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Abstract Polydisperse random sequential adsorption is one of few irreversible adsorption
models for which exact results can be derived. The model was designed to describe the
coating of viruses by polymers for use in gene therapy, but its applicability is more general.
In many systems of interest, the arrangement of accessible adsorption sites is not known.
An exact treatment of adsorption to a honeycomb lattice of sites is given and compared
with the known square lattice results. The effects of lattice geometry are found to strongly
depend on the polydispersity of the adsorbing particles. The existence of strong geometry
dependencies suggests that disordered systems of adsorbing sites cannot be effectively modelled
by regular lattices. A scheme is developed and tested in 1D, which improves the effectiveness of
such modelling by transforming the polydispersity of the adsorbed particle mixture. Finally,
simulation shows that existing analytical treatments cannot be applied to diffusion-driven
polydisperse adsorption.

1 Introduction

Random sequential adsorption (RSA) is a pro-
cess that involves the irreversible adsorption
of particles onto a surface subject to the con-
dition that no later particle overlaps a previ-
ously adsorbed one. RSA was first studied in
the context of a 1D “car-parking problem” [1].
Since then a large variety of cases have been
investigated. Examples include RSA in differ-
ent numbers of dimensions; with continuous or
discrete adsorption sites; with different sizes of
adsorbing particles; and with interactions be-
tween adsorbed particles. [2][3]

RSA is a challenging problem in statistical
mechanics because it is irreversible, has mem-
ory and involves spatial exclusion. The first
of these ensures that the studied system is far
from equilibrium; the second and third mean
that the locations of the sites where the first
particles are adsorbed affect the available end
states. These complications mean that most
studies are conducted by simulation, and exact
results are known in only a minority of cases.

The most obvious use of RSA is in adsorp-
tion problems at liquid-solid interfaces, but
the process has found applications in a diverse
range of areas. RSA has been used to model

crack formation [4], the deposition of energy in
silicon detectors [5], and even the distribution
of bird nesting sites [6]. Recently, a version
of RSA called polydisperse-RSA (pRSA) has
been motivated by a problem in gene therapy
[7]. It is this version of RSA that will be the
subject of this report.

Gene therapy involves the introduction of
foreign genetic material into the cells of a
patient. Viruses have evolved to do exactly
this as efficiently as possible, so there is in-
terest in using viruses as vectors. One par-
ticularly promising family of viruses are ade-
noviruses. Unfortunately, adenoviruses princi-
pally bind to the coxsackievirus adenovirus re-
ceptor (CAR) which is present on a great va-
riety of cells that need not be targeted, and
is not present on some cells that treatments
hope to target. Additionally, the widespread
nature of viruses of this type means that many
patients will possess antibodies to it [8].

One category of proposed solutions to these
problems involves coating the surface of the
virus with polymers. The polymers serve to
hide the virus from the body’s immune sys-
tem, and reduce the affinity for binding to the
CAR receptor. In fact, by attaching appropri-
ate ligands to the polymers, the virus may be
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retargeted to specific cells with matching re-
ceptors [9].

pRSA describes the adsorption of variously
sized semi-telechelic polymers (that is, poly-
mers with only one binding group) to surfaces
of discrete adsorbing sites. Each polymer ad-
sorbs to one site (the occupied site), and the
polymer tail sterically shields the sites it wrig-
gles over (the covered sites) from further ad-
sorption. At each time-step, a polymer size
is selected according to a probability distribu-
tion, and an adsorbing site is selected at ran-
dom. If the selected site is already occupied
or covered, further adsorption does not take
place; otherwise adsorption is successful. Two
or more polymers may cover the same site, but
only a single polymer can occupy a site.

It is worth noting that, despite the above de-
scription in terms of polymers, other adsorbing
processes may be well-described by pRSA. In
recognition of this possibility, subsequent dis-
cussion will be in terms of adsorbing ‘particles’.

An advantage of pRSA is that it is analyti-
cally tractable. The average number of parti-
cles of each size adsorbed after a given number
of time-steps is known in the case where the
adsorption sites are arranged in a square lat-
tice [7].

This report will attempt to answer three
questions: 1) How does the distribution of ad-
sorbed particles depend on the geometry of the
lattice of adsorption sites? 2) Can anything be
said about adsorption to lattices without a reg-
ular arrangement of sites? 3) In biological sys-
tems adsorption to a surface proceeds by diffu-
sion. To what extent does diffusion of particles
to the surface affect the foregoing analysis?

In Section 2, I adapt the existing square lat-
tice methods to the new case of a honeycomb
lattice. Comparison of the square and honey-
comb results for a variety of adsorbing particle
distributions allows the effects of lattice geom-
etry on adsorption to be studied. Section 3.1
shows how a transformation of the adsorbing
particle size distribution can reduce the prob-
lem of adsorption to a perturbed lattice to that
of adsorption to an ordered one. For the sake
of simplicity, a 1D lattice (i.e. a line of points)

is considered. In Section 3.2 this technique is
applied to look at the effect of thermally in-
duced perturbations ‘frozen into’ a 1D lattice.
In Section 4 the RSA model is coupled into a
diffusion simulation.

2 Adsorption to a honeycomb

lattice

An analytical solution for the adsorption, by
pRSA, of particles onto the sites of a square
lattice is given in [7]. This solution represents
a modification of a method first described in
[10] and [11]. In section 2.1 this method is
adapted to the geometry of a honeycomb lat-
tice. In section 2.2 the results from this anal-
ysis are compared with those for the square
lattice case.

2.1 Formalism

Particles belong to one of three classes (Fig-
ure 1) – those large enough to cover only one
site (‘points’); those large enough to cover a
site and its nearest neighbours (‘Y particles’);
and those large enough to additionally cover
the next-nearest neighbour sites (‘windmills’).
Two particles in the same class may have dif-
ferent sizes, so a class is best understood to
refer to the number of sites a particle covers,
rather than to the particle size.

Figure 1: From left to right: point, Y and
windmill shapes formed by adsorption to the
sites marked with blue circles (‘occupied’ sites).
Yellow squares denote adsorption sites. The
black circles are sites that will be ‘covered’ by
each particle if they are not already occupied by
another.
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In one RSA time-step a single attempt at
adsorption is made. The probability that this
will involve a Y particle is α, the probability
that it will involve a windmill particle is β, and
so the probability that it will involve a point
particle is γ = 1 − α− β.

Given a normalized distribution of adsorbing
particle radii Q(r), expressions for α and β can
be found:

α =

∫ rb

ra

Q(r) dr , β =

∫ ∞

rb

Q(r) dr (2.1)

where ra is the distance between nearest neigh-
bours, rb is the distance between next-nearest
neighbours, and Q(r) = 0 for r ≥ rc where rc
is the distance to next-to-next-nearest neigh-
bours.

Each site in the honeycomb lattice is identi-
fied by a pair of indices i, j. Inspection shows
that not all lattice sites are equivalent: in fact
there are two types related by a rotation of
π/3. The windmill particle in Figure 1 is ad-
sorbed to an odd site, and the central particle
in Figure 2 is an even site. A careful choice of
labelling system (Figure 2) allows each type of
site to be immediately identified, and reduces
the differences in their treatment. The set of
nearest neighbour sites can be written as:

χi,j = {(i, j − 1), (i, j + 1), Ti,j}
where:

Ti,j =

{
(i− 1, j) if i+ j = even
(i+ 1, j) if i+ j = odd

Similarly, the set of next-nearest neighbour
sites is:

Si,j ={(i+ 1, j + 1), (i + 1, j − 1), (i, j + 2)

(i, j − 2), (i − 1, j + 1), (i − 1, j − 1)}

Each site can be in one of four states – oc-
cupied by a point, Y or windmill particle, or
unoccupied. The configuration of an M ×M
lattice can be specified by a direct sum of these
states at each site:

i−1, j−2

i , j

i , j+1

i+1 , j

i , j−2

i−1 , j

i , j−1

i−1, j+2

i+1, j−1

i+1, j+1

i, j+2

i−1, j+1

i−1, j−1

Figure 2: A honeycomb lattice. In the nota-
tion of the text, the point i, j has i+ j = even.
The inner circle encloses the nearest neigh-
bour points. The outer circle encloses the next-
nearest neighbour points.

|{vi,j}〉 ∈
M⊕

i,j=1

({|p〉, |Y 〉, |w〉, |0〉}) (2.2)

The average state of the system, |ψ(t)〉, at
any given time is a weighted sum of all possible
configurations:

|ψ(t)〉 =
∑

{vi,j}

P ({vi,j}, t)|{vi,j}〉 (2.3)

Note that, despite the suggestive notation, this
is a classical process, and P ({vi,j}, t) is simply
a probability.

Creation operators A
†
i,j, B

†
i,j and C

†
i,j are

defined at each site for Y, windmill and point
particles respectively. Their associated num-
ber operators are N

Y
i,j, N

w
i,j and N

p
i,j respec-

tively. These operators return 1 if the site is
occupied by a particle of the given class, and
return 0 otherwise. A fourth number operator
N

v
i,j returns 1 if the site is unoccupied (this

includes covered sites), and 0 otherwise.
Finally, an operator Ri,j is introduced such

that Ri,j returns 0 when acting on a site that is
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covered, and returns 1 otherwise. The equation
describing pRSA can then be written as:

∂

∂t
|ψ(t)〉 =

1

M2

M∑

i,j=1

Ki,j|ψ(t)〉 (2.4)

Ki,j = (αAi,j + βBi,j + γCi,j − N
v
i,j)Ri,j

For the case of an initially empty lattice (i.e.
at t = 0, |ψ(t)〉 = |{0}〉) this has the solution:

|ψ(t)〉 = exp



 t

M2

M∑

i,j=1

Ki,j



 |{0}〉 (2.5)

The average number of attached particles at
time t is then:

N(t) = M2〈{u}|(Np
1,1 + N

Y
1,1 + N

w
1,1)|ψ(t)〉

where {u} = |u〉 ⊕ · · · ⊕ |u〉 and |u〉 = |0〉 +
|Y 〉 + |w〉 + |p〉 is the ‘universal state’. The
choice of i = 1, j = 1 is arbitrary: all sites are
assumed equivalent, so multiplying the result
for one site by the number of points gives the
full result.

By expanding the exponential in (2.5) into
a power series and making use of relations be-
tween the operators (see [7] for details), this
can be shown to be equivalent to:

N(t) = M2
∞∑

k=1

1

k!

(
t

M2

)k

(−1)k−1A(k)

(2.6)

A(k) =
∑

s∈Pk

[α+ β]ζ(s)βω(s)−ζ(s)−1 (2.7)

where Pk is the set of sequences of k sites in
which the first site is i = 1, j = 1 and each sub-
sequent site is either already found earlier in
the sequence, or is a neighbour or next-nearest
neighbour of a site that is. The number of dis-
tinct sites in sequence s is ω(s). The number
of distinct sites in sequence s that are nearest
neighbours of sites that are found earlier in the
sequence is given by ζ(s).

At this point it is useful to take the Laplace
transform of (2.6) term by term.

N̂(u) =

∫ ∞

0
N(t)e−utdt

=
−M2

u

∞∑

k=1

(
− 1

uM2

)k

A(k) (2.8)

Equation (2.7) can now be rewritten as a
sum over sequences with no repeated sites.
The set of such sequences containing k sites
is Gk:

A(k) = F (k)

k∏

l=1

[
1 +

(
− l

uM2

)
+ . . .

]

with

F (k) =
∑

s∈Gk

[α+ β]ζ(s)βk−ζ(s)−1

=

k∑

j=1

φk
j [α+ β]k−jβj−1 (2.9)

where φk
j is the number of sequences in Gk sat-

isfying the condition j = k − ζ(s).
Although the process leading to the values

of φk
j is easy to understand, the values must

be calculated numerically. The time that this
takes grows rapidly with k. Table 1 contains
these values for k ≤ 8.

In [11] it is shown that (2.8) can be recast
as:

N̂ =
M2

u

∫ 1

0
(1 − x)uM2

∞∑

k=1

(−x)k−1

(k − 1)!
F (k)

(2.10)
Finally, by taking the inverse Laplace trans-

form (Bromwich integral) the result is N(t) =
ψ(x) where:

x(t) = 1 − exp

[
− t

M2

]
(2.11)

ψ(x) = M2
∞∑

k=1

(−1)k−1xk

k!
F (k) (2.12)
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Table 1: Table of values of φk
j for k = 1, 2, . . . , 8, j = 1, . . . , k

φk
j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

k = 1 1 – – – – – – –
k = 2 3 6 – – – – – –
k = 3 12 54 48 – – – – –
k = 4 60 426 840 468 – – – –
k = 5 360 3432 10944 13272 5328 – – –
k = 6 2472 29520 131172 256488 221016 68928 – –
k = 7 18912 272568 1557012 4284816 5908620 3914916 994464 –
k = 8 158544 2691912 18846324 67503996 131005572 137901120 73838136 15781920

As each class of particle can adsorb to every
site of the lattice with equal chance of success,
the number of attached particles of different
classes can easily be calculated from N(t):

NY (t) = αN(t) Nw(t) = βN(t)

Np(t) = γN(t) (2.13)

The expression given for ψ(x) converges
slowly. Wynn’s epsilon method [12] is used to
accelerate convergence. In practice the series
converges well with the input of the first eight
terms, but convergence is not guaranteed.

2.2 Application to the honeycomb

lattice

The general features of the resulting adsorp-
tion process are easy to predict. At first, the
adsorbing surface is empty, so almost every ad-
sorption attempt is successful. As time pro-
gresses, the surface becomes saturated and the
rate of adsorption of additional particles de-
creases.

The method used gives the mean value of
N(t) at all t. There is no reason to suppose
that this is the modal value, so it is worth in-
vestigating the spread of values of N(t) from
many simulations. Figure 3 shows smoothed
histograms (each bin is replaced with the av-
erage of itself and the bins on either side)
from 5000 runs to saturation on a 200 × 200
site lattice in both the square and honeycomb

cases. Reassuringly, the derived values sit
within broad peaks. The widths of the peaks
are dependent on α, β and γ (this can be seen
from the γ = 1 case), but unfortunately no
relation for them is known.
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Figure 3: Smoothed curves of the number of
particles of different classes adsorbed at satu-
ration for a) honeycomb lattice and b) square
lattice (‘crosses’ and ‘squares’ are the square
lattice equivalents of Y-particles and windmills
respectively). To aid comparison α = β = γ =
1/3.

Plots of this sort caution against overzeal-
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ous use of (2.11) and (2.12). The derivation
of these expressions means that they are ac-
curate only for large M2, and are limited by
the power of the algorithm used to accelerate
convergence. The calculated values of N(t)
at saturation on a 200 × 200 site honeycomb
(square) lattice are 0.55% (0.50%) below the
experimental mean for all classes of particle;
for a 100 × 100 site lattice, the calculated val-
ues are ∼ 1.0% too low in all cases.

It is instructive to compare the results of ad-
sorption to the honeycomb lattice with their
square lattice equivalents. Figure 4 shows the
difference at saturation in the mean number of
particles adsorbed on a 100×100 site lattice of
each type for all values of α and β.

The figure has several intriguing features.
Firstly, one can see that some values of α and
β have almost the same number of adsorbed
particles of each class. This is trivially true for
α = β = 0, but also appears to hold along the
contour best described by the yellow band in
the bottom half of Figure 4(d).

A second point of note is the extreme values
of the plots. Varying α, β and γ corresponds to
varying the concentrations of different classes
of adsorbing particle. Certain concentrations
have a large sensitivity to the geometry of the
lattice e.g. at α = 0.5, β = 0, whereas others
do not. In terms of the virus coating problem,
this suggests that the distribution of the virus
binding sites may greatly affect the composi-
tion of the resulting coat.

Figure 4(c) shows another interesting result
– a honeycomb lattice adsorbs either approx-
imately the same or more nearest-neighbour
particles than a square lattice for all values
of α, β and γ. This result may not at first
seem surprising: a honeycomb lattice site has
three nearest neighbours, whereas a square lat-
tice site has four, so on equally-sized lattices
one would naively expect more honeycomb Y-
particles. However, this cannot be the whole
explanation – the same argument applied to
Figure 4(d) fails to account for the higher num-
ber of windmill particles. The result is instead
related to the way that cross, square and point
particles may be tessellated in the two cases.

3 Perturbed Lattices

The strong effects of lattice geometry on the
numbers of each class of particle that are ad-
sorbed suggests the need for a scheme to treat
disordered lattices. It seems likely, for exam-
ple, that adsorption to sites arranged in an ap-
proximately square lattice cannot be modelled
by adsorption to sites in a regular square lat-
tice. Here I consider the case of a perturbed
lattice – that is, a lattice whose sites have
been displaced from a regular arrangement by
a small amount, the magnitude of which fol-
lows a well-defined probability distribution. A
one dimensional lattice (a line of points) is con-
sidered for simplicity.

The aim of this section is to illustrate a
scheme by which approximate expressions for
α and β analogous to those in (2.1) can be
found for a perturbed lattice. It was stressed
in Section 2 that these probabilities should be
interpreted in terms of the number of sites that
each particle covers, rather than each parti-
cle’s size. This interpretation is necessary in
the perturbed case, where a small particle may
adsorb to cover many closely-spaced sites.

3.1 One Dimension

Each lattice site falls on a line, and is spaced
a distance a from its neighbours. Each site is
then displaced along the line by an amount ξ
(which varies from point to point and may be
negative) from this equilibrium position. The
displacements are described by a probability
distribution P(ξ).

In pRSA we randomly select a site to be ad-
sorbed to and then look at the positions of the
nth nearest sites to the left and right (n = 1
corresponds to the nearest neighbours, n = 2
the next-nearest neighbours and so on). If the
adsorbing particle has ‘radius’ z, then any sites
closer than z are considered covered. Unfor-
tunately, as the site that will be adsorbed to
has also been perturbed, if the nearest neigh-
bour to the left is found to be very close, then
the probability of the one to the right being
far away increases – the probability of cover-
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Figure 4: Colour plots of the calculated average additional number of particles adsorbed onto a
honeycomb lattice with respect to a square lattice for all α, β and γ. Note that the scaling for
each plot is different. a) Total number of adsorbed particles b) Number of particles that cover
one point only c) Number of particles that cover nearest neighbours d) Number of particles that
cover both nearest and next-nearest neighbours.

ing two initially equidistant sites on the line is
not the square of the probability of covering
one.

Exact results are obtained by taking a convo-
lution of the probability distribution for each
site on the line. I will restrict the discussion
here to three convolutions. The probability of
two sites, initially equidistant from the adsorb-
ing site, being perturbed such that the first
ends up a distance v1, and the second a dis-
tance v2 further away from the perturbed ad-
sorbing site is:

H(v1, v2) =

∫ ∞

−∞
P (ξ) P (v1 + ξ)

× P (v2 + v1 + ξ) dξ (3.1)

Let the distribution of adsorbing particles
with radius z be Q(z). The probability, Rm

n ,

thatm nth nearest neighbours are occupied can
now be directly calculated.

R2
n =

∫ ∞

0
Q(z)

∫ z−na

−z−na

∫ z−na

−z−na
H(v1, v2) dv1dv2dz

R1
n = 2

∫ ∞

0
Q(z)

∫ z−na

−z−na

(∫ ∞

z−na
+

∫ −z−na

−∞

)

×H(v1, v2) dv1dv2dz

R0
n = 1 −R2

n −R1
n (3.2)

The factor of 2 arises in R1
n because there are

2 ways of occupying one site of a pair.
For most Q(z), equivalent expressions to the

above with more than 3 convolutions become
extremely time-consuming to calculate. This is
the reason that the 3 convolution case has been
focussed on. Nevertheless, taken together with
the approximation that pairs of sites behave
independently of each other, this is found to
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describe physical systems under sizeable per-
turbations.

3.2 Example

As a physical, albeit unrealistic, example,
imagine there to be some restoring force hold-
ing each site in position. Then for small dis-
placements the potential is parabolic, and so
the probability distribution for displacements
due to thermal agitation is, via a partition
function:

P (ξ) ≈
√
b

π
e−b ξ2

(3.3)

Here, b is a constant that depends on the tem-
perature of the system and the strength of the
restoring force. In what follows this ‘heat mo-
tion’ is assumed to be frozen into the lattice.
The approximation is due to the parabolic po-
tential being assumed to hold for all ξ. For
sufficiently large values of b, this is a good de-
scription. Calculating (3.1) for this case gives:

H(v1, v2) ≈
√

1

3

b

π
e

−2b
3

(v2

1
+v2

2
−v1v2)

Once a choice of particle size distribution,
Q(z), has been made, the values of Rm

n can
be calculated using (3.2). For simplicity, I
will take the unperturbed lattice spacing to be
a = 1, and Q(z) to be a uniform distribution
for z = [0, 1]. Recall that z is the analogue of
a ‘radius’, so the largest particles are 2 units
long.

The first few values of Rm
n for b = 2 are

given in Table 2. The n = 0 case allows for
the fact that every adsorbed particle covers at
least one site. As a first approximation, prob-
abilities for different n are assumed to be inde-
pendent. Hence, the probability that any given
number of sites are covered or occupied can be
determined from the table. For example, the
probability, Λ(3) that 3 sites are covered or
occupied is equal to the sum of the probabili-
ties that both particles of one pair are covered
and neither particle from any other pair, and
the probabilities that one particle from each of

two pairs is covered and no particle from the
third pair.

An unperturbed lattice with probability
Λ(d) of adsorbing a particle that covers d sites
should then adsorb in the same way as the per-
turbed lattice.

Number of occupied sites, m
n 0 1 2

0 0 1 0
1 0.65100 0.23334 0.11566
2 0.95699 0.03772 0.00529
3 0.99906 0.00092 0.00003

Table 2: Probabilities Rm
n , that none, one or

both of a pair of sites are covered for b = 2,
and for up to next-to-next-nearest neighbours.
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Figure 5: Comparison of theory with simula-
tion for two different magnitudes of perturba-
tion. The simulation values are the averages
of 250 runs of pRSA on 10,000 sites perturbed
according to (3.3). The theoretical values are
the averages of 250 runs on an unperturbed lat-
tice with the probabilities of a particle covering
a given number of sites calculated as described
in the text. An unperturbed lattice would satu-
rate after 10,000 adsorptions.

In Figure 5, the number of adsorbed parti-
cles is shown for the perturbed lattice and its
3-convolution equivalent for b = 2 and b = 14.
Unsurprisingly, the approximation worsens as
b decreases: for large perturbations more con-
volutions are required. For b = 2 the theory
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result at saturation is 1.3% higher than the
simulation one. For b = 14 the theory result
is 0.45% too high at saturation. In construct-
ing the theoretical results, values of Λ(d) were
computed for d ≤ 7 using the values of Rn

m for
n ≤ 3.

4 Diffusion

Many biological processes proceed by diffusion
onto an adsorbent surface. Consider a solution
of adsorbing particles of a single type. As par-
ticles are adsorbed to the surface, the concen-
tration next to the surface drops – further ad-
sorption is unlikely until more adsorbing parti-
cles diffuse in. This means that each RSA time
step corresponds to a different amount of real
time.

A method is described in [13] for coupling
the time-step used in RSA to a real-time diffu-
sion problem. In this section I will apply this
method to the case of several sizes of particles.
In this case, adsorption of a particle of one type
leads to a decrease in the concentration of that
type of particle, but the concentration of other
types of particles is unaffected. In the language
of Section 2, α, β and γ become time depen-
dent.

I study adsorption, by pRSA, from an ini-
tially well-mixed polydisperse solution to an
infinite plane at y = 0 (in Cartesian coordi-
nates). The symmetry of this problem ensures
that the concentration is uniform in the x-z
plane. Consequently, the diffusion equation for
this system is:

∂ci(y, t)

∂t
= Di

∂2ci(y, t)

∂y2
(4.1)

where for particle species i, Di is the diffusiv-
ity, and ci(y, t) is the concentration at time t a
distance y from the adsorbing surface.

Ref. [13] shows that RSA can be coupled
into this system via the following Robin bound-
ary condition:

∂ci(0, t)

∂y
= θi(t)

2P√
Diπ

ci(0, t) (4.2)

In this condition P is related to the timescale
over which a single particle is adsorbed and
θi(t) is a function that takes the values 0 or 1
at all times. When an adsorption attempt by a
particle of species i is successful θi(t) = 1 until
an unsuccessful attempt is made. Conversely,
when an attempt is unsuccessful θi(t) = 0 un-
til a successful attempt is made. Attempts
are made whenever κ(t) increases by one unit,
where κ(t) is given by:

κ(t) =

⌊∫ t

0

2P
√
Di√
π

ci(0, t)dt

⌋
(4.3)
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Figure 6: Concentration and adsorption proba-
bility curves for diffusion onto a 100× 100 site
square lattice. The curves are from 0.02 mm
above the adsorbing boundary. At the end of
the simulation the lattice is 91% occupied. a)
The peak of the concentration curve initially
shifts towards slower diffusing particles, and
then begins to flatten out. b) The parameters
α, β and γ show time dependence.

Figure 6 shows the results of a simulation of
diffusion driven adsorption onto a 100×100 site
square lattice with the above boundary condi-
tion and the additional conditions:

9



ci(y, 0) = ci(∞, t) = 4000 e(−(8−i)/8)2) (4.4)

A total of 15 particle sizes are simulated (i =
1 . . . 15). The condition (4.4) thus describes a
normal distribution peaking at i = 8. Parti-
cle species i = 1 . . . 5 adsorb to a single point,
species i = 6 . . . 10 adsorb to cover nearest
neighbours, and species i = 11 . . . 15 also cover
next-nearest neighbours. All particles are non-
interacting.

For simplicity, P = 1s−1/2, and the bound-
ary condition at infinity is moved to 1 mm
above the adsorbing surface. The concentra-
tions have dimensions of mm−1 above the ad-
sorbing area, and a simple scaling relation is
used for the diffusivity:

Di =
5 × 10−5

i
mm2 s−1 (4.5)

All of the above values have approximately
the correct order of magnitude to describe long
molecules adsorbing onto sites spaced ∼ nm at
a concentration of ∼ g/l.

Figure 6b) shows that α, β and γ change
rapidly at early times. This behaviour means
that in this case (2.5) cannot be used to de-
scribe the time-evolution of the system. Great
care should be taken in applying the results of
Section 2 to diffusion-driven adsorption pro-
cesses.

Despite this caveat, Section 2 is still appli-
cable to many laboratory situations, where the
solution can be shaken to ensure that it is al-
ways well-mixed.

5 Conclusions

pRSA is one of very few RSA models for which
analytical results can be derived. In this re-
port, several features of pRSA have been inves-
tigated – in particular the model’s dependency
on lattice type and particle distribution.

The relation of pRSA to other RSA algo-
rithms e.g. hard sphere adsorption, is not a
simple one, and it is unlikely that the results
found here can be generalised. Fortunately,

however, pRSA has applicability to real-life
systems, as its original motivation of virus-
coating suggests. The utility of the present an-
alytical treatment would be greatly increased
if the variance of the number of adsorbed par-
ticles was known, rather than just the mean.

One surprising result from this work is that
there is a group of polydisperse distributions
under which the adsorption properties of a lat-
tice are geometry independent. It would be
interesting to see whether such groups gener-
ally occur, or are limited to the square and
honeycomb case.

It is also apparent that a small change in
a polydisperse distribution can lead to a sub-
stantially different coating if the geometry of
the adsorbing surface is not known. This vari-
ation in particle adsorption between different
lattices at different concentrations raises the
intriguing possibility that nature may have got
there first. For example: do structures exist
that are optimised to pick out a certain sized
reactant by statistical, rather than specialised
chemical processes?

The effects of varying lattice geometry sug-
gested the need for an analytical scheme to
treat disordered lattices – which are much more
likely to occur in biological systems. The ap-
plicability of the approach presented here may
be wide – there is no need to physically mo-
tivate the probability distribution leading to
disordering, so it may be possible to charac-
terise a distribution by direct measurement of
adsorption site displacement.

Whilst results were presented for a simple
1D case, it should be possible to generalize the
results to two dimensions. It is, however, likely
that the resulting integrals will be extremely
time-consuming to solve except for the sim-
plest particle size distributions.

It is an unsurprising, but previously unre-
ported result that polydisperse diffusion-driven
adsorption cannot be modelled by present an-
alytical treatments. It is hoped that investi-
gation of the time dependence of particle con-
centration in a wider range of simulations will
allow an effective modification of the existing
treatment to be derived.
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