
The dispersion relation and time evolution of a twisted planar ring

Abstract

In this report I study the Kirchhoff equations, which are the basis for considering elastic fil-
aments, in the context of a twisted planar ring. I apply an arc length preserving perturbation
scheme that perturbs the basis used to describe the system directly, and analyse the generated
normal mode solutions up to second-order. I also consider how these modes evolve in time.

1 Introduction

Filaments, elastic rods which are far longer than the scale of their cross section, can be found in
many physical systems [8, 9, 12]. One of the initial inspirations for their study was the difficulties
faced laying marine telephone cables; currents forced regions of high and low tension along a cable,
causing the cables to writhe and not lay straight. Work by Zajac [18], for example, began to explore
this problem. Other work in this area considers initially straight rods and their evolution [11, 15];
however the twisted planar ring, a rod in a planar ring with some twist about the central axis, is
also of interest but has not been examined as extensively [3,6]. For example, there are applications
in considering thermal fluctuations in DNA, [13, 14], where the modes described in this report are
considered as a statistical mechanical ensemble of many DNA rings modelled as elastic rings. They
have also been used considering how microscopic elastic rings (such as a bundle of F-Actin formed
into a circle) can act as self-propelling motors [16].

A well established approach to studying elastic rods is to consider the Kirchhoff equations, a
classically derived set of equations describing the system. In order to study these previously, much
work has gone into static stability analysis, outlined in [3], and numerical modelling [10]. Static
analysis is limited, as it does not explain the time evolution of the modes seen in numerical models.
This report follows the work of Goriely and Tabor [3,4,6,7] by expanding an arc length conserving
direct basis expansion, which obtains explicit forms for the modes and details their evolution. It
also lays the foundation for a nonlinear analysis such as that previously completed for straight
rods [4].

In this report I will present the Kirchhoff equations under this perturbation scheme (sections
2, 3) in the specific case of the twisted planar ring (section 4). I consider the first-order solution
to the problem, present the dispersion relation defining the modes, and consider the shape these
modes take (section 5). I then proceed to consider their evolution in time (section 6) before finally
considering how the form of these modes differs at higher order (section 7).
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2 The Kirchhoff Model

The first tool that is needed to analyse a rod in space is an appropriate geometrical construction.
A local, orthonormal basis is required to describe the twisting rod, call it D = {d1, d2, d3}. Take a
curve in space, x(s, t), and initially define its tangent to be the first vector of this triad, d3 = x′,
where the ′ denotes differentiation with respect to s. Thus d1 and d2 describe the orientation of
the cross section in the tangent plane. This construction is called the director basis.

Typically in differential geometry [2], the director basis is constructed with d1 = d′3 and d2 =
d3×d1, a basis known as the Frenet basis. This basis is convenient when considering curves in space
as its spatial evolution can be completely described by the Frenet-Serret formulas [2]. However this
basis is inappropriate in this instance, as it only considers a curve, not a rod which can have twist.
For a ring of twist T , and inverse radius k, define the twist density γ = Tk. An appropriate
basis can be constructed by rotating the Frenet basis by angle γs about d3. For a planar ring, the
standard Frenet basis would be defined by B = {b1, b2, b3}, where

b1 = (sin(ks), cos(ks), 0)

b2 = (0, 0, 1)

b3 = (cos(ks),−sin(ks), 0).

A director basis D = R(γs)B is then created, where R(γs) is the relevant rotation,

d1 = (cos(γs)sin(ks), cos(ks)cos(γs), sin(γs))

d2 = (−sin(γs)sin(ks),−cos(ks)sin(γs), cos(γs))

d3 = (cos(ks),−sin(ks), 0) .

(1)

The evolution of this geometry is described by the curvature and spin tensors; these are defined
by D′ = KD and Ḋ = WD respectively, with the dot representing differentiation with respect to
t. As the director basis is orthonormal, DTD = I. Differentiating this identity shows

DTKTD +DTKD = 0,

hence K +KT = 0. Thus K and W are antisymmetric, defined by

K =

 0 κ3 −κ2
−κ3 0 κ1
κ2 −κ1 0

 , W =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 .

This also introduces the curvature and spin vectors, κ and ω respectively. These two tensors must
be compatible under cross differentiation, that is W ′ = K̇. This condition leads to the compatibility
equation:

W ′ − K̇ = [W,K]. (2)

where [W,K] is the matrix commutator, WK −KW .
Armed with this construction for the director basis, the dynamics of the problem can be consid-

ered. All forces and moments can be expanded in the director basis, F =
∑
fidi and M =

∑
midi.

Conservation of linear and angular momentum yields the Kirchhoff equations [3]
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F ′′ = ρAd̈3 (3)

M ′ + d3 × F = ρI(d1 × d̈1 + d2 × d̈2), (4)

where I is the moment of inertia of the circular cross section A. The constitutive equation for the
moment when considering a circular cross section is given by

M = EI [(κ1 − κµ1 )d1 + (κ2 − κµ2 )d2] + 2µI(κ3 − κµ3 )d3, (5)

where E is the Young’s modulus for the material, µ is the shear modulus, and κµ represents the
unstressed configuration. I shall consider an initially unstressed rod, for which κµi = 0. Note that
it is possible to study systems in which this is not the case, such as in the helix hand reversal
exhibited in climbing plants [5].

There are a few assumptions in this analysis that need to be considered. The rod has a uni-
formly circular cross section; no shear deformation is allowed. Thus the moment of inertia is equal
regardless of direction considered. There is also no axial extensibility, and the constitutive relation
for the moment, given by Eq. (5), is assumed linear in curvature.

In order to convert these equations into a more manageable form, scaling is introduced [1]:

t→ t

√
Iρ

AE
s→ s

√
I

A
F → FAE

M →ME
√
AI κ→ κ

√
A

I
ω →

√
AE

Iρ
.

On the application of this scaling, the Kirchhoff equations become

F ′′ = d̈3

M ′ + d3 × F = d1 × d̈1 + d2 × d̈2 (6)

M = κ1d1 + κ2d2 + Γκ3d3.

The result of this scaling is that there is now only one remaining parameter, Γ = 2µ/E, which
is a measure of the elasticity of the material. Most materials have a Γ between 2/3 for perfectly
incompressible materials and 1 for hyper-elastic materials. This is similar to Poisson’s ratio, and
further discussion of material elasticity can be found in [17]. Together with the compatibility
equation (Eq. (2)), the scaled Kirchhoff equations in Eq. (6) form a complete description of the
system.

3 Perturbation Scheme

In order to look at solutions to Eq. (6), one can either model it numerically [10], or use perturbation
theory. This section details the perturbation scheme used. I follow the path set out by Goriely and
Tabor [3, 4, 6, 7] and perturb the director basis directly,

D = AD(0) =
(
I + εA(1) + ε2A(2) + ...

)
D(0),
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where A(m) represents the mth order perturbation of A. By requiring the director basis to remain
orthonormal, it is possible to find the forms of the matrices A(m). Starting from the requirement
that the director basis must be orthonormal, i.e. DTD = I, this gives(

D(0)
)T (

I + ε
(
A(1)

)T
+ ε2

(
A(2)

)T
+ ...

)(
I + εA(1) + ε2A(2) + ...

)
D(0) = I.

This equation gives an expression at each order in ε defining the matrices Am. To first-order in ε,

DT

((
A(1)

)T
+A(1)

)
D = 0.

It follows that A(1) is an antisymmetric matrix,

A(1) =

 0 α
(1)
3 −α(1)

2

−α(1)
3 0 α

(1)
1

α
(1)
2 −α(1)

1 0

 .

This approach is continued at higher order, for example at second-order the matrix A(2) must
satisfy (

A(2)
)T

+A(2) +
(
A(1)

)T
A(1) = 0

In other words, it is composed of an antisymmetric part, introducing the parameters α
(2)
1 , α

(2)
2 and

α
(2)
3 , and a symmetric part depending upon α(1),

A(2) =

 0 α
(2)
3 −α(2)

2

−α(2)
3 0 α

(2)
1

α
(2)
2 −α(2)

1 0

+
1

2

 −(α
(1)
2 )2 − (α

(1)
3 )2 α

(1)
1 α

(1)
2 α

(1)
1 α

(1)
3

α
(1)
1 α

(1)
2 −(α

(1)
1 )2 − (α

(1)
3 )2 α

(1)
2 α

(1)
3

α
(1)
1 α

(1)
3 α

(1)
2 α

(1)
3 −(α

(1)
1 )2 − (α

(1)
2 )2

 .

This structure is also exhibited at higher order, with A(m) being composed of an antisymmetric
matrix—adding new parameters—and a symmetric one depending upon the lower order terms.

All terms can be expanded in terms of this expansion of the director basis. Firstly, the curvature
tensor, which defines spatial derivatives D′ = KD,

A′D(0) +A
(
D(0)

)′
= KAD(0)

A′ +A
(
K(0)

)′
= KA

K =

(
A′ +A

(
K(0)

)′)
AT .

Secondly for the spin tensor, which defines temporal derivatives Ḋ = WD,

W =

(
A′ +A

(
W (0)

)′)
AT .

4



And finally, for the force vector f ,

f i = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . .

With all of the key quantities expanded, it is now possible to construct the Kirchhoff equations
to nth order. This results in a set of equations at each order in ε, in terms of the six-dimensional
vectors {α(n),f (n)} and their derivatives.

4 The Planar Ring

Everything preceding this section has been generally applicable for any rod with a circular cross
section, however now I shall look at the specific case of a planar ring with some axial twist—the
twisted planar ring. The geometry of this ring is described by Eq. (1), with the director basis
rotating in the tangent plane as s varies. Requiring continuity of this basis at s = 2π/k requires
γ/k to be an integer, forcing periodic boundary conditions. For a ring of inverse radius k and twist
density γ, the curvature and force take the unperturbed forms

κ(0) = (k sin(γs), k cos(γs), γ)

f (0) = (Γγk sin(γs),Γγk cos(γs), 0) .

When these expressions are substituted into the expressions given by the perturbation ex-
pansion of the Kirchhoff equations, the resulting system contains terms depending upon s—it is
non-autonomous. This is tackled by introducing a transformation, consisting of a rotation of angle
γs and a reflection, described by the matrix

Rγ =

 cos(γs) −sin(γs) 0
−sin(γs) −cos(γs) 0

0 0 1

 . (7)

The application of this rotation to the director basis and the vectors α(n) and f (n) forms an au-
tonomous system. To first-order, in terms of the six-dimensional vector β = β(1) = {Rγα(1), Rγf

(1)},

2Γγk2β′1 + β̈2 + Γγk3β3 − kΓγβ′′3 − k2β4 + β′′4 + 2kβ′6 = 0

−β̈1 + β′′5 = 0

Γγkβ′′1 − Γγk3β1 + 2Γγk2β′3 − 2kβ′4 − k2β6 + β̈6 = 0

β′′1 − β̈1 − (Γ− 1)k2β1 − Γγβ′2 + Γkβ′3 + β5 = 0

Γγβ′1 − β̈2 + β′′2 + Γγkβ3 − β4 = 0

−kΓβ′1 + Γβ′′3 − 2β̈3 = 0.

This is an equation of the form

L̂0 · β = 0. (8)

This transformation can be carried out at higher order, generating the equation

5



Figure 1: The dispersion relation between <(σ2) and n (as defined by the mode solutions eikns+σt),
plotted for k = 1, Γ = 1 and γ = 5. The three possible curves for modes to lie on are shown here,
but they also extend symmetrically into n < 0. The blue curve represents the possible unstable
modes—with n = 2, 3, 4, 5 being possible unstable modes for the system. Values of n greater than
the critical value, here nc ≈ 5.10, have no possible unstable modes. The red and black curves show
stable branches of the dispersion relation.

L̂0 · β(n) = Hn[β(1),β(2), . . . ,β(n−1)], (9)

where Hn is a function of β(m)s and their derivatives up to order n − 1. This system is solvable,
and in the next section I begin to explore the first-order solution.

5 The Dispersion Relation and Normal Mode Solutions

Consider normal mode solutions to Eq. (8) of the form β = xeσt+ikns; the periodic boundary
conditions require n to be an integer. Substituting this solution into Eq. (8) yields an equation of
the form M · x = 0, with

M =



2iΓγk3n σ2 Γγk3(1 + n2) 0 2ik2n
−σ2 0 0 0 −k2n2 0

−Γγk3(1 + n2) 0 2iΓγk3n −2ik2n 0 −k2(1 + n2)
−σ2 − k2

(
Γ− 1 + n2

)
−iΓγkn iΓk2n 0 1 0

iΓγkn −σ2 − k2n2 Γγk −1 0 0
−iΓk2n 0 −2σ2 − Γk2n2 0 0 0

 .

(10)
Solutions can only exist if the determinant of the matrix M is 0. This requirement generates

the following dispersion relation for σ and n,
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Figure 2: Some of the possible modes of equation 8. Pictured are n = 3 (left) and n = 6, however
all modes of integer n are possible, with symmetry according to the value of n.

− k10n6
(
−1 + n2

)2
Γ
(
k2
(
−1 + n2

)
− γ2Γ2

)
− k8n4

(
−1 + n2

) (
k2
(
−1 + n2

) (
−2 + Γ + 2n2(1 + Γ)

)
+ 2Γ

(
γ2Γ + n2

(
1− γ2Γ

)))
σ2

− k4n2
((

1 + n2
)

Γ + k2
(
n2(−4 + Γ) + 3Γ + 2n4(2 + Γ)

)
+ k4

(
−1 + n2

)2 (
2(−1 + Γ) + n2(4 + Γ)

))
σ4

− 2k2
(

1 + n2 + k4n2
(
−1 + n2

)2
+ k2

(
1− n2 + 2n4

))
σ6 = 0.

(11)
This equation is cubic in σ2. A plot of σ2 against n is shown in Fig. 1, which uses the values

k = 1, γ = 5 and Γ = 1. This shows the possible values σ, which details the time evolution of the
system, can take for each mode n. This is discussed further in the next section.

At this stage, it is possible to start to construct some of the solutions and generate some plots.
The solution for σ is given by Eq. (11), and the values of the vector x by the the solution to
M ·x = 0. Thus α(1) is given by transforming β back to the original frame using the inverse of the
original transformation given in Eq. (7),

α(1) = R−1γ . (β1, β2, β3) .

The curve x(s, t) can then be formed by integrating the first-order d3,

x(s, t) =

∫
d3ds = x(0)(s, t) +

∫ (
α
(1)
1 d2 − α(1)

2 d1

)
ds.

The general form of these modes is defined by their n value, and some of these plots are shown, for
n = 3 and n = 6 in Fig. 2. The other modes follow this pattern; each mode has n-fold symmetry.
Their evolution is detailed in the next section.

6 Time Evolution of Modes

The time evolution of the system is determined by the term eσt. The solutions fall into three
classes, neutral modes with σ = 0, unstable modes with σ > 0, and stable modes with σ < 0. It is
clear that all of these types of solutions are seen in the dispersion relation displayed in Fig. 1.
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Figure 3: The time evolution of the mode n = 3. At times past the pertubative regime, the ring
starts to touch at the centre as the images suggest. This shows the limited nature of the first-order
solution.

Firstly, there are neutral modes at n = 0,±1. The n = 0 being the entirely unperturbed
solution, and n = ±1 being a planar ellipse shape. As these modes have σ = 0, they remain in this
configuration for all time.

Secondly, there are unstable modes in the range 1 < n < nc, in this case n = ±2,±3,±4,±5. If
unstable modes exist, they dominate any real situation due to their ever increasing amplitudes. The
fastest growing mode is the one with the greatest value of σ, which will dominate any real situation
over long periods of time. This helps to explain why certain modes appear in numerical analysis [10].
Here, the fastest growing mode is somewhere around n = 3 (n ≈ 2.88), so I examine the growth of
this mode in Fig. 3. As time goes on, the solution starts to grow out of the perturbative regime,
and become less valid. This clear in the figure as the ring starts to touch at the centre—an entirely
unphysical phenomenon.

The stable solutions are far simpler. The red and black lines of the plot in Fig. 1 represent
rotations in space of the modes displayed in Fig. 2, with the rotations being in clockwise and anti-
clockwise directions. Alternatively, this could be viewed as a clockwise or anti-clockwise traveling
wave. The other case (n > nc on the blue curve in Fig. 1) represents a stable oscillation in mode
amplitude, the ring perpetually growing and shrinking whilst rotating in space. All n-values have 3
modes possible, the two rotations and either an unstable mode or an amplitude modulated rotation.
This first-order model is only valid for small times, so it is not enough to fully explain the system.
In the next section, I begin to address this problem by considering higher order solutions.

7 Higher Order Solutions

The second-order equation

L̂0 · β(2) = H1(β
(1)) (12)

is solved by considering β(1) to be in a normal mode and finding the second-order perturbation
to that mode. Taking β(1) to be the same form as above, H1 becomes a function of s and t, and
Eq. (12) can be solved by considering a homogeneous and particular solution. Only the particular
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Figure 4: Plots of the modes n = 3 and n = 6 at second-order with the second-order term
exaggerated, in order to show the deformation caused by the introduction of the second-order
solution.

solution needs to be considered, as the homogeneous solution is exhibited at first-order, and hence
can be cancelled out of the second-order solution by redefining the first-order amplitudes. The
particular solution at second-order is of the form

β(2) = ye2(σt+ikns), (13)

where y is determined by substituting Eq. (13) in Eq. (12). Hence, each mode n is partially
composed of a smaller part of mode 2n, which becomes more important at higher values of t, as
the 2n mode grows at twice the rate of the mode n. This causes the plots in Figure 2 to become
distorted, and would look like the plots in Figure 4. It should be noted, however, that these plots
are unphysical as the second-order term has been magnified for visual effect.

At higher order, the system of equations in (9) are similarly reduced to

L̂0 · β(n) = Hn(s, t), (14)

which can be solved using the same method.

8 Conclusion

In this report I have introduced the Kirchhoff model, and described a perturbation scheme with
which to analyse it. Under this scheme I looked at normal mode solutions, highlighting their n-
fold symmetry. I considered the stability of these modes, looking at stable, neutral and unstable
solutions. The unstable modes characterise much of the behaviour of the system seen in simulations
[10], and plots such as Fig 1 pinpoint which modes will dominate the evolution. The first-order
solution is limited, with the solutions growing unphysical quickly. This must be addressed by
considering higher order solutions, which I have outlined how to obtain, and done so for second-
order.

Whilst this accurately describes the appearance and evolution of individual modes, it does not
describe their interaction. Now these modes are well defined, it is possible to approach a full
nonlinear analysis of the problem. A solution can be considered a superposition of all of these
possible modes. By considering the evolution of each modal amplitude to be dependent upon a far
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slower time scale than the evolution of the ring, and requiring that amplitudes remains bounded,
it is possible to obtain a set of equations describing the evolution of the amplitudes. These will
take the form of a set of ODEs, the analysis of which will reveal how modes interact and evolve.
This has been considered for a planar ring with only one unstable mode [6], and more thoroughly
for straight rods [4, 7].
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