16]. Thus only considering the shortest paths does not account for the global communicability of a
network. We use this intuition to generalise the concept of communicability, following a de�nition �rst
proposed by Estrada et al. [11].

We start with a binary adjacency matrix A. We discuss the concept of a walk between nodes
i and j. A walk is a sequence of (not necessarily di�erent) nodes a1, a2, . . . , am such that for each
i = 1, 2, . . . ,m−1, there exists an edge between ai and ai+1; such a walk is said to have length m. The
important distinction between a walk and a path (de�ned in Section 3.0.3) is that a walk can revisit
nodes and edges along the way [11]. We note the following important observation, which is well-known
in graph theory [4]:

(Am
ij ) = the number of walks of length k between iand j. (6)

We can now de�ne the communicability between a node i and j as a function of the number of walks
of length m = 1, 2, 3, etc. Estrada et al. [11] noted that we can sum the number of walks of length m
over all m ∈ N, and in particular if we use a penalisation factor of 1

m! we have( ∞∑
m=1

Am

m!

)
ij

= (eA)ij , (7)

and note this is always convergent [11].
The communicability of a network with adjacency matrix A is then de�ned as the connectivity (as

de�ned in Section 3.0.1) of the communicability matrix in (7).
We have discussed the communicability for a binary network and we must now consider a weighted

network W. Equation (7) remains valid when applied to W, but it does not count the number of
walks of length m; rather it contributes the product of all the weights from all the edges along the
particular walk. However it has been noted that the above method does not give the desired results
when applied directly to W, as the resulting communicability matrix is disproportionately in�uenced
by nodes with higher strengths [9]. Similar e�ects have been observed in spectral clustering where it
has proved successful to judge the size of a cluster not by the number of nodes, but by the connectivity
of the cluster [21]. We follow the method �rst speci�ed by Crofts et al. [9]. To combat the nodes with
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higher strengths, Crofts et al. introduce normalisation factor in which the weight Wij is divided by
the product

√
SiSj . Recalling that DW = diag(Si), which is a diagonal N ×N matrix, we can de�ne

the communicability between nodes i and j in a weighted network in a similar way as before:

(exp(D
− 1

2

W WD
− 1

2

W ))ij ,

but we quickly run in to a complication; the average communicability is heavily dependent on the size
and density of the networks. In this thesis we introduce a generalisation of the normalisation factor,
and for k ∈ N we de�ne the communicability of factor k of a weighted network W:

(Commk(W))ij = (exp(D
− 1

k

W WD
− 1

k

W )ij . (8)

We are now ready to explore what we can do with communicability and spectral clustering. It is
possible to use the spectral clustering method to attempt to partition the task-positive, task-negative,
and �other� nodes. There are �ve sets of 600 × 600 adjacency matrices, and six sub-networks from
which we can apply the spectral clustering method. However as discussed in Section 1.1, Fox et al. [15]
de�ned the task-positive nodes to be associated with attention tasks, and task-negative nodes to be
associated with resting state and memory tasks. We do not apply the method to the original 600×600
adjacency matrices as the �other� nodes are not intrinsically important. Thus we direct our attention
to the TPN, TPO and TNO sub-networks (we are not able to partition the other three sub-networks
as each sub-network only contains one type of node), but in particular the TPN network is the most
interesting case to us as it contains the two important assignments.

4.1 Results

4.1.1 Communicability Results

We initially direct our attention to the TPP, TNN and TOO sub-networks, and calculate the average
communicability over the 94 subjects for all tasks, for k ∈ {1, 2, 3, 4, 5}. We �rst examine the case
k = 1. The results are shown in Fig. 24. Recall from Section 4.0.6 that we are not permitted
to compare columns, as communicability scales with network size. Thus we direct our attention to
comparing the tasks within each sub-network. We observe that there is almost no di�erence between
any of the tasks. As we shall see in the next few graphs, this is a result of the choice of k and is not a
result of the de�nition of communicability itself.

The results for the cases k = 2, 3, 4 and 5 are shown in Figs. 25, 26, 27 and 28 respectively. For the
case k = 2, we again observe almost no di�erence between any of the tasks. This is not the case when
k = 3, we start to see a small variation between tasks. We are still not able to distinguish between the
tasks. In the cases of k = 4 and k = 5, we observe that the standard deviation grows very large to the
point where the interval 2σ crosses the x-axis.

Based on this information, we take k = 2 and calculate the average communicability over all subjects
in the TPN, TPO and TNO sub-networks. We observe no distinctions between tasks, however we do
note that k = 3 seems a valid choice for the normalisation factor for these network sizes (the size of
these sub-networks is slightly larger than that of the previous examples) as there is a variation between
tasks.
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Figure 24: Average communicability over the 94 subjects for the case k = 1.
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Figure 25: Average communicability over the 94 subjects for the case k = 2.
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Figure 26: Average communicability over the 94 subjects for the case k = 3.
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Figure 27: Average communicability over the 94 subjects for the case k = 4.
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Figure 28: Average communicability over the 94 subjects for the case k = 5.
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Figure 29: Average communicability over the 94 subjects for the case k = 5 in the TPP, TNN and
TOO sub-networks.
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4.1.2 Comparing Node Assignments

We �rst explore the way in which we can show the results. By the method of Section 4.0.6, we can
apply the spectral clustering method to the TPN sub-networks of each of the 94 subjects across all
tasks. This results in 94 × 5 = 470 Fiedler vectors, thus it would be impractical to show in detail
the results for all of these. Instead, we can perform a two-sample t − test on the positions of the
task-positive and task-negative nodes in the sorted Fiedler vector after sorting the components in to
ascending order. This is done by using the matlab command ttest2, and we obtain a p-value for
which we can use to examine the results. We use the convention that p < 0.05 corresponds to a
signi�cant result.
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Figure 30: The p-value averaged over all subjects, associated with the various Fiedler vectors for
di�ering values of k

We show results for varying k, the constant associated with the normalisation power in Section
4.0.6. However we must �rst make a choice whether to use the Fiedler vector or normalised Fiedler
vector. As Higham et al. discussed [21], the nature of the results obtained depend upon the type
of data. We direct our attention only to attention task 1. We work our the p-value for each subject
corresponding to positions in the sorted Fiedler vector and normalised Fiedler vector. We average the
p-value over all 94 subjects. The results are shown in Fig. 30. Based on this result we direct our
attention to the normalised Fiedler vector for this subsubsection. We can now compare the results
across tasks. Varying k, compute the p-value corresponding to the positions of the task-positive and
task-negative in the sorted normalised Fiedler vector for the TPN sub-network. The results are shown
in Fig. 31. We observe that signi�cant results are obtained for all values of k in the attention task 1,
but no other tasks. This means that there is an important distinction between task-positive and task-
negative nodes in the attention task 1. We can view a typical normalised Fiedler vector plot; we choose
subject 2 with k = 1. This is shown in Fig. 32. We observe that although the task-positive nodes
appear equally spaced over the 368 components (x-values), the task-negative nodes are clusterered on
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the right side of the plot.
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Figure 31: Plot of p-values corresponding to the positions of the task-positive and task-negative nodes
in the sorted normalised Fiedler vector for the TPN sub-network for varying k, across all tasks.

We repeat this process for the TPO and TNO sub-networks and we continue our restriction to the
normalised Fiedler vector. For the TPO sub-network, we again vary k, and we compute the p-value
corresponding to the positions of the task-positive and �other� nodes in the sorted normalised Fiedler
vector for the TPO sub-network. The results are shown in Fig. 33 . We observe for all values of k that
no task has a signi�cant average p-value. However we do note that for attention task 1 with k = 1,
there exist 77 subjects with a p-value of less than 0.05, and we �nd similar numbers across all others
values of k and all tasks. Thus in most subjects there seems to be a distinction between task-positive
and �other� nodes.

We repeat this process for the TNO sub-network. The results for the p-values are shown in Fig.
34. We again observe that for all values of k that no task has an signi�cant average p-value.

We brie�y examine the Fiedler vector components after applying the spectral clustering method
to the original 600× 600 network of attention task 1 of subject 2, with k = 1. The results are shown
in Fig. 35 . We observe that the task-positive nodes are clustered to the left of the graph, while the
remaining nodes are clustered to the right. We do not have space in this thesis to fully explore these
results.
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Figure 33: Plot of p-values corresponding to the positions of the task-positive and �other� nodes in the
sorted normalised Fiedler vector for the TPO sub-network for varying k, across all tasks.
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Figure 34: Plot of p-values corresponding to the positions of the task-negative and �other� nodes in
the sorted normalised Fiedler vector for the TPN sub-network for varying k, across all tasks.
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5 Community detection

A widely studied problem in network science concerns identifying tightly connected groups of nodes
known as communities [7]. Intuitively, it seems reasonable �nd certain sets of nodes such that there
exists a greater number of connections (in the weighted case, we replace the number of connections by
the total edge weight) within the sets, but fewer connections between the sets compared to a random
null model (which we de�ne in this section). This intuition becomes clearer by considering a simple
example; see Fig. 36. We consider two types of community detection. The �rst will consider only a
single network when identifying communities. The second will concern multilayer community detection
[32], which will involve assigning each node a community across a series of networks called layers. The
layers could be the networks of the points in a time series, or the networks corresponding to the subjects
themselves.

Karate club graph with Blondel et al.

Figure 36: A well known example; The Zachary Karate Club. The edges represent social ties. Each
member has been assigned to one of four communities. Data was taken from the original paper
[47] and procssed using python (https://bitbucket.org/taynaud/python-louvain, see also the
acknowledgements section).

In both cases, we will be detecting communities by maximising a quality function Q, but �rst we
must make a few de�nitions.

We will be de�ning this for a weighted network W. Let 2m be the total edge weight in the network
and let gi be the community assignment of node i. We have

δ(gi, gj) =

{
1, if i and j are assigned the same community

0, otherwise.
(9)

For a static network we de�ne Q as in [32]:

Q =
1

2m

∑
ij

(Wij − Pij)δ(gi, gj),
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Figure 37: Pictorial representation of a binary multilayer network. The intralayer couplings are repre-
sented by the solid lines; the interlayercouplings by the dashed lines. This �gure is from Ref. [32] and
used with permission.

where Pij is the expected connection strength between nodes i and j under the null model. The choice
is the random null model is a crucial one when studying network community structure [36]. The most
common choice for this null model is Pij = SiSj/(2m). This is the expected connection strength if
the weight of edge (i, j) is to arise by chance [33]. Thus, high values of Q indicate network partitions
in which there is a larger edge weight within the group than expected by chance. With this choice of
Pij , the function that we are maximising is

Q =
1

2m

∑
ij

(
Wij −

SiSj

2m

)
δ(gi, gj). (10)

We can now generalise this for the multilayer case. Denoted the layers by t = 1, 2, . . . , S. We must
consider interlayer couplings and intralayer couplings which are shown pictorially in Fig. 37. The
intralayer coupling for nodes i and j on a layer t is denoted by Aijt. The interlayer coupling that
connects node j in layer r to itself in layer t is denoted by Cjrt. We let

2µ =
∑
ijt

Aijt +
∑
jrt

Cjrt, (11)

which is the sum of all of the edge weights in the multilayer network. For a speci�c layer t, we generalise
the parameters gi, m, and Si in equation (10) to git, mt, and Sit. We now introduce γ, which is a
resolution parameter ; it is responsible for the number of communities across the multilayer network
and the number of nodes in them. Lambiotte et al. [26] identi�ed γ as the inverse of the timescale of
a random walk on the network. Smaller values of γ result in larger communities; larger values result
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in smaller communities. The default resolution is γ = 1 however γ is allowed to vary between 0 and∞
but we will typically be interested in γ < 1.05 (this will be explored in Section 5.1). It is also possible
to specify a di�erent resolution parameter for each layer but for simplicity we will keep γ constant.
As for Cjrt, we presume for simplicity that Cjrt ∈ {0, ω}, where Cjrt = 0 represents the absence of an
interlayer edge and Cjrt = ω represents the presence of an interlayer edge. We will explore a range
of values for ω; it is allowed to vary between 0 and ∞, but we will direct our interest to the interval
[0, 0.3] (again, this will be explored in Section 5.1). The case ω = 0 corresponds to no coupling between
layers and results in single-layer community detection. We thus have for a multilayer network, as in
[32];

Qmulti =
1

2µ

∑
ijtr

[(
Aijt − γ

SitSjt

2mt

)
δ(t, r) + δ(i, j)Cjrt

]
δ(git, gjt). (12)

The output gives a community assignment for each node in each layer. When we consider a
multilayer network consisting of subjects as the layers, we will use the word categorical (multilayer)

network. We use the �generalized Louvain� matlab code6 to maximise Q and Qmulti.

5.0.3 Community diagnostics

We now explore in detail one of the diagnostics we can compute after performing community detection.
This is the notion of the �exibility of a node i. Flexibility was �rst de�ned by Bassett et al. [3] in
2011. It is a measure that captures changes in the local properties of of a node.

Two de�nitions of �exibility have been proposed thus far [3]. To state them precisely we introduce
community notation as follows: if node i, over layers t = 1, 2, . . . ,H, belongs to the (not necessarily
distinct) communities gi1, gi2, . . . , giH we write comm(i) = (gi1, gi2, . . . , giH), where as before git is the
community assignment of i in layer t. The git will be integers that index the communities.

We de�ne �ex1(i) of a node i to be the number of times i changes communities in successive layers
(i.e. the number of times we have git 6= gi(t+1)). We de�ne �ex2(i) of a node i to be the total number
of distinct communities node i belongs to. We refer to the �rst de�nition as �exibility 1 and the
second as �exibility 2. To compare these two de�nitions of �exibility, suppose we have 8 layers with
comm(i) = (1, 2, 1, 2, 2, 2, 1, 3). We then have �ex1(i) = 5 and �ex2(i) = 3.

This de�nition was motivated by a multilayer network composed of time series networks. This
means measuring the community assignment of a node over a period of time. Our multilayer networks
include the possibility of the layers being the subjects themselves, hence although it is possible to
calculate both de�nitions of �exibility in this case (the calculation is performed in the same way),
it does not make sense to use the �rst de�nition because we are not interested in the behavior of
the node over a time period. Shu�ing the layers in the catagorical case (which would not a�ect the
community assignments as the layers in this case are not ordinal) would give us a di�erent answer. It
is therefore not appropriate to call this calculation (either �ex1or �ex2) ��exibility� in the catagorical
case. However it raises the question of whether these two diagnostics are correlated:

1. Calculating the �exibility for each node (averaging the �exibility of each node across all subjects)
in a multilayer network composed of a time series, where the layers make up the adjacency
matrices of each time window (as in the method speci�ed in Section (2.2)); we call this ordinal
�exibility.

6http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
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2. Calculating the �exibility of each node via the catagorical multilayer network; we call this cate-
gorical �exibility.

This process is illustrated in Fig. 38 . It is not immediately mathematically clear if there exists such a
link. Note that this comparison can only be done on attention tasks 1 and 2 and resting state because
there is no time series data for the memory tasks. We explore results only from attention task 1. As we
shall see later in Section 5.1, it is advantageous to create a third de�nition of �exibility. We will call this
de�nition �exibility 3. For a node i with community assignment comm(i) = (gi1, gi2, . . . , giH) suppose
that i is in h distinct communities gi1, . . . , gih, and let n(git) be the total number of appearances
in community git. Suppose further that n(gi1) > n(gi2) > . . . > n(gih). This is allowed as we are
permitted to reorder the layers in the categorical case. De�ne

�ex3(i) =

h∑
j=1

f(j)n(gij) (13)

where f(j) is a weighting function. The default choice for the weighting function is f(j) = j, but
we will explore what happens when we increase the �strength� of this weighting factor. The idea of
this de�nition is to give a greater variability of �exibility of nodes when using multilayer community
detection. For example, if there were a total of 7 communities identi�ed across the 600 nodes and 94
layers, there would only be a possible of 7 values for �ex2(i) across all nodes i. Our motivation for this
de�nition will become clearer in Section 5.1.

The �exibility of a network �exk(W) where k ∈ {1, 2, 3} is de�ned as the mean �exibility k over
all nodes i.

To explore this connection, we will need to de�ne a random-graphs null model to which to compare
the results. There are many models of random-graphs [33], however we introduce a basic random-graph
model. Recall the matrix in Fig. 3 in Section 2.2. We randomly permute the signal vectors Si, and
re-create the matrices with the method from Section 2.2 and follow the method speci�ed in Fig. 38. We
perform this step multiple times and record the results in the form of a correlation coe�cient between
ordinal and categorical �exibility and compare the equivalent result obtained from the unaltered data.

5.1 Results

As discussed in Section 5 we must �rst choose a value for the resolution parameter γ and the interlayer
coupling ω. There is no best choice, however we can vary these parameters and exclude values which
give us unsuitable results. For example, if γ is su�ciently large, each node will be assigned its own
individual community thus the �exibility (under all versions of �exibility) for all nodes would be equal.
If ω is su�ciently large, the community assignment of node i will remain constant throughout all layers
resulting in a �exibility of 0.

We calculate the categorical �exibility 2 of the TNN sub-network for attention task 2, resting state,
and memory task 1. Let Ak represent the TNN sub-network in the attention 1 task for subject k, Bk

the TNN sub-network in the resting state for subject k and Ck the TNN sub-network in memory task
1 for subject k. We calculate the quantity

di�(k) = |�ex(Ak)− �ex(Bk)|+|�ex(Ak)− �ex(Ck)|+ |�ex(Ck)− �ex(Bk)|
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Figure 38: An illustration of the method we use to compare ordinal �exibility and categorical �exibility.
Recall Fig. 3 from Section 2.2. The left hand route explores ordinal �exibility; the layers Wi represent
time points in the time series (for a single subject). These layers are ordinal as they are ordered
with respect to time. The right hand route explores categorical �exibility; the layers Li represent the
adjacency matrices of the subjects. The order of these layers is irrelevant and we can shu�e them as
we please. The comparison will be done node-wise, producing a scatter plot of 600 points.
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a large di�erence. We vary γ in steps of 0.01 and ω in steps of 0.02.

for each subject k. We then calculate:

di� =
1

94

94∑
k=1

di�(k)

The results are shown in Fig. 39. We observe that for values of ω > 0.1 we obtain no di�erence
between �exibility across attention 1 task, resting state and memory task 1. We choose ω = 0.05. The
parameter γ seems less important and we choose γ = 1.02. We use these values in all the community
detection that follows.

The justi�cation for only observing this particular sub-network is solely due to computing power.
Calculating di�(k) for all subjects k and all networks and sub-networks while varying γ and ω would
be extremely computationally intensive; it would take many months on a home computer. Thus we
choose the TNN sub-network which is of size 128 which increases computational speed, and we only
look at three of the tasks.

5.1.1 Standard Flexibility Results

We calculate categorical �exibility using �exibility 2 of the original 600×600 adjacency matrices across
all tasks. We also calculate the standard deviation of the �exibility of the nodes (we cannot calculate
the standard deviation over the subjects as each node is assigned a single community for each subject).
The results are shown in Fig. 40. We observe no distinction between the tasks.
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Figure 40: Categorical �exibility using �exibility 2 of the original 600× 600 adjacency matrices across
all tasks.

We now calculate the categorical �exibility, in the same way as above, of the three sub-networks
TPP, TNN and TOO. The results are shown in Fig. 41. We observe a clear distinction between the
attention and memory tasks, and also between the resting state task and memory tasks, in the TNN
sub-network. We are not able to make a comparison between tasks as the sub-networks have di�erent
sizes, and as γ remains constant, a varying number of communities are produced.

We repeat this calculation for the TPN, TPO and TNO sub-networks. The results are shown in
Fig. 42. We observe no di�erences across tasks in any of the sub-networks.
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Figure 41: Categorical �exibility using �exibility 2 of the three sub-networks TPP, TNN and TOO
across all tasks.
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Figure 42: Categorical �exibility using �exibility 2 of the three sub-networks TPN, TPO and TNO
across all tasks.
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5.1.2 Ordinal Flexibility Versus Categorical Flexibility

We will now attempt to make a comparison between ordinal �exibility and categorical �exibility with
the method outlined in Section 5.0.3. We �rst illustrate the complication that appears when we use
the second de�nition of �exibility, �exibility 2. We take 6 time windows of size 40 each, perform single
layer community detection on the adjacency matrix corresponding to each time window (for each
subject) and calculate the �exibility of each node averaged over all 94 subjects. We then calculate
the categorical �exibility by performing the multilayer community detection and then computing the
�exibility of each node. Recall this result is for the 600× 600 adjacency matrices for attention task 1.
The results are shown in Fig. 43. The complication is that when using �exibility 2, we obtain only
three possible values for �exibility. The correlation coe�cient (calculated using corrcoef) is −0.0778
with associated p-value of 0.0568.
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Figure 43: A scatter plot of the 600 nodes in the case of 6 time windows using �exibility 2. The x-axis
represents the ordinal �exibility of the respective node; the y-axis the categorical �exibility. A linear
line of best �t is shown in black.

We repeat the calculations using �exibility 3 as de�ned in Section 5.0.3. We take f(j) = j, and note

that if we increase the strength of this normalisation function, i.e. if we take f(j) = jj
j

for example,
then each new additional community a node i belongs to increases the �exibility by an increasingly
large amount. This isolates the values of �exibility corresponding to how many unique communities
each node belongs to. Thus if we took this as our normalisation factor, we would obtain a similar
result to Fig. 43. The results for the case f(j) = j are shown in Fig. 44. This time, the points
are distributed more appropriately around the chart and we see a small positive correlation. The
correlation coe�cient is 0.2611 with associated p-value of 0.0001.
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Figure 44: A scatter plot of the 600 nodes in the case of 6 time windows using �exibility 3. The x-axis
represents the ordinal �exibility of the respective node; the y-axis the categorical �exibility. A linear
line of best �t is shown in black.

We repeat the calculations again, using �exibility 3, but with 24 time windows. We observe similar
results to those in the case of 6 time windows. The correlation coe�cient is 0.1507 with associated p-
value of 0.0002. This process was repeated again for the case of 8 time windows and we again observed
similar results.

These results appear to be signi�cant, but we must now compare them to a random-graph null
model. We use the null model as described in 5.0.3. We choose 6 time windows, in attention task 1. We
perform the randomisation of the time signals and calculate the associated p-value of the correlation
between ordinal and categorical �exibility. We perform this process 10 times. We note that we only
perform this on the �rst 50 subjects due to computational constraints7. The results are shown in Fig.
46. A typical scatter plot is shown in Fig. 47. We observe no signi�cant results. This support the
theory that there is a correlation between ordinal �exibility and categorical �exiblity as hypothesised
in Section 5.0.3, however signi�cantly more trails need to be performed.

7Multilayer community takes a long time to computer in matlab. The computational time increases with the number
of layers.
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Figure 45: A scatter plot of the 600 nodes in the case of 24 time windows using �exibility 3. The
x-axis represents the ordinal �exibility of the respective node; the y-axis the categorical �exibility. A
linear line of best �t is shown in black.
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Figure 46: A scatter plot showing the p-values associated with the 10 random-graph models we com-
pute.
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Figure 47: One of the the scatter plots showing the ordinal �exibility (x-axis) and categorical �exibility
(y-axis) of each of the 600 nodes.
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5.1.3 Categorical �exibility of the Three Node Assignments

We �nish with a plot of the average categorical �exibility, using the new de�nition, of the task-positive,
task-negative and �other� nodes across all tasks. The results are shown in Fig. 48. We observe no
signi�cant results.
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Figure 48: Average values for �exibility 3 for the three node types. The error bars show the variation
in each node type.

6 Discussion

The �rst results explored in Sections 3.1.1, 3.1.2 were not promising, as we found no distinction
in both the original 600 × 600 adjacency matrices and the six sub-networks, across all tasks, based
on connectivity and the clustering coe�cient alone. Eigenvector centrality, explored in Section 3.1.3
started to show signs of some distinction between the task-positive and task-negative nodes themselves.
However, the original aim of Fox et al.[15] was to identify certain networks of the brain associated with
certain types of tasks and not just the regions by themselves, hence the eigenvector centrality results
do not give us enough information about the structure of the networks. However, we can conclude
that the task-positive nodes, across all tasks, are generally connected more strongly to other nodes of
the same type.

The thresholding technique deployed Section 3.1.4 did not yield any interesting results. We can
only conclude that the tasks are not distinguishable between each other in any of the sub-networks,
based on the simple diagnostics; connectivity, clustering coe�cient and betweenness centrality.

The techniques explored in Section 4.1 yielded more promising results. As stated in Section 4.0.5,
the aim of the spectral clustering method is separate a set of objects in to groups such that objects
within each group are similar and objects in distinct groups are dissimilar. The method failed to
produce a perfect (or almost perfect) separation between the node assignments; however the results
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obtained show signs of separation. It therefore suggests there are common properties shared within
each category of node. The generalisation of the normalisation in Eq. 8 is justi�ed as we observed in
the results. This is because the nature of the communicability values obtained depend upon the size
(and to a lesser degree, the average strength) of the network. The original de�nition given by Crofts et
al. [9] is unsuccesful in producing suitable communicability values. However, even with an appropriate
value of k (recall we chose k = 3) we were unable to make any conclusions on the nature of the six
sub-networks related to the task-positive and task-negative node assignments.

The �exibility results obtained from community detection explored in Section 5.1 show some dis-
tinction, based on average �exibility, between tasks in the two sub-networks TPP and TNN. We also
observed a curious result in Section 5.1.2 which was based upon our generalisation of the notion of
�exibility. We noted that this new de�nition, �exibility 3, is more suitable for calculating categor-
ical �exibility than the previously proposed de�nitions (which were motivated by an ordered time
series). With this new de�nition, we were unable to make any distinctions between task-positive and
task-negative nodes in the original 600× 600 networks.

7 Conclusion

In this thesis we explored many methods for which only a small portion showed promising results.
This con�rms R Nathan Spreng's critisisms [42] of the nature of these assignments are well-founded.
The promising results here motivate further research into rede�ning these networks, as although other
research in to these networks networks have yielded important results [19, 27], the wide variety of
methods used in this thesis do not support the original aims of the de�nition of the task-positive and
task-negative subnetworks. However there are many other methods in network science which could
be used to explore further research into these assignments. A small selection of these are discussed in
Section 7.1.

7.1 Further Investigations

This thesis only explores a small portion of the methods which were used in this project. There are
other avenues in which we can explore to analyse the structure of task-positive and task-negative
networks.

7.1.1 Spectral Clustering Applied to Directly to Sub-networks

It is possible to use the spectral clustering method outlined in Section 4.0.5 to compare two groups of
networks. For example, we could compare the group of 94 TPN networks in attention task 1 to the
group of 94 TPN networks in memory task 1. This is done by transforming the data in each network
in to a column vector and constructing a matrix V for which Vij represents the similarity beween
networks i and j. The spectral clustering method can then be applied to V. The disadvantage of this
method is that there are a large number of combinations of groups of networks we could study and
hence analysing the results becomes tricky. This was explored in detail during the project, but needs
further work in order to understand the results.
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7.1.2 Additional Thresholding Techniques

There exist more thresholding techniques which are able to reveal di�erent structures in networks [28].
We explored only one type of thresholding.

7.1.3 Rede�ning Sub-networks Based on the Data

It is theoretically possible to de�ne new sub-networks, based on the original aims of the task-positive
and task-negative networks, using the network data itself. We can, for example, construct a sub-
network consisting of the n strongest nodes in a particular task. We can then reuse the methods in
this thesis to explore these new sub-networks.
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