
An Analysis of Five Numerical Methods for
Approximating Certain Hypergeometric Functions in

Domains within their Radii of Convergence

John Pearson

MSc Special Topic

Abstract

Numerical approximations of the Bessel function J0(x) and the hypergeometric
functions 1F1(0.1; 0.2;x) and 2F1(−0.9, 0.3;−0.2;x) are sought. Three methods for
approximating these functions involve solving numerically the ordinary differential
equations which they satisfy; these are the finite difference method, the shooting
method and the use of a Chebyshev differentiation matrix. In addition, two methods
from approximation theory, `2 approximation and the use of Padé approximants,
are used to compute the Taylor series of the three functions. The `1, `2 and `∞
errors for each method are analysed for varying numbers of mesh points, as are
the computation times relative to those for the inbuilt Matlab functions. The most
effective methods for computing the three functions are proposed.

1

Contents

1 Introduction 3

2 Background: Hypergeometric functions and their properties 3

3 Finite difference method 6
3.1 Fundamentals . 6
3.2 Brief outline of code used . 8
3.3 Numerical results . 9

4 Shooting method 11
4.1 Fundamentals . 11
4.2 The issue of singular points and how it is resolved 12
4.3 Brief outline of code used . 13
4.4 Numerical results . 14

5 Chebyshev differentiation matrix 16
5.1 Principle of Chebyshev differentiation matrices 16
5.2 Brief outline of Matlab code used . 17
5.3 Numerical results . 18

6 `2 approximation 19
6.1 Principle of `2 approximation . 19
6.2 Numerical results . 21

7 Padé approximants 22
7.1 Construction of Padé approximants . 22
7.2 Numerical results . 24

8 Conclusion 26

A Appendix A: Matlab code for using the finite difference method to
approximate the hypergeometric function 1F1 28

B Appendix B: Matlab code for using the shooting method to approximate
the hypergeometric function 1F1 29

C Appendix C: Matlab code for using Chebyshev differentiation matrices
to approximate the hypergeometric function 2F1 32

D Appendix D: Matlab code for using `2 approximation to approximate
the hypergeometric function 2F1 33

E Appendix E: Matlab code for finding Padé approximants to approxi-
mate the hypergeometric function 1F1 34

2

1 Introduction

Hypergeometric functions are a type of special functions that computer programs such
as Matlab have trouble computing quickly. The purpose of this project is to use a num-
ber of numerical methods to establish approximations to the hypergeometric functions
1F1(a; c; x) and 2F1(a, b; c; x) for specially selected values of a, b and c in each case, in
order to gain an idea of which, if any, of these methods are suitable for large-scale com-
putations of the functions in general. In addition, the Bessel function, J0(x), which is
closely related to the hypergeometric function, 0F1, and can be computed much faster by
Matlab, is computed in order to test the effectiveness of the methods before using them
on 1F1 and 2F1.

Three of the methods which will be used to compute the functions above will attempt
to solve boundary value problems which the functions satisfy. One of these methods is the
finite difference method, which involves discretising the space in which the solution is to
be found into a number of mesh points, approximating the derivatives in the differential
equations in order to find a matrix system, and solving the system to find an approximate
solution at each of the mesh points. Another method is the shooting method, in which
the boundary value problem is formulated in terms of four first order initial value prob-
lems and then solved. The third method involves constructing Chebyshev differentiation
matrices for the derivatives and solving that system.

Further, two methods are used to approximate the Taylor series of the functions of
which an approximation is sought. `2 approximation is used to represent the series in
terms of a low order polynomial, and Padé approximants are found in terms of a ratio of
two polynomials of low order.

The times taken for each of the methods to compute the Bessel function and the
hypergeometric functions compared to the inbuilt Matlab functions will then be analysed,
as will the `1, `2 and `∞ errors, assuming, for the purpose of this investigation, the Matlab
computation to be the correct one.

2 Background: Hypergeometric functions and their

properties

Hypergeometric functions are a type of special function, the computation of which
is frequently useful in mathematics, physics and other areas of science. As outlined in
[1], for p, q ∈ Z and z ∈ C, the function pFq(a1, ..., ap; b1, ..., bq; x) is defined by:

pFq(a1, ..., ap; b1, ..., bq; x) =
∞∑

n=0

(a1)n...(ap)n

(b1)n...(bq)n

zn

n!
(2.1)

where, for some parameter ρ:

(ρ)n = ρ(ρ + 1)...(ρ + n− 1), (ρ)0 = 1 .

A number of common functions are expressible as hypergeometric functions; for ex-
ample:

0F0(; ; z) = ez, 1F0(−ω; ; z) = (1− z)ω, z 2F1

(
1

2
,
1

2
;
3

2
; z

)
= sin−1 z .

The derivative of the hypergeometric function, pFq, can be easily expressed as:

d

dz
(pFq(a1, ..., ap; b1, ..., bq; z)) =

a1...ap

b1...bq
pFq(a1 + 1, ..., ap + 1; b1 + 1, ..., bq + 1; z) .

3

The n-th derivative can be expressed as:

dn

dzn
(pFq(a1, ..., ap; b1, ..., bq; z)) =

(a1)n...(ap)n

(b1)n...(bq)n
pFq(a1 + n, ..., ap + n; b1 + n, ..., bq + n; z) .(2.2)

An important property that we will need to use is the convergence criteria of the
hypergeometric functions depending on the values of p and q. Provided ai and bi are not
non-positive integers for any i, the relevant cases are, using the ratio test:

• If p ≤ q, then the ratio of coefficients of zn in the Taylor series of the hypergeometric
function, pFq, tends to 0 as n →∞, and hence the radius of convergence is ∞, i.e.
the series converges for all values of |z|. In particular, the radius of convergence for
0F1 and 1F1 is ∞.

• If p = q + 1, the ratio of coefficients of zn tends to 1 as n → ∞, so the radius of
convergence is 1, i.e. the series converges only if |z| < 1. In particular 2F1 converges
only for |z| < 1.

• If p > q + 1, the ratio of coefficients of zn tends to ∞ as n → ∞, so the radius of
convergence is 0, i.e. the series does not converge for any value of |z|.

The approximations to the relevant hypergeometric functions will only be sought within
the radii of convergence. For p = q + 1, there is a further restriction for convergence on
the unit circle; the series only converges absolutely at z = 1 if <(

∑q
i=1 bi −

∑p
i=1 ai) > 0,

so the selection of values for ai and bi must reflect that.
Two of the most commonly used hypergeometric functions in practice are 1F1 and

2F1; it is these that will be computed using five numerical methods. It will be illustrative
to test the methods on these functions, as the inbuilt Matlab function ‘hypergeom’
takes a significant amount of time to compute them. However, it will be helpful to first
use the methods on a function which takes less time for Matlab to compute, so that the
code to implement the methods can be tested quickly and effectively. The function that
will be used to do this is the Bessel function, J0(x), which is closely related to the
confluent hypergeometric limit function, 0F1. For α, a non-negative integer, and x,
a real number (although the definition holds for complex values), Jα(x) is given by:

Jα(x) =
∞∑
i=0

(−1)i

i!Γ(i + α− 1)

(x

2

)2i+α

=
(x

2
)α

Γ(α + 1)
0F1(; α + 1;−x2

4
) (2.3)

and satisfies the ordinary differential equation:

x2 d2Jα

dx2
+ x

dJα

dx
+ (x2 − α2)Jα = 0 . (2.4)

The zeros of the function J0(x) are widely known; in particular the 4th zero is at
x = 11.79153444 (to 10 significant figures), as is the value of J0(x) at x = ±1, which is
0.7651976866 at both points. This will be used in the computations.

By using the above expression for differentiation of terms of hypergeometric functions,
we can see that the confluent hypergeometric function, 1F1(a; c; x), where x is a real-
valued number, satisfies the differential equation:

x
d2F

dx2
+ (c− x)

dF

dx
− aF = 0 . (2.5)

It can be shown that the general solution of the above differential equation is:

F = λ 1F1(a; c; x) + µ 1F1(1 + a− c; 2− c; x)

4

where λ, µ are constants. Therefore, in this project, for the numerical methods for
solving the differential equation to approximate 1F1, a value c < 1 will be chosen to ensure
that the second part of the solution, 1F1(1 + a − c; 2 − c; x), does not contribute to the
solution. Hence, if appropriate boundary conditions are chosen, solving the differential
equation will give the required approximation to 1F1. The values for a and c chosen to
test the methods of approximating this function will be a = 0.1, c = 0.2, and it will be
approximated on the interval [−1, 1].

The final function to be approximated, 2F1(a, b; c; x), where x takes real values, sat-
isfies the differential equation:

x(1− x)
d2F

dx2
+ [c− (a + b + 1)x]

dF

dx
− abF = 0 . (2.6)

The general solution here is:

F = λ 1F1(a, b; c; x) + µ 1F1(1 + a− c, 1 + b− c; 2− c; x) .

So again a value of c < 1 will be chosen to avoid the appearance of the second solution.
For the boundary conditions, two known formulae from [1] are used:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(2.7)

2F1(a, b; 1 + a− b;−1) = 2−a
√

π
Γ(1 + a− b)

Γ(1 + 1
2
a− b)Γ(1

2
+ 1

2
a)

. (2.8)

In order to make use of the second equation, the value c = 1+a−b is chosen. Then, the
assumption c < 1, mentioned above, is taken into account, and the convergence criterion
c > a + b (the inequality <(

∑q
i=1 bi −

∑p
i=1 ai) > 0 applied to 2F1) used, in order to give

the requirements:

a < b <
1

2
, c = 1 + a− b .

with a, b and c non-integers. The values chosen to test the numerical methods will
be a = −0.9, b = 0.3, c = −0.2. In accordance with the convergence criteria above, the
solution will be sought on the interval −1 < x < 1.

Graphs of the three functions to be approximated are shown overleaf in Figure 1.
The effectiveness of the numerical approximations made using the five methods will

depend to a large extent on how far the approximations are from the correct solution, but
there is an issue of how this is measured. For the purpose of this project, we assume that
the numerical solution generated by the inbuilt Matlab function, ‘hypergeom’ (or ‘besselj’
where the Bessel function is being computed), is the correct one. Each of the methods used
will involve taking an equally spaced set of points within the domain of approximation.
Therefore, the difference between the computation of the function by Matlab and the
numerical approximation using one of these five methods can be computed at each of
these points and used to form a vector, which will be denoted v = [v1, ..., vn+1]

T , where
there are n + 1 points at which the solution is approximated.

The three measures which will be used to determine the accuracy of the approximation
will be the `1, `2 and `∞ errors defined by:

‖v‖`1
=

n+1∑
i=1

|vi|, ‖v‖`2
=

(
n+1∑
i=1

|vi|2
) 1

2

, ‖v‖`∞
= max

i
vi . (2.9)

A low value for the `∞ error ensures that the numerical approximation is accurate at
every point at which it has been evaluated. Low values for `1 and `2 are likely to occur if
the errors are small at a large number of points or are consistently low. Hence, all three
errors are useful indications of how good the approximations are.

5

Figure 1: Graphs of the three functions for which an approximation is sought, J0(x),
1F1(0.1; 0.2;x) and 2F1(−0.9, 0.3;−0.2;x)

3 Finite difference method

3.1 Fundamentals

The finite difference method is used to numerically solve ordinary differential equa-
tions of the form:

Lu = f(x) on [xmin, xmax]

where Lu denotes a differential operator and boundary conditions are given at xmin

and xmax. In this problem, the situation is more straightforward as we simply have
Dirichlet boundary conditions at the boundary points.

In order to formulate the finite difference scheme, we need to create a mesh by dis-
cretising the domain of interest, which is the interval [xmin,xmax]. We do so by split-
ting the interval into m subintervals of equal length, bounded by the points xmin =
x0,x1,x2,...,xm−1,xm = xmax. The step-size is defined to be h = xmax−xmin

m
. The true solu-

tion at the point xi, i = 0, 1, ...,m is given by ui = u(xi), and Ui denotes the approximate
solution at that point.

The numerical approximation to the solution is made by approximating u(xi) ≈ Ui

and the derivatives of u at the mesh points. We can approximate u′(xi), i = 0, 1, ...,m
by the implicit Euler method or the trapezium rule, which are respectively:

u′(xi) ≈
Ui+1 − Ui

h
, u′(xi) ≈

Ui+1 − Ui−1

2h
.

We use the second of the above approximations as the roundoff error generated by
the approximation is of order h2 rather than of order h as in the first one, so taking the
second approximation will have significant advantages. We approximate u′′(xi) by:

u′′(xi) ≈
Ui+1 − 2Ui + Ui−1

h2
, i = 0, 1, ...,m .

6

Hence, for the model second order ordinary differential equation a(x)u′′(x)+b(x)u′(x)+
c(x)u(x) = f(x), applying the method of finite differences gives, for i = 1, 2, ...,m− 1:

LhUi ≡ a(xi)
Ui+1 − 2Ui + Ui−1

h2
+ b(xi)

Ui+1 − Ui−1

2h
+ c(xi)Ui = f(xi) (3.1)

before we have taken account of boundary conditions, which will give us equations for
U0 and Um. From this method, we will then have a system of m+1 simultaneous equations
for the numerical approximations U0, U1, ..., Um, which can be written as a matrix system
Au = b. If we have Dirichlet boundary conditions at xmin and xmax, we will have:

A =

1 0 0 · · · · · · · · · 0
a0

h2 − b0
2h

−2a1

h2 + c1
a2

h2 − b2
2h

0 · · · · · · 0
0 a1

h2 − b1
2h

−2a2

h2 + c2
a3

h2 − b3
2h

0 · · · 0
...

.
...

0 0 · · · · · · · · · −2am−1

h2 + cm−1
am

h2 − bm

2h

0 0 · · · · · · · · · 0 1

u =

U0

U1

U2
...

Um−1

Um

, b =

u(x0)
f(x1)
f(x2)

...
f(xm−1)
u(xm)

(3.2)

where ak = a(xk), bk = b(xk), ck = c(xk).
The global error, ei, at the point xi is the difference between the true function value

there and the numerical approximation:

ei = ui − Ui, i = 0, 1, ...,m

and the truncation error Ti is given by:

Ti = Lhui − fi = Lh(ui − Ui) = Lhei, i = 0, 1, ...,m

where ui = u(xi).
Now, all the ordinary differential equations we are trying to solve are of the form:

α(x)u′′(x) + β(x)u′(x) + γ(x)u(x) = 0

with Dirichlet boundary conditions at the end-points. Therefore, fi = 0 for all i, and
to find Lhui we need to Taylor expand ui+1 and ui−1 as follows:

ui+1 = ui +hu′(xi)+
h2

2!
u′′(xi)+

h3

3!
u′′′(xi)+O(h4), ui−1 = ui−hu′(xi)+

h2

2!
u′′(xi)−

h3

3!
u′′′(xi)+O(h4)

so that when we substitute these values into the expression for Ti, using the fact that
f(x) = 0 for all three equations which will be considered, we obtain:

Ti = Lhui =
a(xi)

h2
[ui+1 − 2ui + ui−1] +

b(xi)

2h
[ui+1 − ui−1] + c(xi)ui − fi︸︷︷︸

0

=

[
a(xi)

12
u(iv)(xi) +

b(xi)

6
u′′′(xi)

]
h2 + O(h4) . (3.3)

7

So we therefore have that ‖T‖∞ =
max

i Ti = O(h2), and hence:

Ti = Lhei ⇒ ei = L−1
h Ti ⇒ ‖e‖∞ ≤

∥∥L−1
h

∥∥
∞ ‖T‖∞

using the property of the norm of the product of two matrices, where
∥∥L−1

h

∥∥
∞ is the

spectral radius, or largest eigenvalue, of L−1
h . We would therefore expect the global

error in the `∞ norm to be of order h2.
We will examine not only these `∞ errors, but also `1 and `2 errors, as well as com-

paring computational times with those for the inbuilt Matlab function for computing the
hypergeometric functions.

3.2 Brief outline of code used

In order to instruct Matlab to calculate a numerical approximation to the differential
equations using the finite difference method, we need to include the following steps in the
code:

• Define the range of x over which we wish to solve the differential equation, the
number of points we wish to approximate it at, m + 1, and the step size, h.

• Construct an (m + 1)-vector u = [U0, U1, ..., Um]T of numerical approximations, in
terms of which we will set up an algebraic system of equations.

• Construct (m+1)×(m+1) differentiation matrices corresponding to differentiating u
once (to find u′) and twice (to find u′′). Also construct a matrix Im+1 corresponding
to the insertion of a u term in the equation.

• Multiply each entry in these matrices by the terms that u, u′ and u′′ are multiplied
by in the equation. Sum these matrices to obtain a finite differences matrix, A, so
that we have fully discretised the ordinary differential equation. Incorporate the
boundary terms by making the first and last rows zero apart from the first entry of
the first row and the last entry of the last row which we make 1.

• Create an m + 1-vector b of zeros (corresponding to the fact that f(x) = 0 in the
ordinary differential equations). Then overwrite the first and last entries by the
known boundary values of u.

• Solve the system Au = b to find the vector of numerical approximations at each
mesh point.

The code used is shown in Appendix A.

8

3.3 Numerical results

Below is a table comparing the time taken to compute the Bessel function, J0(x), using
the finite difference method with that using the function ‘besselj’ in Matlab (the code
was run three times and the time taken for each averaged to give a better idea of the
time typically taken), as well as the `1, `2 and `∞ error in the finite difference results,
assuming the ‘besselj’ function gives the exact answer. The results are given for different
numbers of mesh points n on [−11.79153444, 11.79153444].

n Time taken Time taken with ‘besselj’ `1 `2 `∞
20 0.000477 0.000460 13.1484 3.7778 1.9221
50 0.000579 0.000632 3.7330 0.6726 0.2237
100 0.000897 0.000925 0.9295 0.1652 0.05446
200 0.002378 0.001455 0.5249 0.06569 0.01543
500 0.011609 0.003033 0.2512 0.02811 0.002971
1000 0.063335 0.006352 0.1423 0.007975 8.472e-4
2000 0.232652 0.009113 0.07967 0.003164 2.388e-4
5000 0.968251 0.011905 0.07284 0.001297 4.406e-5

We can see that, considering the length of the interval being integrated over and the
relatively large change occurring within the Bessel function within this region, the results
for the errors are reasonable. The `∞ error seems to decrease roughly by a factor of 4
when the step size is halved, as expected.

The fact that Matlab is very efficient at evaluating the Bessel function means that
the finite difference method is not particularly useful here, as it takes longer to solve the
differential equation. However, the reasonable accuracy obtained gave encouraging signs
for when the hypergeometric functions 1F1 and 2F1 were to be computed. Below is a
graph showing the exact and numerical solutions (which overlap due to how close the
approximation is to the exact solution), and a graph showing the absolute error at each
point where the approximation was made:

Figure 2: Numerical results for the finite difference method applied to J0(x) with 500 mesh
points (the approximation overlaps with the true solution due to the good accuracy)

9

Below is a table showing a comparison of times taken for the finite difference method
and the Matlab function ‘hypergeom’ to compute the function 1F1(0.1; 0.2; x) on [−1, 1],
together with the various errors.

n Time taken Time taken with ‘hypergeom’ `1 `2 `∞
10 0.000397 0.061790 0.003504 0.001355 7.966e-4
20 0.000643 0.104515 0.001643 4.307e-4 1.708e-4
50 0.000938 0.896300 6.313e-4 1.027e-4 2.537e-5
100 0.002969 1.637009 3.113e-4 3.560e-5 6.194e-6
200 0.005874 2.813293 1.546e-4 1.247e-5 1.530e-6
500 0.062331 5.072927 6.518e-5 3.137e-5 2.431e-7
1000 0.259691 9.628050 3.075e-5 1.107e-5 6.663e-8

This table shows that the finite difference method used has impressive `1, `2 and `∞
error properties. As n increases, the `1 and `2 errors decrease, even though the vectors
which they are measuring are becoming longer, and for large n the `∞ error is of the order
of 10−8. Furthermore, the time taken is orders of magnitude smaller than that taken by
the function ‘hypergeom’ in Matlab, which suggests that this method gives a successful
approximation.

Below is a table showing the corresponding results for 2F1(−0.9, 0.3;−0.2; x) on [−1, 1],
as well as the errors solely for the first half of the vectors, i.e. for [−1, 0].

n Time taken ‘hypergeom’ time `1 `2 `∞ `1 on [−1, 0] `2 on [−1, 0] `∞ on [−1, 0]
10 0.000423 0.367939 0.5980 0.2395 0.1352 1.930e-4 7.186e-5 3.301e-5
20 0.000817 0.562589 1.0136 0.2751 0.1085 9.633e-5 2.437e-5 7.703e-6
50 0.0001508 1.673386 1.8619 0.3124 0.07750 3.825e-5 6.002e-6 1.181e-6
100 0.003034 2.901258 2.8717 0.3382 0.05956 1.905e-5 2.102e-6 2.909e-7
200 0.010952 4.421957 4.3870 0.3641 0.04569 9.504e-6 7.393e-7 7.217e-8
500 0.035431 7.365639 7.6322 0.3998 0.03197 3.795e-6 1.864e-7 1.149e-8
1000 0.139030 14.925628 11.5787 0.4286 0.02436 1.896e-6 6.581e-8 2.867e-9

Below is a graph showing the results for the computation of 2F1:

Figure 3: Numerical results for the finite difference method applied to 2F1 with 200 mesh points

10

The results for the errors over the entire interval, and in particular that the `∞ error
does not decrease with h2, suggest that this method is ineffective at approximating 2F1.
However, the graph in Figure 3 shows that the error is largely on the positive x-values,
a point that can also be seen by the errors in the table for the interval [−1, 0]. This
suggests that the problem with approximating the 2F1 function is the fact that there
are two singular points in the interval of integration, one of which is in the middle of
the region. This seems to have a knock-on effect when the differentiation matrices are
computed. Hence, it is reasonable to suppose that, to compute 2F1 over the entire interval
[−1, 1], a more sophisticated method is required.

4 Shooting method

4.1 Fundamentals

The idea of the shooting method is to reformulate the problem of finding the numerical
solution of a second order ordinary differential equation with boundary conditions, of the
form:

Lu = f(x) on [xmin, xmax], u(xmin) = umin, u(xmax) = umax

as a problem of finding the numerical solution of two initial value problems instead.
So suppose we have the problem:

u′′(x) + ξ(x)u′(x) + η(x)u(x) = g(x), u(xmin) = umin, u(xmax) = umax . (4.1)

We define u(x; s) to be the solution to:

u′′(x) + ξ(x)u′(x) + η(x)u(x) = g(x), u(xmin) = umin, u′(xmin) = s .

Now, let u0 = u(x; 0), so:

u′′0(x) + ξ(x)u′0(x) + η(x)u0(x) = g(x), u0(xmin) = umin, u′0(xmin) = 0 .

Now, suppose that u = u0 + µu1, where µ is a constant, and u1 satisfies:

u′′1(x) + ξ(x)u′1(x) + η(x)u1(x) = 0, u1(xmin) = 0, u′1(xmin) = 1 .

Then it is clear that u must satisfy the first boundary condition u(xmin) = umin. For
the second boundary condition to be satisfied, we need:

u(xmax) = u0(xmax) + µu1(xmax) = β .

So, provided we can find exact solutions to the two initial value problems:

u′′0(x) + ξ(x)u′0(x) + η(x)u0(x) = g(x), u0(xmin) = umin, u′0(xmin) = 0 (4.2)

u′′1(x) + ξ(x)u′1(x) + η(x)u1(x) = 0, u1(xmin) = 0, u′1(xmin) = 1 (4.3)

then u(x) = u0(x) + umax−u0(xmax)
u1(xmax)

u1(x) will solve exactly:

u′′(x) + ξ(x)u′(x) + η(x)u(x) = g(x), u(xmin) = umin, u(xmax) = umax .

We now need to consider a method for solving the initial value problems in Equations
(4.2) and (4.3). So, substitutions will be made in order to convert each of the two
equations into first order initial value problems, and then solve these. The substitutions

11

come by introducing new variables v0 and v1 as follows to form a set of four first order
initial value problems:

u′0(x) = v0(x) , u0(xmin) = umin (4.4)

v′0(x) = −ξ(x)v0 − η(x)u0(x) + g(x), v0(xmin) = 0 (4.5)

u′1(x) = v1(x) , u0(xmin) = 0 (4.6)

v′1(x) = −ξ(x)v1 − η(x)u1(x) + g(x), v1(xmin) = 1 . (4.7)

It should be noted that the top two initial value problems are the same equations as
the bottom two, but with different initial conditions.

As the problem has been reformulated, a method is now required to solve this new
form. The method that will be used to solve each of the above four initial value problems
is the Runge-Kutta RK4 method, which, for the solution of the problem y′ = f(x, y),
with y(x0) given, reads:

y0 = y(x0)

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4) (4.8)

where:

k1 = f(xn, yn)

k2 = f(xn +
1

2
h, yn +

1

2
hk1)

k3 = f(xn +
1

2
h, yn +

1

2
hk2)

k4 = f(xn + h, yn + hk3) .

If for each pair of equations, we alternate between calculating kj, j = 1, 2, 3, 4 for each
equation and then calculate the next numerical approximation for each equation, we have
an explicit numerical algorithm which can be used to solve the equations numerically.

As the shooting method gives perfect accuracy for linear problems up to the roundoff
error that will arise from Matlab summing the computations, which is negligible as we
will be dealing with errors of order 10−15 here, the accuracy of the method will depend
solely on the performance of the RK4 method. By evaluating Taylor series expansions of
k1, k2, k3 and k4, and substituting these into the expression for the truncation error:

Ti =
y(xi+1)− y(xn)

h
− 1

6
(k1(xi, y(xi)) + 2k2(xi, y(xi)) + 2k3(xi, y(xi)) + k4(xi, y(xi)))

we find that the RK4 method has O(h4) truncation error, and as ‖e‖∞ ≤
∥∥L−1

h

∥∥
∞ ‖T‖∞

as shown earlier it will have O(h4) roundoff error also. This will hopefully give desirable
error properties when we form the approximate solution.

4.2 The issue of singular points and how it is resolved

Rewriting the second order initial value problems as two first order initial value problems,
Equations (4.2) and (4.3) creates a difficulty however. In order to write the equations as
shown, dividing by a certain factor is involved, either x in the case of the Bessel function
and 1F1, or x(1 − x) in the case of 2F1. This results in singular points in the equations
causing problems (x = 0 in the case of Bessel and 1F1 and x = 0, 1 in the case of 2F1).
These singular points are all in the region in which the numerical solution is sought, so

12

when the RK4 method is applied, problems arise when carrying out the method at the
singular point and thereafter. Hence, the shooting method cannot be used on its own.

The solution to this difficulty is to divide the region into more than one part, and
to apply the shooting method in each part with appropriate substitutions. To illustrate
how this is carried out, consider the equation for 1F1(a; c; x), where a, c are 0.1, 0.2
respectively:

xu′′ + (c− x)u′ − au = 0, u(−1) = α, u(1) = β .

It is also known that u(0) = 1, by expanding the Taylor series for 1F1 for any a, c
and substituting in x = 0. Hence, the region [−1, 1], in which the solution is sought, is
divided up into two regions, [−1, 0] and [0, 1]. The solution in the region [−1, 0] can be
found using the shooting method as described previously, as the singular point x = 0
due to the factor of x before the u′′ term, is only encountered at the end of the region
of integration. To solve in the region [0, 1], the substitution x = 1 −X is made, which,
using the chain rule, converts the problem on [0, 1] to:

(1−X)u′′(X)− (c + X − 1)u′(X)− au(X) = 0, u(X = 0) = u(x = 1) = β, u(X = 1) = u(x = 0) = 1 .

The u′′ coefficient is now 1−X, so if this equation is integrated from X = 0 to X = 1,
i.e. backwards from x = 1 to x = 0, there is no longer a singular point. The solution to
this equation may now be found using the shooting method. After that, the numerical
solution of u is converted from X to x coordinates, and hence a solution for u is known
on each of the x-intervals [−1, 0] and [0, 1]. The solution vectors for each of the intervals
are then joined up, and so the complete numerical solution is known.

A similar principle is used for the equation satisfied by the Bessel function J0(x),
except as the solution is wanted on [−11.79153444, 11.79153444], the substitution x =
11.791534444−X is made to find the solution in the second interval instead.

However, there is a further problem when the solution for the 2F1(−0.9, 0.3;−0.2; x)
function is sought, because if the appropriate substitution x = 1 − X is made, the
coefficient of u′′ in the differential equation, this time x(1−x), remains unaltered. Hence
in this case, the solution needs to be found in three regions, [−1, 0], [0, γ] and [γ, 1],
where 0 < γ < 1. Experimenting with the value of γ shows that a value of γ close to 1

2

is ideal. Taking γ = 1
2
, a similar method may now be applied. The solution on [−1, 0]

may be found in the normal way using the shooting method. Substituting x = 1
2
− X

and applying the shooting method yields a solution on the interval [0, 1
2
], and the further

substitution x = 1
2

+ Y can be used in a similar way to find a solution on [1
2
, 1]. These

three solutions can then be combined to find a complete numerical approximation to 2F1

on [−1, 1].

4.3 Brief outline of code used

In order to implement the shooting method, the code which instructs Matlab must contain
the following:

• State the original second order differential equation for the boundary value problem
we wish to solve. Then define new parameters, equivalent to the definition of v0

and v1 above, in order to reformulate the second order boundary value problem as
four first order initial value problems.

• Define the initial conditions for the four problems and define the number of inter-
polation points, m + 1, and hence the step-size h, that will be used.

13

• Create a loop to compute values of kj at each mesh point, and then advance the
numerical approximation for u0 and v0 for the first pair of equations, and u1 and
v1 for the second pair of equations. This loop will take the form:

for i = 1:m
k1u=f1(x(i),u(i),v(i));
k1v=f2(x(i),u(i),v(i));
k2u=f1(x(i)+0.5*h,u(i)+0.5*k1u*h,v(i)+0.5*k1v*h);
k2v=f2(x(i)+0.5*h,u(i)+0.5*k1u*h,v(i)+0.5*k1v*h);
k3u=f1(x(i)+0.5*h,u(i)+0.5*k2u*h,v(i)+0.5*k2v*h);
k3v=f2(x(i)+0.5*h,u(i)+0.5*k2u*h,v(i)+0.5*k2v*h);
k4u=f1(x(i)+h,u(i)+k3u*h,v(i)+k3v*h);
k4v=f2(x(i)+h,u(i)+k3u*h,v(i)+k3v*h);
u(i+1)=u(i)+h/6*(k1u+2*k2u+2*k3u+k4u);
v(i+1)=v(i)+h/6*(k1v+2*k2v+2*k3v+k4v);

end

This needs to be done for each pair of initial value problems.

• Once we have found the numerical approximations to the two second order initial
value problems for u0 and u1 by solving the four first order initial value problems

for u0, v0, u1, v1, we sum them, as u(x) = u0(x) + umax−u0(xmax)
u1(xmax)

u1(x), to find the

numerical solution to the original boundary value problem.

Taking the above steps can be used to find the numerical solution for negative x.
Making appropriate substitutions, as explained in 4.2, can be used to find solutions in
the remainder of the region in which we seek the solution. The solution vectors can then
be joined up to find a numerical solution on the entire interval.

The code used is in Appendix B.

4.4 Numerical results

This is a table showing the `1, `2 and `∞ errors of the numerical approximation of J0(x)
using the shooting method compared to the inbuilt Matlab function, ‘besselj’, as well as
the comparative times for the two programs to be run, for different numbers of mesh
points n:

n Time taken Time taken with ‘besselj’ `1 `2 `∞
21 0.006761 0.000460 0.7496 0.01978 0.1173
51 0.023348 0.000632 0.05715 0.01139 0.004054
101 0.048628 0.000925 0.01173 0.001563 3.832e-4
201 0.094737 0.001455 0.001936 1.789e-4 3.093e-5
501 0.221590 0.003003 1.574e-4 9.119e-6 9.960e-7
1001 0.315548 0.006352 2.152e-5 8.811e-7 6.826e-8
2001 0.592601 0.009113 7.700e-6 1.352e-7 5.574e-8
5001 0.926392 0.011905 6.910e-6 1.221e-7 4.118e-9

The shooting method being used in conjunction with the RK4 method for intial
value problems seems to have very favourable error properties compared with the finite
difference method. This is not surprising, as the `∞ error seems to decrease roughly in
proportion to h4 as predicted by truncation error analysis on RK4. The `1 and `2 errors
also seem to be substantially lower than for finite differences with a comparable number
of mesh points. Again however, the inbuilt Matlab function takes a substantially shorter
period of time to carry out the computation.

14

The numerical results for 1F1 are shown below:

n Time taken Time taken with ‘hypergeom’ `1 `2 `∞
11 0.009783 0.061790 5.782e-6 2.263e-6 1.396e-6
21 0.012292 0.104515 2.040e-6 6.321e-7 3.021e-7
51 0.022197 0.896300 4.188e-7 7.169e-8 1.975e-8
101 0.029453 1.637009 1.137e-7 1.348e-8 2.512e-9
201 0.052792 2.813293 2.963e-8 2.474e-9 3.203e-10
501 0.280815 5.072927 4.864e-9 2.570e-10 2.097e-11
1001 0.58112 9.628050 1.227e-9 4.590e-11 2.661e-12

Again, the `1, `2 and `∞ errors compare very favourably with the finite difference
method; for example, all three errors with 50 mesh points with the shooting method used
are lower than the errors generated by using 1000 points in the finite difference method,
albeit with a longer computation time. The errors for large values of n are impressively
small.

Below is a graph showing the numerical solutions for u0(x) (labelled 1st iteration)
and u1(x) (labelled 2nd iteration) on each region where the shooting method was ap-
plied ([−1, 0] and [0, 1]), the shooting method approximation obtained from them and its
comparison with the exact solution according to ‘hypergeom’, and a graph of the true
solution less the numerical solution at all mesh points:

Figure 4: Numerical results for the shooting method applied to 1F1 with 201 mesh points

15

The following table shows the results for the computation of 2F1. It shows excellent
accuracy on the interval [−1, 0] but poor approximation close to x = 1.

n Time taken ‘hypergeom’ time `1 `2 `∞ `1 on [−1, 0] `2 on [−1, 0] `∞ on [−1, 0]
21 0.016126 0.562589 0.1280 0.06637 0.04922 4.002e-7 1.371e-7 5.844e-8
49 0.045283 1.673386 0.2236 0.07760 0.04311 4.629e-8 1.042e-8 2.979e-9
101 0.086118 2.901258 0.3494 0.08539 0.03585 7.527e-9 1.189e-9 2.425e-10
201 0.151527 4.421957 0.5282 0.09205 0.02904 1.450e-9 1.640e-10 2.463e-11
501 0.250858 7.365639 0.9081 0.1007 0.02129 1.871e-10 1.356e-11 1.375e-12
1001 0.529782 14.925628 1.3678 0.1074 0.01658 4.270e-11 2.201e-12 1.648e-13

5 Chebyshev differentiation matrix

5.1 Principle of Chebyshev differentiation matrices

In many problems, using regularly spaced points does not give as accurate a numerical
solution to a differential equation as possible. One alternative approach is to use Cheby-
shev points. If we wish to find n Chebyshev points on the interval [−1, 1], they are given
by:

− cos

(
kπ

n− 1

)
k = 0, 1, ..., n− 1.

For the next method, we will expand on this idea in order to create a Chebyshev
differentiation matrix, which will hopefully serve to approximate well the action of
differentiating a function u(x), much as the finite difference differentiation matrix did in
Section 3. Having found this matrix, we can square it in order to find an approximation
to differentiating the function u(x) twice. As mentioned in [2], this approach will not
work if the problem is ill-conditioned (which a matrix A is said to be if its condition
number ‖A‖ · ‖A−1‖ is large) or if the boundary conditions are not taken into account.
However we will be taking the boundary conditions into account when we instruct Matlab
to solve a matrix system, much as for the finite difference method.

One major difference between the finite difference matrix system and this one is that
this one will not be sparse; in general, the matrix will be very dense. This will result
in more computational work and hence a longer time taken to compute the solution.
However, to compensate for this, it is hoped that the solution computed will be far more
accurate.

In order to create the differentiation matrix, we will create an m×m matrix M1, for
which the k-th column is equal to the Chebyshev polynomial, Tk−1(x) for −1 ≤ x ≤ 1,
where:

Tn(x) = cos(n cos−1(x)) (5.1)

which satisfies the recurrence relation:

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, (5.2)

We will also create another m ×m matrix, M2, whose k-th column is the derivative
of Tk−1(x), where:

T ′n(x) =
n sin(n cos−1(x))√

1− x2
, − 1 < x < 1 (5.3)

T ′n(−1) = (−1)n+1n2 (5.4)

T ′n(1) = n2 (5.5)

so the first column of M2 will be equivalent to the derivative of Tn(x) at x = −1, the
last column equivalent to x = 1, and the other entries determined using Equation (5.3).

16

We then create another matrix D which satisfies DM1=M2, in other words if we
apply the matrix D to the system of Chebyshev polynomials evaluated at the Chebyshev
points, we will obtain an approximation of the derivatives at those points.

We can then evaluate D2 to arrive at an approximation of a second derivative matrix;
we will then substitute the two differentiation matrices into the differential equations for
the hypergeometric functions to obtain approximate solutions.

5.2 Brief outline of Matlab code used

The code used for this method has the same basic structure as the finite differences code,
but with different differentiation matrices used. In the code are the following instructions:

• Define the number of points m + 1 we wish to use to approximate u(x) at.

• Construct the points at which we wish to approximate the solution as the Cheby-
shev points in the interval [−1, 1]. Define an m + 1-vector u = [U0, U1, ..., Um]T of
numerical approximations at each of these Chebyshev points, in terms of which we
will set up an algebraic system of equations.

• Construct (m+1)× (m+1) matrices corresponding to the Chebyshev polynomials
and their derivatives as explained earlier. This code takes the form:

%Initialise matrices M1 and M2
M1 = zeros(n,n);
M2 = M1;

for k = 0:n-1
%Define M1 in terms of Chebyshev polynomials,
%evaluated at the Chebyshev points

M1(:,k+1) = cos(acos(x)*k);
%Define M2 in terms of the derivatives of the Chebyshev polynomials,
%taking care with M2(1,k+1) and M2(end,k+1),
%which correspond to the derivatives at x=-1 and x=1

M2(:,k+1) = k*sin(acos(x)*k)./sqrt(1-x.^2);
M2(1,k+1) = (-1)^(k+1)*k^2;
M2(end,k+1) = k^2;

end

%Solve a matrix system to obtain the differentiation matrix
D = M2/M1;

Square this differentiation matrix to obtain a matrix representing twice-differentiating.

• Multiply each entry in these matrices by the terms that u, u′ and u′′ are multiplied
by in the equation. Sum these matrices to obtain a matrix, A, so that we have fully
discretised the ordinary differential equation. Incorporate the boundary terms by
making the first and last rows zero apart from the first entry of the first row and
the last entry of the last row which we make 1.

• Create an m + 1-vector b of zeros (corresponding to the fact that f(x) = 0 in the
ordinary differential equations). Then overwrite the first and last entries by the
known boundary values of u.

• Solve the system Au = b to find the vector of numerical approximations at each
mesh point.

The code used is shown in Appendix C.

17

5.3 Numerical results

Below are two tables showing the numerical results for the approximation of J0(x) and
1F1(0.1; 0.2; x) on [−1, 1], and a graph of the results for 1F1:

n Time taken Time taken with ‘besselj’ `1 `2 `∞
10 0.002007 0.000325 2.797e-9 1.308e-9 8.575e-10
20 0.002956 0.000460 2.416e-12 7.632e-13 3.347e-13
30 0.004276 0.000512 6.865e-12 2.150e-12 1.123e-12
50 0.007793 0.000632 2.383e-10 4.851e-11 1.332e-11
100 0.023438 0.000925 2.259e-9 3.460e-10 6.637e-11
200 0.098532 0.001455 7.093e-8 8.202e-9 1.507e-9

n Time taken Time taken with ‘hypergeom’ `1 `2 `∞
10 0.057926 0.061790 3.205e-9 1.348e-9 7.786e-10
20 0.068239 0.104515 8.403e-12 2.797e-12 1.130e-12
30 0.087233 0.309782 1.866e-11 5.164e-12 1.768e-12
50 0.119155 0.896300 9.028e-10 1.456e-10 2.796e-11
100 0.146690 1.637009 3.358e-9 4.908e-10 8.736e-11
200 0.168721 2.813293 1.052e-7 1.003e-8 1.547e-9

Figure 5: Exact and numerical solution for the Chebyshev differentiation matrix applied to 1F1

with 200 mesh points (which overlap) and the error at each mesh point

The times taken for the computations involving Chebyshev differentiation matrices
are much greater than those taken for the finite difference method and shooting method,
because the differentiation matrices are dense (as opposed to the sparse matrices involved
in the finite difference method), and hence the system of equations takes a substantial
amount of time for the computer to solve. However, the times taken for 1F1 are still much
shorter than for the inbuilt Matlab function, and the increased time in comparison with

18

the finite difference method is compensated for by the excellent error properties. The
fact that for n = 20 the `∞ error touches the order of 10−12 illustrates this. However,
the major drawback with this method is that increasing the number of mesh points does
not decrease the size of the errors, as was the case with the finite difference and shooting
methods. Therefore, this method is very useful for a small number of mesh points,
although for large values of n the shooting method would be expected to perform better.

Below is a table showing the corresponding results for 2F1(−0.9, 0.3;−0.2; x), with
the errors on [−1, 1] and [−1, 0] shown:

n Time taken ‘hypergeom’ time `1 `2 `∞ `1 on [−1, 0] `2 on [−1, 0] `∞ on [−1, 0]
10 0.067913 0.367939 0.3286 0.1362 0.07238 0.07354 0.04582 0.03870
20 0.095184 0.562589 0.1627 0.05900 0.03454 0.008462 0.003639 0.002260
30 0.140470 0.898524 0.4852 0.1079 0.02877 0.1075 0.03733 0.01997
50 0.155365 1.673386 0.5673 0.09628 0.01962 0.1267 0.03384 0.01427
100 0.215859 2.901258 0.1912 0.03217 0.009801 0.01309 0.002459 7.459e-4
200 0.237190 4.421957 0.2208 0.02490 0.005665 0.03000 0.003976 8.561e-4

As in the two previous methods, the fact that two singular points are in the region of
integration reduces the effectiveness of the Chebyshev differentiation matrix method for
computing 2F1. However, it is not as affected by the presence of the singular points,
and we find that the `2 error decreases for large n as n increases, despite the increased
length of the vector. But although the errors in the interval [0, 1] seem to be smoothed
out, a large number of mesh points may well need to be taken to obtain a workable
approximation.

6 `2 approximation

6.1 Principle of `2 approximation

The idea of this method is to approximate a function, f(x), by a series up to n powers of x.
We do this by defining an inner product, creating a set of orthogonal polynomials
{φi : i = 0, 1, ..., n} in that inner product, and then establishing coefficients {ai : i =
0, 1, ..., n} such that:

n∑
i=0

aiφi

gives the best `2 approximation to the function in the set spanned by polynomials of
degree n.

The first task here is to define an inner product, < ·, · >, thus:

< u, v >=

∫ b

a

w(x)u(x)v(x)dx

where the region in which we wish to approximate f(x) is [a, b], and w(x) is a certain
weight function, which is greater than or equal to zero at all values of x.

One possible choice of the weight function is w(x) = 1√
1−x2 , which would lead to the

Chebyshev polynomials Ti(x). However in this case, the simpler choice w(x) = 1 will
be made. This will result in the orthogonal polynomials obtained being the Legendre
polynomials, with the coefficient of the highest power of x scaled to 1.

We now wish to choose φi ∈ Πi for i = 0, 1, ..., n, where Πi denotes the space of
polynomials of degree i that are orthogonal to each other. From this choice of inner

19

product, we may now find the orthogonal polynomials. It can be shown by the Gram-
Schmidt process that:

φi = xi −
i−1∑
j=0

< xi, φj >

< φj, φj >
φj . (6.1)

So if φ0 is chosen to be 1, then:

φ0 = 1, φ1 = x, φ2 = x2 − 1

3
, φ3 = x3 − 3

5
x, φ4 = x4 − 6

7
x2 +

3

35
.

It can be shown that for k ≥ 1, the following recurrence relation holds:

φk+1 = x− < φk, xφk >

< φk, φk >
φk −

< φk, φk >

< φk−1, φk−1 >
φk−1 . (6.2)

From this, we now need to determine the coefficients ai. We first define the set
A = span{φ0, φ1, ..., φn}, and write the `2 polynomial approximation as:

p =
n∑

j=0

ajφj . (6.3)

It can be shown that p is the best `2 approximation to the function f(x) iff:

< f − p, q >= 0, ∀q ∈ A .

So, letting q = φi, i = 0, 1, ..., n in turn, and substituting in the series expression for
p in Equation (6.3), and using basic properties of inner products, we arrive at:

n∑
j=0

< φi, φj > aj =< f, φi >, i = 0, 1, ..., n

and, as the polynomials φi are orthogonal and so < φi, φj >= 0, ∀i 6= j, we have:

aj =
< f, φj >

< φj, φj >
. (6.4)

So the expansion in terms of the first n orthogonal polynomials is:

f(x) ≈ p(x) =
n∑

j=0

< f, φj >

< φj, φj >
φj . (6.5)

The Matlab code used to find the `2 approximation is straightforward. The Matlab
function ‘quad’ is used to apply quadrature to find the integrals < f, φj > and < φj, φj >
for j = 0, 1, ..., n for appropriate n that we choose. Then the terms are summed to find
the polynomial approximation p, at which point this may be compared with the solution
generated by the inbuilt Matlab function for computing the desired functions.

20

When analysing the Matlab results, two important points must be noted:

• Establishing the `2 approximation of the function f(x) involves computing integrals
in terms of f itself multiplied by the orthogonal polynomials. As the reason we are
computing the hypergeometric functions 1F1 and 2F1 using the methods in this
project is that they take a long time to be computed by the Matlab function,
’hypergeom’, and hence the integrals will take a long time to be computed using
‘quad’, so this method is only viable if these integrals have values which have been
previously computed and stored. Otherwise, computing the approximation will take
longer than evaluating the hypergeometric functions themselves using Matlab.

• The polynomial approximation obtained using this method in terms of the first n
orthogonal polynomials will in general not be the same as the truncated Taylor
series expansion of n terms. Therefore, in the analysis, it is worthwhile to compare
the accuracy of the `2 approximation and the truncated Taylor series expansion.

The code used is shown in Appendix D.

6.2 Numerical results

The fourth order polynomials generated by `2 approximation are shown for each of the
three functions:

Function being approximated `2 expansion and Taylor series (in bold), up to x4 (coefficients to 6s.f.)
J0(x) 0.999991− 0.249805x2 + 0.0150405x4

1− 0.25x2 + 0.015625x4

1F1(0.1; 0.2;x) 1.00001 + 0.499155x + 0.228904x2 + 0.0768327x3 + 0.0184428x4

1 + 0.5x + 0.229167x2 + 0.0729167x3 + 0.0176595x4

2F1(−0.9, 0.3;−0.2;x) 1.00327 + 1.32523x + 0.0555430x2 + 0.132313x3 + 0.138537x4

1 + 1.35x + 0.109688x2 + 0.0513906x3 + 0.0317979x4

Below is a table showing the `1, `2 and `∞ errors for each of the three functions on
[−1, 1] for 50, 100 and 200 mesh points, as well as a comparison of the computation times
with the inbuilt Matlab function. The errors for the computation of 2F1 are also given
on the interval [−1, 0.6]):

Function n Time taken Matlab time `1 `2 `∞
J0(x) 50 0.095184 0.000632 6.298 1.038 2.849e-5
J0(x) 100 0.140470 0.000925 12.39 1.440 2.849e-5
J0(x) 200 0.155365 0.001455 24.60 2.017 2.849e-5

1F1(0.1; 0.2; x) 50 1.817793 0.896300 28.10 4.686 4.978e-4

1F1(0.1; 0.2; x) 100 2.399744 1.637009 55.59 6.547 4.978e-4

1F1(0.1; 0.2; x) 200 2.652233 2.813293 110.6 9.202 4.978e-4

2F1(−0.9, 0.3;−0.2; x) 50 7.020790 1.673386 71.38/0.1754 11.79/0.03171 0.1512/0.01256

2F1(−0.9, 0.3;−0.2; x) 100 7.108385 2.901258 141.1/0.3458 16.47/0.04391 0.1512/0.01256

2F1(−0.9, 0.3;−0.2; x) 200 7.194987 4.421957 280.5/0.6876 23.14/0.06150 0.1512/0.01256

The fact that the function itself is required to compute the `2 approximation to it, as
explained earlier, means that the time taken to calculate the approximation is actually
greater than that taken by the inbuilt Matlab function in all three cases. The only two
cases where this method would be applicable therefore are when the required integrals
are known or when a value for the function is required for a large number of points,
so that in each case the `2 approximation may be used instead. However, even if this
were the case, the approximation for each of the functions is far worse than for any of
the three differential equation methods used previously. The weakness of the differential
equation methods used was generally their accuracy near the boundary x = 1, though as
this approximation is in the form of a series in x, the greatest error would be likely to
occur when the higher order terms ignored contribute the most, i.e. near x = ±1, so this
method does not improve on this drawback.

21

Below is a graph showing results for 2F1. The error graph also contains the error of
the Taylor series expansion up to the x4 term.

Figure 6: Numerical results for `2 approximation applied to 2F1 with 50 mesh points

Comparing the error in the `2 approximation of 2F1 with the error in the first 5 terms
of the Taylor series expansion, it can be seen that in the middle of the interval [−1, 1], the
Taylor series expansion is more accurate, but the error near the end-points is substantially
larger than the `2 approximation error. Similar results are observed when approximating
J0(x) and 1F1.

7 Padé approximants

7.1 Construction of Padé approximants

The principle of constructing a Padé approximant, a form of rational approxima-
tion, on the interval [−1, 1] to a function f(x) with Taylor series expansion:

f(x) =
∞∑

j=1

Ajx
j

is to approximate f by a ratio of polynomials with small degrees such that the ratio
approximates f to as high a number of powers of x as possible.

Let Rm,n(a, b) be the space of rational polynomials with r(x) = q(x)
d(x)

, with q(x) ∈ Πm,

d(x) ∈ Πn, where Πk denotes the set of polynomials of degree less than or equal to k. If

22

we write:

q(x) = q1 + q2x + q3x
2 + ... + qm+1x

m =
m+1∑
j=1

qjx
j−1 (7.1)

d(x) = 1 + d2x + d3x
2 + ... + dn+1x

n = 1 +
n+1∑
j=2

djx
j−1 (7.2)

then the goal is to find coefficients q1,q2,...,qm+1,d1,d2,...,dm+1 such that:

u− q

d
=

∞∑
j=s

Cjx
j

for some coefficients Cj, where s is as large as possible.
This method should work well in the interval [−1, 1] which we will be using to approx-

imate all three functions, as the coefficients of xj in the above expression will decrease as
j increases. We would expect the approximation to work the best when |x| is small, i.e.
in the middle of the interval, as this will result in

∑∞
j=s Cjx

j being small.
To construct the Padé approximant, we first return to the Taylor expansion for f :

f(x) = A1 + A2x + A3x
2 + ... =

∞∑
j=1

Ajx
j−1 .

If we first try to approximate f by a function in R2,1[−1, 1]:

f(x) ≈ q(x)

d(x)
=

q1 + q2x + q3x
2

1 + d2x

then maximising the order of f − q
d

is equivalent to doing the same for q− df , where:

q(x)− d(x)f(x) = (q1 + q2x + q3x
2)− (1 + d2x)(A1 + A2x + A3x

2 + ...) . (7.3)

Eliminating terms of order 1, x, x2 and x3 from this expansion gives four equations
which can be solved by direct substitution to find:

q1 = A1, q2 = −A1A4

A3

+ A2, q3 = −A2A4

A3

+ A3, d2 = −A4

A3

. (7.4)

Alternatively, finding an approximation in R3,2 gives us that:

q(x)− d(x)f(x) = (q1 + q2x + q3x
2 + q4x

3)− (1 + d2x + d3x
2)(A1 + A2x + A3x

2 + ...)

which yields six equations which can be written as the matrix system:
1 0 0 0 0 0
0 1 0 0 −A1 0
0 0 1 0 −A2 −A1

0 0 0 1 −A3 −A2

0 0 0 0 −A4 −A3

0 0 0 0 −A5 −A4

q1

q2

q3

q4

d2

d3

 =

A1

A2

A3

A4

A5

A6

23

and similarly a 7×7 system of equations can be obtained for an approximation in R4,2.
Solving these systems will give us the Padé approximants, from which we can examine
errors in the approximations.

It should be noted that the function we test on, the Bessel function, J0(x), is even, so
the approximation to it will not have terms in odd powers of x. We therefore construct
approximants belonging to R4,2 and R6,2 of the form:

f(x) ≈ q1 + q3x
2 + q5x

4

1 + d3x2
, f(x) ≈ q1 + q3x

2 + q5x
4 + q7x

6

1 + d3x2

to arrive at and solve 4× 4 and 5× 5 matrix systems respectively.
The code used to compute and plot these approximations was simple. First, the

required terms in the Taylor series for the function to be approximated were computed,
and the mesh grid we wished to solve on was defined. Then, either the required coefficients
for the polynomials in the Padé approximants were directly computed, or a matrix system
for them was set up and Matlab asked to solve the system. Having done this, Matlab
was asked to compute the approximant at each value of x on the mesh grid defined, and
the results could then be compared with the true solution of the function we are trying
to evaluate.

The full code used to generate and solve matrix systems for each of the Padé approx-
imants is in Appendix E.

7.2 Numerical results

Below are the Padé approximants in various spaces for the three functions being approx-
imated:

Function Approximation space Expansion (coefficients to 6s.f.)

J0(x) R4,2
1−0.222222x2+0.00868056x4

1+0.0278889x2

J0(x) R6,2
1−0.234375x2+0.117188x4−0.000189887x6

1+0.0156250x2

1F1(0.1; 0.2; x) R2,1
1+0.1818x+0.0700758x2

1−0.318182x

1F1(0.1; 0.2; x) R3,2
1+0.108189x+0.0808686x2+0.00693036x3

1−0.391811x+0.0476076x2

1F1(0.1; 0.2; x) R4,2
1+0.172620x+0.0974797x2+0.0138936x3+0.00112209x4

1−0.3327380x+0.0320032x2

2F1(−0.9, 0.3;−0.2; x) R2,1
1+0.881481x−0.522813x2

1−0.468519x

2F1(−0.9, 0.3;−0.2; x) R3,2
1+0.390107x−1.02637x2+0.161875x3

1−0.959893x+0.159832x2

2F1(−0.9, 0.3;−0.2; x) R4,2
1+0.200051x−1.16531x2+0.299785x3+0.00313185x4

1−1.14995x+0.277429x2

Below is a table showing the numerical results for the approximation of the Bessel
function J0(x) on [−1, 1]:

Approximation space n Time taken ‘besselj’ time `1 `2 `∞
R4,2 20 0.000628 0.000460 1.639e-5 7.766e-6 5.016e-6
R6,2 20 0.000807 0.000460 1.075e-7 5.533e-8 3.699e-8
R4,2 50 0.000638 0.000632 3.285e-5 1.005e-5 5.016e-6
R6,2 50 0.000845 0.000632 2.050e-7 6.899e-8 3.699e-8
R4,2 100 0.000767 0.000925 6.083e-5 1.321e-5 5.016e-6
R6,2 100 0.000917 0.000925 3.727e-7 8.912e-8 3.699e-8
R4,2 200 0.000762 0.001455 1.170e-4 1.799e-5 5.016e-6
R6,2 200 0.000945 0.001455 7.099e-7 1.202e-7 3.699e-8

24

The approximation here, especially in the R6,2 space, is fairly accurate and, for large
values of n, done in a short period of time in comparison with the inbuilt Matlab solver,
‘besselj’. However, the approximation gained by solving the differential equations us-
ing the shooting method or Chebyshev differentiation method (although not the finite
difference method) is far more accurate.

However, all the differential equation methods are more accurate (but are also slower)
when approximating the 1F1 function. The results for this using Padé approximants are
shown below:

Approximation space n Time taken ‘hypergeom’ time `1 `2 `∞
R2,1 20 0.000883 0.104515 0.03462 0.01541 0.01227
R3,2 20 0.000892 0.104515 2.748e-4 1.448e-4 1.261e-4
R4,2 20 0.000931 0.104515 2.222e-5 1.193e-5 1.051e-5
R2,1 50 0.000951 0.896300 0.07598 0.02141 0.01227
R3,2 50 0.001090 0.896300 5.705e-4 1.920e-4 1.261e-4
R4,2 50 0.001109 0.896300 4.509e-5 1.553e-5 1.051e-5
R2,1 100 0.001141 1.637009 0.1454 0.02893 0.01227
R3,2 100 0.001212 1.637009 0.001070 2.547e-4 1.261e-4
R4,2 100 0.001237 1.637009 8.391e-7 2.045e-5 1.051e-5
R2,1 200 0.001222 2.813293 0.2845 0.03997 0.01227
R3,2 200 0.001235 2.813293 0.002073 3.485e-4 1.261e-4
R4,2 200 0.001246 2.813293 1.162e-4 2.787e-5 1.051e-5

The graph below shows the results for computing 1F1:

Figure 7: Numerical results for Padé approximants applied to 1F1 with 100 mesh points

25

The results for 2F1, including the errors on the interval [−1, 0.6] as well as those on
the interval [−1, 1], are shown:

Space Rm,n n Time taken ‘hypergeom’ time `1 `2 `∞ `1 on [−1, 0] `2 on [−1, 0] `∞ on [−1, 0]
R2,1 20 0.000867 0.562589 0.3257 0.2539 0.2497 0.01800 0.004381 0.002559
R3,2 20 0.000947 0.562589 0.1910 0.1774 0.1771 3.188e-4 1.539e-4 1.171e-4
R4,2 20 0.000962 0.562589 0.1645 0.1575 0.1574 6.987e-5 3.595e-5 2.852e-5
R2,1 50 0.001163 1.673386 0.5238 0.2747 0.2497 0.02426 0.006298 0.002828
R3,2 50 0.001215 1.673386 0.2471 0.1815 0.1771 6.825e-4 2.158e-4 1.414e-4
R4,2 50 0.001262 1.673386 0.1992 0.1596 0.1574 1.465e-4 5.023e-5 3.555e-5
R2,1 100 0.001672 2.901258 0.8736 0.3139 0.2497 0.04673 0.008589 0.002938
R3,2 100 0.001718 2.901258 0.3558 0.1927 0.1771 0.001288 2.884e-4 1.501e-4
R4,2 100 0.001739 2.901258 0.2706 0.1662 0.1574 2.739e-4 6.659e-5 3.813e-5
R2,1 200 0.001789 4.421257 1.5860 0.3850 0.2497 0.09169 0.01192 0.002993
R3,2 200 0.001822 4.421257 0.5845 0.2176 0.1771 0.002500 3.953e-4 1.546e-4
R4,2 200 0.001879 4.421257 0.4237 0.1827 0.1574 5.287e-4 9.076e-5 3.946e-5

Again, when approximating 2F1 the approximation near x = 1 has large errors, which
is to be expected as the method is based on removing higher order terms in the Taylor
series of the function; these terms would be expected to contribute more near the end-
points of the interval than near the centre. The errors in the left 80% of the interval
show that a decent approximation is given away from x = 1, although this is still not as
effective as the finite difference and shooting methods.

8 Conclusion

The results of the investigation into the five numerical methods tested show that the
methods used which involved solving the ordinary differential equations satisfied by the
hypergeometric functions are generally more effective than those which used the Taylor
series to evaluate the approximation. The three errors measured were usually smaller for
the differential equation methods than for the series methods, especially the `1 and `2

errors. Also, apart from the Chebyshev differentiation matrix approach, the differential
equations could be solved on any interval chosen as opposed to just [−1, 1], although
if this were tried on 2F1 outside the interval, the function would not converge there.
The two series methods would only have given good approximations within the interval
[−1, 1], as otherwise the terms neglected would come into play. Further, as opposed to `2

approximation, none of the differential equation methods use properties of the function
apart from boundary conditions, meaning that useful approximations could be gained
with the differential equation methods even if the user of the program knew little about
the problem.

The fact that for `2 approximation, prior information was needed about the solution,
resulted in a large computation time, and so this form of approximation would only be
useful if values at a large number of points were needed and an initial computation of
the function had already been stored, so a number of simple computations could follow.
However, as well as this drawback, the `2 approximation method seemed to have the
least desirable error properties out of the five, so high order polynomials would need
to be computed for it to compete with the other methods. Using Padé approximants
fared better, especially for approximating the Bessel function, where the accuracy was
impressive, and took less time, though the polynomials on numerator and denominator
would also need to be of relatively high order for this approach to be preferable to the
differential equation methods for computing 1F1 and 2F1.

Of the three differential equation methods, the advantages of using finite differences
or the shooting method with RK4 include the facts that the differential equation can be
solved on any interval, if appropriate boundary conditions are known, rather than just
[−1, 1] as in the case of Chebyshev differentiation matrices, and also that the error is
predicted to decrease as the number of mesh points increases. Further, the time taken
to compute the approximation is substantially less with these two methods, especially
with finite differences, whereas the shooting method error decreases more rapidly as the
number of mesh points increases and the errors for a very large number of mesh points
are excellent. However the computed solutions are less accurate than for the Chebyshev

26

differentiation matrix method for a small number of mesh points, especially for the 2F1

function close to x = 1. The Chebyshev differentiation matrix method takes longer to
arrive at the solutions, due to the fact that a dense matrix system needs to be computed,
but the accuracy is much improved for a small number of mesh points as well as for 2F1.
Hence, for small numbers of mesh points, the Chebyshev differentiation matrix method
seems preferable, but the shooting method is most likely to perform better for a large
number of mesh points. However a new method, possibly combining the two could be
devised, and no individual method seems to work well for 2F1 on [0, 1], due to the two
singular points in that interval.

27

A Appendix A: Matlab code for using the finite dif-

ference method to approximate the hypergeomet-

ric function 1F1

This code illustrates the method for finding 1F1(0.1; 0.2; x) on [−1, 1] with 200 mesh
points via solving the ordinary differential equation xy′′ + (c− x)y′− ay = 0 with appro-
priate boundary conditions; the code is similar for finding the Bessel function J0(x) and
2F1(−0.9, 0.3;−0.2, x), and for calculating the functions with different numbers of mesh
points.

% Define interval, number of mesh points and step size
n = 200;
x = linspace(-1,1,n)’;
h = x(2)-x(1);

% Define a,c
a=0.1;
c=0.2;

tic

% Construct differentiation matrix
v1 = ones(n,1);
D2 = (diag(-2*v1) + diag(v1(2:end),1)+diag(v1(2:end),-1))/h^2;
D1 = (-diag(v1(1:end-1),-1) + diag(v1(2:end),1))/(2*h);

% Multiply differentiation matrices by appropriate factors
B=zeros(n,n);
for j=1:n

B(:,j)=x;
end

% Differential operator for finite differences
Mfd = B.*D2+c*D1-B.*D1-a*eye(n);
Mfd(1,:) = [1 zeros(1,n-1)];
Mfd(n,:) = [zeros(1,n-1) 1];

% Calculate right-hand side of system of equations
d = zeros(n,1);
d(1)=0.670954857323271; % BC at x=-1
d(end)=1.823844396378180; % BC at x=1

% Find numerical solution
yfd = Mfd\d; toc

% Find errors in various norms
e1 = norm(hypergeom(a,c,x)-yfd,1)
e2 = norm(hypergeom(a,c,x)-yfd,2)
einf=norm(hypergeom(a,c,x)-yfd,inf)

28

B Appendix B: Matlab code for using the shooting

method to approximate the hypergeometric func-

tion 1F1

This code illustrates the method for finding 1F1(0.1; 0.2; x) on [−1, 1] with 201 mesh points
via solving the ordinary differential equation xy′′ + (c − x)y′ − ay = 0 with appropriate
boundary conditions; the code is similar for finding the Bessel function J0(x), and for
calculating the functions with different numbers of mesh points, code for 2F1 different.

% Solve equation on [-1,0]
a=0.1;
c=0.2;

% Set up equation
A = @(x,y) x ;
B = @(x,y) c-x ;
C = @(x,y) -a ;
f1 = @(x,y,z) z ;
f2 = @(x,y,z) -1/A(x,y)*(B(x,y)*z+C(x,y)*y) ;

% Boundary conditions
alpha=0.670954857323271; % BC at x=-1
beta=1; % BC at x=0
x0=-1 ;
y0=alpha ;
xf=0 ;
yf=beta ;

% Guess of initial derivatives for shooting method
dydx1 = 0 ;
dydx2 = 1 ;

% Number of mesh points and step-size
n=101 ;
h=(xf-x0)/n ;
x=zeros(n,1);
for i = 1:n+1

x(i)=x0+(i-1)*h;
end

% Set up ICs for y1 and y1’
y1(1)=y0;
z1(1)=dydx1;

tic
% Using 4th order Runge-Kutta method

for i = 1:n
rk1y=f1(x(i),y1(i),z1(i));
rk1z=f2(x(i),y1(i),z1(i));
rk2y=f1(x(i)+0.5*h,y1(i)+0.5*rk1y*h,z1(i)+0.5*rk1z*h);
rk2z=f2(x(i)+0.5*h,y1(i)+0.5*rk1y*h,z1(i)+0.5*rk1z*h);
rk3y=f1(x(i)+0.5*h,y1(i)+0.5*rk2y*h,z1(i)+0.5*rk2z*h);
rk3z=f2(x(i)+0.5*h,y1(i)+0.5*rk2y*h,z1(i)+0.5*rk2z*h);
rk4y=f1(x(i)+h,y1(i)+rk3y*h,z1(i)+rk3z*h);

29

rk4z=f2(x(i)+h,y1(i)+rk3y*h,z1(i)+rk3z*h);
y1(i+1)=y1(i)+h/6*(rk1y+2*rk2y+2*rk3y+rk4y);
z1(i+1)=z1(i)+h/6*(rk1z+2*rk2z+2*rk3z+rk4z);

end

% ICs for y2 and y2’, and RK4 method
y2(1)=0;
z2(1)=dydx2;
for i = 1:n

rk1y=f1(x(i),y2(i),z2(i));
rk1z=f2(x(i),y2(i),z2(i));
rk2y=f1(x(i)+0.5*h,y2(i)+0.5*rk1y*h,z2(i)+0.5*rk1z*h);
rk2z=f2(x(i)+0.5*h,y2(i)+0.5*rk1y*h,z2(i)+0.5*rk1z*h);
rk3y=f1(x(i)+0.5*h,y2(i)+0.5*rk2y*h,z2(i)+0.5*rk2z*h);
rk3z=f2(x(i)+0.5*h,y2(i)+0.5*rk2y*h,z2(i)+0.5*rk2z*h);
rk4y=f1(x(i)+h,y2(i)+rk3y*h,z2(i)+rk3z*h);
rk4z=f2(x(i)+h,y2(i)+rk3y*h,z2(i)+rk3z*h);
y2(i+1)=y2(i)+h/6*(rk1y+2*rk2y+2*rk3y+rk4y);
z2(i+1)=z2(i)+h/6*(rk1z+2*rk2z+2*rk3z+rk4z);

end

% Find numerical solution on [-1,0]
y3=y1+((beta-y1(end))/y2(end))*y2; toc

%%
% Find numerical solution on [0,1] by working backwards from x=1 to x=0

a=0.1;
c=0.2;

% Boundary conditions
alpha=1.823844396378180; % BC at x=1
beta=1; % BC at x=0
x0=0 ;
y0=alpha ;
xf=1 ;
yf=beta ;

% Set up equation using substitution of X=1-x to avoid singularity at x=0
A = @(x,y) (1-x) ;
B = @(x,y) -(c-(1-x)) ;
C = @(x,y) -a ;
f1 = @(x,y,z) z ;
f2 = @(x,y,z) -1/A(x,y)*(B(x,y)*z+C(x,y)*y) ;

% Guess of derivatives
dydx1 = 0 ;
dydx2 = 1 ;

% Number of steps and step-size
n=101 ;
h=(xf-x0)/n ;
xnew=zeros(n,1);
X=zeros(n,1);
for i = 1:n+1

xnew(i)=x0+(i-1)*h;

30

X(i)=xf-xnew(i);
end

% Set initial conditions and apply RK4 method
y1(1)=y0;
z1(1)=dydx1;

tic

for i = 1:n
rk1y=f1(xnew(i),y1(i),z1(i));
rk1z=f2(xnew(i),y1(i),z1(i));
rk2y=f1(xnew(i)+0.5*h,y1(i)+0.5*rk1y*h,z1(i)+0.5*rk1z*h);
rk2z=f2(xnew(i)+0.5*h,y1(i)+0.5*rk1y*h,z1(i)+0.5*rk1z*h);
rk3y=f1(xnew(i)+0.5*h,y1(i)+0.5*rk2y*h,z1(i)+0.5*rk2z*h);
rk3z=f2(xnew(i)+0.5*h,y1(i)+0.5*rk2y*h,z1(i)+0.5*rk2z*h);
rk4y=f1(xnew(i)+h,y1(i)+rk3y*h,z1(i)+rk3z*h);
rk4z=f2(xnew(i)+h,y1(i)+rk3y*h,z1(i)+rk3z*h);
y1(i+1)=y1(i)+h/6*(rk1y+2*rk2y+2*rk3y+rk4y);
z1(i+1)=z1(i)+h/6*(rk1z+2*rk2z+2*rk3z+rk4z);

end

y2(1)=0;
z2(1)=dydx2;
for i = 1:n

rk1y=f1(xnew(i),y2(i),z2(i));
rk1z=f2(xnew(i),y2(i),z2(i));
rk2y=f1(xnew(i)+0.5*h,y2(i)+0.5*rk1y*h,z2(i)+0.5*rk1z*h);
rk2z=f2(xnew(i)+0.5*h,y2(i)+0.5*rk1y*h,z2(i)+0.5*rk1z*h);
rk3y=f1(xnew(i)+0.5*h,y2(i)+0.5*rk2y*h,z2(i)+0.5*rk2z*h);
rk3z=f2(xnew(i)+0.5*h,y2(i)+0.5*rk2y*h,z2(i)+0.5*rk2z*h);
rk4y=f1(xnew(i)+h,y2(i)+rk3y*h,z2(i)+rk3z*h);
rk4z=f2(xnew(i)+h,y2(i)+rk3y*h,z2(i)+rk3z*h);
y2(i+1)=y2(i)+h/6*(rk1y+2*rk2y+2*rk3y+rk4y);
z2(i+1)=z2(i)+h/6*(rk1z+2*rk2z+2*rk3z+rk4z);

end

% Compute approximate solution on [0,1]
y3new=y1+((beta-y1(end))/y2(end))*y2; toc

% Reverse order of vector used
x1=X(1:end-1);
y31=y3new(1:end-1);

%% Combine solutions for [-1,0] and [0,1]
for l=1:length(x1)

x1new(l)=x1(length(x1)-l+1);
y31new(l)=y31(length(x1)-l+1);

end

%% Joining up of vectors and plots
x2=[x,x1new];
y32=[y3,y31new];
plot(x2,y32); hold on
plot(x2,hypergeom(a,c,x2)); hold off

31

C Appendix C: Matlab code for using Chebyshev

differentiation matrices to approximate the hyper-

geometric function 2F1

This code illustrates the method for finding 2F1(−0.9, 0.3;−0.2; x) on [−1, 1] with 200
mesh points via solving the ordinary differential equation x(1 − x)y′′ + [c − (a + b +
1)x]y′−aby = 0 with appropriate boundary conditions; the code is similar for finding the
Bessel function J0(x) and 1F1(0.1, 0.2; x), and for calculating the functions with different
numbers of mesh points.

% Number of mesh points
n=200;

% Vector of Chebyshev points
x = -cos((0:n-1)*pi/(n-1))’;

% Set up matrices labelled (5.1) and (5.3) in text
A = zeros(n,n);
B = zeros(n,n);
tic
for k = 0:n-1

A(:,k+1) = cos(acos(x)*k); % Chebyshev polys
B(:,k+1) = k*sin(acos(x)*k)./sqrt(1-x.^2); % Derivative of Ch’v polys
B(1,k+1) = (-1)^(k+1)*k^2;
B(end,k+1) = k^2;

end

% Find differentiation matrix
D = B/A;

% Find appropriate matrices corresponding to coefficients of derivatives in ODE
X=x.*(1-x);
E=zeros(n,n);
for j=1:n

E(:,j)=x;
end
F=zeros(n,n);
for k=1:n

F(:,k)=X;
end

% Set up values for a,b,c
a=-0.9;
b=0.3;
c=1+a-b;

% Set up matrix corresponding to left-hand side of ODE
Mch=F.*D^2+c*D-(a+b+1)*E.*D-a*b*eye(n);
Mch(1,:) = [1 zeros(1,n-1)];
Mch(n,:) = [zeros(1,n-1) 1];

% Right-hand side vector with boundary conditions
d = zeros(n,1);
d(1)=hypergeom([a,b],c,-1);

32

d(end)=hypergeom([a,b],c,1);

% Numerical solution
u=Mch\d; toc

% Compute various errors
e1 = norm(hypergeom([a,b],c,x)-u,1)
e2 = norm(hypergeom([a,b],c,x)-u,2)
einf=norm(hypergeom([a,b],c,x)-u,inf)

D Appendix D: Matlab code for using `2 approxima-

tion to approximate the hypergeometric function

2F1

This code illustrates the method for approximating 2F1(−0.9, 0.3;−0.2; x) on [−1, 1] by
finding the first 5 terms in a series expansion of orthogonal polynomials, in such a way
that the expansion minimises the `2 error over linear combinations of these 5 polynomials.
Finding the `2 approximation for Bessel and 1F1 functions can be done similarly.

% Define a,b,c and mesh points
a=-0.9; b=0.3; c=1+a-b;
n=50;
x=linspace(-1,1,n); tic

% Compute relevant integrals
F1 = @(x)hypergeom([a,b],c,x);Q1=quad(F1,-1,1);
F2 = @(x)1+0*x; Q2=quad(F2,-1,1);
F3 = @(x)x.*hypergeom([a,b],c,x);Q3=quad(F3,-1,1);
F4 = @(x)x.*x;Q4=quad(F4,-1,1);
F5 = @(x)(x.^2-1/3).*hypergeom([a,b],c,x);Q5=quad(F5,-1,1);
F6 = @(x)(x.^2-1/3).*(x.^2-1/3);Q6=quad(F6,-1,1);
F7 = @(x)(x.^3-3/5*x).*hypergeom([a,b],c,x);Q7=quad(F7,-1,1);
F8 = @(x)(x.^3-3/5*x).*(x.^3-3/5*x);Q8=quad(F8,-1,1);
F9 = @(x)(x.^4-30/35*x.^2+3/35).*hypergeom([a,b],c,x);Q9=quad(F9,-1,1);
F10 = @(x)(x.^4-30/35*x.^2+3/35).*(x.^4-30/35*x.^2+3/35);Q10=quad(F10,-1,1);

toc; plot(x,Q1/Q2+Q3/Q4*x+Q5/Q6*(x.^2-1/3)+Q7/Q8*(x.^3-3/5*x)...
+Q9/Q10*(x.^4-30/35*x.^2+3/35))

% Find coefficients of powers of x in series expansion
Q1/Q2-Q5/Q6/3+3*Q9/Q10/35 % coefficient of 1
Q3/Q4-3*Q7/Q8/5 % coefficient of x
Q5/Q6-30*Q9/Q10/35 % coefficient of x^{2}
Q7/Q8 % coefficient of x^{3}
Q9/Q10 % coefficient of x^{4}

% Compute errors in various norms
e1 = norm(hypergeom([a,b],c,x)-Q1/Q2+Q3/Q4*x+Q5/Q6*(x.^2-1/3)...

+Q7/Q8*(x.^3-3/5*x)+Q9/Q10*(x.^4-30/35*x.^2+3/35),1)
e2 = norm(hypergeom([a,b],c,x)-Q1/Q2+Q3/Q4*x+Q5/Q6*(x.^2-1/3)...

+Q7/Q8*(x.^3-3/5*x)+Q9/Q10*(x.^4-30/35*x.^2+3/35),2)
einf = norm(hypergeom([a,b],c,x)-Q1/Q2+Q3/Q4*x+Q5/Q6*(x.^2-1/3)...

+Q7/Q8*(x.^3-3/5*x)+Q9/Q10*(x.^4-30/35*x.^2+3/35),inf)

33

E Appendix E: Matlab code for finding Padé approx-

imants to approximate the hypergeometric func-

tion 1F1

This code illustrates the method for approximating 1F1(0.1; 0.2; x) on [−1, 1] by finding
the Padé approximants in P2,1,P3,2 and P4,2. A similar method can be used for Bessel and
2F1 functions, and also for finding Padé approximants with polynomials of higher degree
on the numerator and denominator.

% Define a,c
a=0.1;
c=0.2;

% Number of terms in Taylor series to be computed
n=6;

tic

% Compute Taylor series terms
A=zeros(n+1,1);
A(1)=1;
for i=2:n+1

A(i)=gamma(a+i-1)/gamma(a)/gamma(c+i-1)*gamma(c)/factorial(i-1);
end

toc

% Define mesh points
x=linspace(-1,1,100)’;

%% f=quadratic/linear
tic

% Find terms in Pade approximant
q11=A(1)
q12=-A(1)*A(4)/A(3)+A(2)
q13=-A(2)*A(4)/A(3)+A(3)
d12=-A(4)/A(3)

% Find Pade approximant using these terms
f1=@(x) (q11+q12*x+q13*x.^2)./(1+d12*x); toc

% Compute errors in various norms
e1 = norm(hypergeom(a,c,x)-(q11+q12*x+q13*x.^2)./(1+d12*x),1)
e2 = norm(hypergeom(a,c,x)-(q11+q12*x+q13*x.^2)./(1+d12*x),2)
einf=norm(hypergeom(a,c,x)-(q11+q12*x+q13*x.^2)./(1+d12*x),inf)

%% f=cubic/quadratic

% Set up matrix and vectors for linear system of equations
z=zeros(6,1);
B=zeros(6,6);
y=zeros(6,1);

34

% Define and solve linear system
tic, z=[A(1),A(2),A(3),A(4),A(5),A(6)]’;
B=[1,0,0,0,0,0;0,1,0,0,-A(1),0;0,0,1,0,-A(2),-A(1);0,0,0,1,-A(3),-A(2);...

0,0,0,0,-A(4),-A(3);0,0,0,0,-A(5),-A(4)];
y=B\z;

% Define terms in Pade approximant
q21=y(1)
q22=y(2)
q23=y(3)
q24=y(4)
d22=y(5)
d23=y(6)

% Find Pade approximant using these terms
f2=@(x) (q21+q22*x+q23*x.^2+q24*x.^3)./(1+d22*x+d23*x.^2); toc

% Find various errors
e1 = norm(hypergeom(a,c,x)...

-(q21+q22*x+q23*x.^2+q24*x.^3)./(1+d22*x+d23*x.^2),1)
e2 = norm(hypergeom(a,c,x)...

-(q21+q22*x+q23*x.^2+q24*x.^3)./(1+d22*x+d23*x.^2),2)
einf=norm(hypergeom(a,c,x)...

-(q21+q22*x+q23*x.^2+q24*x.^3)./(1+d22*x+d23*x.^2),inf)

%% f=quartic/quadratic

% Set up matrix and vectors for linear system
z1=zeros(7,1); B1=zeros(7,7); y1=zeros(7,1);

% Define and solve linear system
tic, z1=[A(1),A(2),A(3),A(4),A(5),A(6),A(7)]’;
B1=[1,0,0,0,0,0,0;0,1,0,0,0,-A(1),0;0,0,1,0,0,-A(2),-A(1);0,0,0,1,0,...

-A(3),-A(2);0,0,0,0,1,-A(4),-A(3);0,0,0,0,0,-A(5),-A(4);0,0,0,0,0,-A(6),-A(5)];
y1=B1\z1;

% Define terms in Pade approximant
q31=y1(1)
q32=y1(2)
q33=y1(3)
q34=y1(4)
q35=y1(5)
d32=y1(6)
d33=y1(7)

% Compute Pade approximant and errors
f3=@(x) (q31+q32*x+q33*x.^2+q34*x.^3+q35*x.^4)./(1+d32*x+d33*x.^2); toc

e1 = norm(hypergeom(a,c,x)...
-(q31+q32*x+q33*x.^2+q34*x.^3+q35*x.^4)./(1+d32*x+d33*x.^2),1)

e2 = norm(hypergeom(a,c,x)...
-(q31+q32*x+q33*x.^2+q34*x.^3+q35*x.^4)./(1+d32*x+d33*x.^2),2)

einf=norm(hypergeom(a,c,x)...
-(q31+q32*x+q33*x.^2+q34*x.^3+q35*x.^4)./(1+d32*x+d33*x.^2),inf)

35

References

[1] M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions: with Formulas,
Graphs and Mathematical Tables, Wiley, 1972

[2] A. Bayliss, A. Class, B. J. Matkowsky: Note: Roundoff Error in Computing Deriva-
tives Using the Chebyshev Differentiation Matrix, Journal of Computational Physics,
116, pp.380-3, 1994

[3] C. W. Clenshaw: A comparison of polynomial approximations with truncated Cheby-
shev series expansions, SIAM Journal of Numerical Analysis, 1, pp.26-37, 1964

[4] S. D. Fisher: Best approximation by polynomials, Journal of Approximation Theory,
21, pp.43-59, 1977

[5] A. Gil, J. Segura, N. M. Temme: Numerical Methods for Special Functions, SIAM,
2007

[6] H. B. Keller: Numerical Methods For Two-Point Boundary-Value Problems, Dover
Publications, 1992

[7] G. M. Phillips, P. J. Taylor: Theory and Applications of Numerical Analysis, Second
Edition, Academic Press, 1996

[8] M. J. D. Powell: Approximation theory and methods, Cambridge University Press,
1991

[9] L. N. Trefethen: Spectral Methods in Matlab, SIAM, 2000

36

