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“A word to the wise ain’t necessary

- it’s the stupid ones that need the advice.”

“In order to succeed,
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Abstract

Many systems of interest in the physical, biological, and social sciences consist

of components linked together and can therefore be modelled as networks.

Modelling a system as a network, an abstract structure, captures only the

basics of connection patterns and little else. However the connections in

a network of people might represent how people learn, form opinions, and

gather knowledge, which is of interest in many instances.

The aim of the Mathematics Genealogy Project is to ‘compile information

about ALL the mathematicians of the world’ in the attempt to ‘trace the

intellectual history of mathematics’1. Information on each mathematician is

available along with their adviser(s) and advisee(s), which one can use to

construct a mathematics genealogy tree.

This mathematics genealogy tree can be modelled as a network, and network

theory can be used to identify and gain insights into the patterns in the

interactions between mathematicians and their influence on the the structure

of the mathematics community.

In this work, a background to networks and concepts used in network theory

is given. Using these concepts, the mathematics genealogy tree is modelled

by three different networks. Exploring the structure of each network by com-

puting basic diagnostics from network theory, we try understand the influence

of advisers on their students.

1Taken from the mission statement of the Mathematics Genealogy Project, which is available online
(http://genealogy.math.ndsu.nodak.edu/mission.php).



Contents

1 Introduction 1

1.1 The Mathematics Genealogy Project . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Method and Content . . . . . . . . . . . . . . . . . . . . . . . 3

I An Introduction to Network Theory 5

2 Structure and Mathematical Representation of Networks 7

2.1 Networks and their Representation . . . . . . . . . . . . . . . . . . . . . 7

2.2 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Simple Graphs and Multigraphs . . . . . . . . . . . . . . . . . . . 8

2.2.2 Directed and Undirected Networks . . . . . . . . . . . . . . . . . 8

2.2.3 Directed Acyclic Graphs . . . . . . . . . . . . . . . . . . . . . . . 10

3 Network Diagnostics 11

3.1 Degree Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Undirected Network . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Directed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Assortative Mixing of Discrete Characteristics . . . . . . . . . . . 14

3.2.2 Assortative Mixing by Scalar Properties . . . . . . . . . . . . . . 17

3.2.3 Degree Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Mathematics Genealogy Networks 22

4 Description of the Data Set 23

4.1 Method of Labelling Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Basic Trends over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



5 Mathematics Genealogy as a Directed Network 28

5.1 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Out- and In-Degree Assortativity . . . . . . . . . . . . . . . . . . . . . . 30

6 Mathematics Genealogy as Undirected Networks 35

6.1 Undirected Genealogy Network . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 The Sibling Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Degree Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Degree Assortativity: Pearson Correlation Coefficient . . . . . . . . . . . 39

6.5 Clustering Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusions 45

8 Discussions 50

9 Further Work 53

9.1 Assortativity Using Other Characteristics . . . . . . . . . . . . . . . . . . 53

9.2 Community Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Change in Dissertation Topic 56

A.1 Original Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2 Progress Made . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3 Reason for Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B Expectation and Standard Deviation of Discrete Distributions 60

C Summary of Results 61

Bibliography 62

ii



List of Figures

1.1 Screen shot of Dirichlet’s MGP web page. . . . . . . . . . . . . . . . . . 2

1.2 Example of a mathematics genealogy tree. . . . . . . . . . . . . . . . . . 3

2.1 An example network with 7 nodes and 6 edges. . . . . . . . . . . . . . . 7

2.2 A self-edge and a multiedge. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Example of a directed network and its undirected counterpart. . . . . . . 9

2.4 An example of a cycle in a directed network. . . . . . . . . . . . . . . . . 10

3.1 Different networks with the same degree distribution. . . . . . . . . . . . 12

3.2 Example networks in which there are three types of mixing characteristics

distinguished by the colour of the node. . . . . . . . . . . . . . . . . . . . 15

3.3 An example: The type of edge and node combination that should summed

for each element in the mixing matrix E. . . . . . . . . . . . . . . . . . . 15

3.4 A path of length two (solid edges) is closed if the dashed edge is present. 20

4.1 Number of individuals awarded a degree over time. . . . . . . . . . . . . 26

4.2 Number of advisers an individual has over time (proportion of individuals). 27

5.1 In-degree distribution of the directed network. . . . . . . . . . . . . . . . 29

5.2 Out-degree distribution of the directed network. . . . . . . . . . . . . . . 29

5.3 Visual representation of the out-degree distribution matrix (order of rows

reversed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Assortativity coefficients as individuals are added to the network per 13

years (1363 - 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Assortativity coefficients as individuals are added to the network per year

(1860 - 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Mean degree of nodes in the undirected network over time. . . . . . . . . 36

6.2 Difference between the structure of the two undirected networks considered

here, illustrated by a small subset example. . . . . . . . . . . . . . . . . . 37

6.3 Mean degree of nodes in the sibling network over time. . . . . . . . . . . 37

6.4 Degree distribution of the undirected network. . . . . . . . . . . . . . . . 39

iii



6.5 Degree distribution of the sibling network. . . . . . . . . . . . . . . . . . 40

6.6 Mean local clustering coefficient, Ci over time for the undirected and sibling

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.1 Black edges represent the out-degree, and the purple directed edges repre-

sent the in-degree added. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.1 A small example network with missing node type labels. . . . . . . . . . 54

A.1 Mathematics Subject Classification (MSC) number available in the Math-

ematics Genealogy Project (MGP) data set. . . . . . . . . . . . . . . . . 57

A.2 Screen shot of an ‘Author Profile’ on MathSciNet. . . . . . . . . . . . . . 58

A.3 The data scraper: The top window is the html code retrieved by the data

scraper, and the bottom window is the output file. In the html code,

the data scraper finds the code circled in red, (highlighted in red is the

same text but zoomed in). The scraper then saves the the MR Author

ID from input list, the MSC number, font size, publication count, and the

MR Author ID in the html code into in an output file (indicated by green

arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



Chapter 1

Introduction

1.1 The Mathematics Genealogy Project

The Mathematics Genealogy Project (MGP) is an online database1

that contains a wealth of information on individuals who have received

doctorates in mathematics. It attempts to trace the intellectual his-

tory of mathematics. The aim of the MGP is to list the following

information about each individual in the database:

• The name of the degree holder

• The university name and country location that awarded the degree

• The year the degree was awarded

• The title of their dissertation

• The Mathematics Subject Classification2 (MSC) number of their dissertation

• His/ her advisor(s) and their corresponding information

• His/ her student(s)3 and their corresponding information

• The total number of descendant(s).

We refer to the information available in the MGP database as the MGP data set. An

example of this information represented on the MGP website is given in Figure 1.1, which

is a screen shot of Gustav Dirichlet’s MGP web page.

1http://genealogy.math.ndsu.nodak.edu/
2This is an alphanumerical classification scheme collaboratively produced by two major mathematical

reviewing databases, Mathematical Reviews and Zentralblatt MATH, which is used by many mathematics
journals to classify publications by subject area. See Appendix A for more details.

3Also referred to as advisee(s).
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Figure 1.1: Screen shot of Dirichlet’s MGP web page.

1.2 Aim of Dissertation

The MGP data set can be represented as a mathematics genealogy tree, as shown in

Figure 1.24. Not only is it interesting to trace back the lineage of a favourite mathe-

matician, but one could also study the structure of this genealogy tree to understand

how the mathematical community has developed, how new members join the family of

mathematicians, and the influence that advisers have on their advisees. In [1], the MGP

data set was used to study the role of mentorship in advisees performance. Also, by ex-

amining information such as each individual’s university location or mathematics subject

area, one can look for patterns within this data and address questions that are of interest.

For example, by adding the location from which each individual in the MGP obtained

their degree, one could examine the movement of mathematical knowledge around the

world, and which location is most popular based on the number of individuals awarded

4http://genealogy.math.ndsu.nodak.edu/
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Figure 1.2: Example of a mathematics genealogy tree.

their degree from different countries. Alternatively, one could apply network theory in

order to mathematically define the prestige of each university. This is done in [2], for

universities in the United States based on the MGP data set.

The aim of this dissertation is to explore the advisor-advisee relationship in the com-

munity of mathematicians and infer from this the influence an advisor has on their ad-

visees’ supervising behaviour, or how the advisees are influenced by their advisers.

1.3 Proposed Method and Content

The mathematics genealogy tree in Figure 1.2 can be thought of as a network, where the

nodes are taken to be individuals in the database, and there exists an edge between two

individuals if there is an academic-advising relationship between the two individuals. A

variety of useful network diagnostics can be calculated to capture particular features of

the network topology and identify behavioural trends between different types of nodes.

The structure of the work presented here is divided into two parts. The first part

aims to give a background in the theory of networks used in this work, while the second

part represents the MGP data set as a network and applies network diagnostics to ex-

plore and better understand the patterns in advisor-advisee relations in the mathematical

3



community and mathematics genealogy tree.

Part I consists of Chapter 2 and Chapter 3, which are based largely on expositions

in Mark Newman’s book [6]. In Chapter 2 the various network structures implemented

in this work and the methods used to represent and model networks mathematically

are discussed. The diagnostics used to help understand particular features and detect

characteristics of the networks are given in Chapter 3.

Part II begins with Chapter 4, in which the MGP data set is examined in more detail.

There are three different networks considered in this work. Chapter 5 is devoted to the

representation of the MGP data set as a directed network, and Chapter 6 for the repre-

sentation of the data set as two undirected networks. Both Chapters 5 and 6 also include

the network diagnostics, given in Chapter 3, computed for each network. All work given

in Chapters 5 and 6 is my own, and all the diagnostics were calculated using MATLAB

and codes written by me. The results of the diagnostics calculated for each network are

summarised in Chapter 7, along with the interpretations in terms of the mathematics ge-

nealogy tree and advisor-advisee relations. Chapter 8 discusses and hypothesises possible

explanations of the main results mentioned in Chapter 7. Characteristics of an individual

in the MGP, other than their number of advisers or number of advisees, has been looked

into briefly in Chapter 9. Possible scope for further work is also suggested in this chapter.

The original dissertation proposal is given in Appendix A, which also includes details

of all progress that was made and the reason for changing focus. Appendix B briefly

states the statistical knowledge of discrete distributions used in this work. A summary of

only the basic diagnostics calculated throughout this work is given in a table in Appendix

C.

4



Part I

An Introduction to Network Theory
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Many systems of interest in the physical, biological, and social sciences that consist of

individual parts or components linked together in some way can be represented in the form

of a network. A network is essentially a collection of points connected together in pairs.

For example, the Internet is a collection of computers that are linked by data connections.

In human societies, the people could be thought of as nodes in the network, connected by

acquaintances or some form of social interaction. The pattern of the connections between

the nodes and the structure of networks can tell a lot about the behaviour of the system

that it represents.

The connections in a social network affect how people learn, form opinions, and gather

knowledge. Unless something is known about the structure of a network, we cannot hope

to fully understand the functions of the corresponding systems.

http://thecustomizewindows.com/2011/03/communication-approaches-on-social-networks/
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Chapter 2

Structure and Mathematical
Representation of Networks

2.1 Networks and their Representation

A network, also referred to as a graph in mathematical literature, is a collection of items

called nodes, with connections between them called edges. The number of nodes in a

network is commonly denoted as n, and m is used to denote the number of edges. For

the small network given in Figure 2.1, the total number of nodes n is 7 and the number

of edges m is 6.

Figure 2.1: An example network with 7 nodes and 6 edges.

There are several ways to represent a network mathematically. But first, the nodes

need to be labelled uniquely with integer labels 1, . . . , n (see Figure 2.1) to be able to refer

to or select a node in the network without any ambiguity. The order in which the nodes

are labelled is not important. The set of nodes is denoted by N here. An edge between

nodes i and j can be denoted by (i, j). Using this notation, the complete network can

be specified by giving the value of n and a list of all of the edges, called an edge list. For

example, the small network given in Figure 2.1 has n = 7 nodes and can be represented

mathematically by the following edge list:

{(2, 4), (3, 4), (3, 6), (4, 5), (5, 6), (6, 7)} .

7



An element in the edge list, i.e. a pair of nodes (i, j) can be assigned a unique numerical

label from 1, . . . ,m. We call the set of these numerical labels for the edges of a network the

set of edges, which we shall denote as E here. Edge lists are useful to store the structure of

a network, as they are compact. However, to compute network diagnostics, the adjacency

matrix is a better representation of a network, as many network diagnostics are tied to

concepts from linear algebra. The definition of the adjacency matrix of a network depends

on how an edge is defined in the network (see Section 2.2.2).

2.2 Network Structure

2.2.1 Simple Graphs and Multigraphs

Figure 2.2: A self-edge and
a multiedge.

Edges that connect nodes to themselves are called self-edges.

Self-edges are not considered in this work, as it does not

make sense for individuals to advise themselves to obtain a

doctorate in mathematics. If there is more than one edge

between the same pair of nodes, then the edges are called

a multiedge. A network with multiedges is called a multi-

graph. Figure 2.2 gives an example of a self-edge and a

multiedge. A network that has neither self-edges nor mul-

tiedges is called a simple network or a simple graph.

2.2.2 Directed and Undirected Networks

In some networks, like Figure 2.3a, edges can have a direction, that points from one node,

the ‘source’, to another, the ‘target’ node. For example, node 2 in Figure 2.3a would be

the target node and node 4 the corresponding source node associated to the edge between

nodes 2 and 4. Such networks are called directed networks or directed graphs or diagraphs

for short, and the edges are called directed edges. Undirected networks can be thought of

as directed networks in which each undirected edge has been replaced with two directed

ones running in opposite directions between the same pair of nodes (as shown in Figure

2.3b).

An element of the adjacency matrix of a directed network is given by

Aij =

{
1 if there is an edge from node j to node i,

0 otherwise.

By convention, the direction of the edge runs from the second index to the first index [6].

Hence, the adjacency matrix for the directed network in Figure 2.3a is

8



(a) Directed Network (b) Undirected Network

Figure 2.3: Example of a directed network and its undirected counterpart.

A =



Nodes 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0

3 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0

5 0 0 0 1 0 1 0

6 0 0 1 0 0 0 1

7 0 0 0 0 0 0 0


. (2.1)

An element of the adjacency matrix for an undirected network is given by

Aij =

{
1 if there is an edge between nodes i and j,

0 otherwise.

Hence, the adjacency matrix for the network in Figure 2.3b is

A =



Nodes 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0

3 0 0 0 1 0 1 0

4 0 1 1 0 1 0 0

5 0 0 0 1 0 1 0

6 0 0 1 0 1 0 1

7 0 0 0 0 0 1 0


. (2.2)

There are a few points to note about the structure of the adjacency matrix for both

directed and undirected networks. The diagonal entries of an adjacency matrix are always

zero if a network has no self-edges. The adjacency matrix for an undirected network

is always symmetric. In fact, the adjacency matrix for an undirected matrix can be

constructed from its directed counterpart by making the adjacency matrix for the directed

9



network symmetric. The number of edges, m, in an undirected network is the same as

that in its directed counterpart. However, for an undirected network, each edge is counted

twice in the adjacency matrix, as Aij = 1 if there is an edge between i and j. Therefore,

the total number of edges for an undirected network is given by

m =
1

2

∑
ij

Aij. (2.3)

For example, the sum of the elements of the adjacency matrix (2.2) for the undirected

network given in Figure 2.3b is 12, which is twice the number of edges m = 6. In a

directed network with no self-edges, each edge is counted once in the adjacency matrix,

so the number of edges in the directed network is given by

m =
∑
ij

Aij. (2.4)

Hence, for the directed network given in Figure 2.3a, from the diagram it can be seen

that there are 6 edges, which is also the sum of the elements of its adjacency matrix given

in (2.1).

2.2.3 Directed Acyclic Graphs

A cycle in a directed graph is a closed loop of edges with arrows on each of the edges

pointing the same way around the loop, as shown in Figure 2.4.

Figure 2.4: An example of a cycle in a directed network.

A directed acyclic graph (DAG) is a directed network in which there are no cycles. A

family tree is an example of a directed acyclic graph as, unless one has a time machine,

it is impossible for someone to be a biological child and a biological grandparent to the

same person or to go back and start the family lineage.

10



Chapter 3

Network Diagnostics

If the type of edges in the network is known, we can calculate a variety of useful quantities

that capture particular features of the network.

3.1 Degree Diagnostics

The concept of centrality is used to understand which nodes in the network are the most

important [6]. There are many possible ways to define importance, but the simplest

centrality measure in a network is to look at the number of edges connected to each node

and is referred to as degree centrality.

3.1.1 Undirected Network

The degree of a node in an undirected network is the number of edges connected to it.

Node Degree The degree for a node i, in an undirected network of n nodes, is denoted

by ki and can be written in terms of the adjacency matrix as

ki =
n∑

j=1

Aij, (3.1)

i.e. the sum of the ith row of the adjacency matrix. Because the adjacency matrix, A, of

an undirected matrix is symmetric, this is also the same as taking the sum of the column,

i.e.

ki =
n∑

j=1

Aji.

For example the degree of node 4 given by Figure 2.3b can be counted from the diagram

to get k4 = 3. Summing the 4th row or column of the corresponding adjacency matrix of

the network, given by (2.2), also gives k4 = 3.

11



Mean Degree The mean degree of a node in an undirected network is

c =
1

n

n∑
i=1

ki.

This expression for the mean degree can be simplified and written in terms of the total

number of edges in the undirected network. Using (3.1), we can rewrite the double sum

in (2.3) so that

m =
1

2

n∑
i=1

ki,

which yields

c =
2m

n
. (3.2)

Degree Distribution The distribution of the degree of nodes is one of the most basic

of network properties. The fraction of nodes in the network that have degree k is denoted

by pk and is given by

pk =
number of nodes with degree k

n
. (3.3)

The set of these quantities, {pk}, gives the degree distribution, and it can be insightful

to plot the degree distribution of a large network as a function of k.

That said, the degree distribution does not tell us the complete structure of a network.

For example, the two networks in Figure 3.1 have the same degree distribution but are

different.

Figure 3.1: Different networks with the same degree distribution.

3.1.2 Directed Network

In a directed network, a node is associated with two types of degree, the in-degree and

the out-degree.

12



Node Degrees The in-degree of a node is the number of incoming edges connected to

a node, and because an element of the adjacency matrix of a directed matrix, Aij, is 1 if

there is an edge from j to i, the in-degree can be written as

kin
i =

n∑
i=1

Aij. (3.4)

The out-degree of a node is the number of outgoing edges from a node and similarly can

be written as

kout
j =

n∑
j=1

Aij. (3.5)

Note the change in the summation index from (3.4) to (3.5), which implies that the in-

degree of the ith node is the ith row sum of the adjacency matrix and the out-degree of

the ith node is the ith column sum of the adjacency matrix.

Mean Degree The mean in-degree and the mean out-degree are given by

cin =
1

n

n∑
i=1

kin
i and cout =

1

n

n∑
j=1

kout
j , (3.6)

respectively. However by substituting (3.4), (3.5), and (2.4) in the above, it can be seen

that cin = cout and that the mean degree can be written as

c =
m

n
, (3.7)

where c = cin = cout.

Degree Distribution As there are two different degrees associated with each node in

a directed network, there are also two different degree distributions in a directed network:

the in-degree and out-degree distributions. The method to construct these is the same as

discussed for undirected networks. The in-degree distribution is represented by the set

{pkin}, where pkin is the proportion of nodes with in-degree kin. Similarly, the out-degree

distribution shows the spread of out-degrees of nodes in the network.

The true degree distribution of a directed network could be thought of as the joint

distribution of in- and out- degrees [6], which shall be discussed in the degree assortativity

in a directed network.
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3.2 Assortativity

Another central concept in the study of networks is the correlation between the properties

of the nodes connected directly by a single edge, (i.e. nodes that are nearest neighbours).

In social sciences, homophily designates the tendency of people to associate with others

whom they perceive as being similar to themselves in some way [6]. A network shows

assortative mixing if there is tendency of similar nodes to be connected to each other.

Disassortative mixing is the tendency for nodes to associate with others who are unlike

themselves. The structural properties of a network can be effected profoundly by assor-

tative mixing [4]. For example, in social networks, the patterns of friendship are strongly

affected by language and age among other factors. It has been observed that people have

a high tendency to have friendship connections with those who speak the same language

as themselves [6].

In [4] and [6], assortative mixing has been categorised into 2 groups, ‘assortative mix-

ing of discrete characteristics’ and ‘assortative mixing by scalar properties’. In the first

of the 2 groups listed, discrete characteristics can be classified using any alphanumeric

labelling scheme, and in the second group, scalar properties can be both discrete or con-

tinuous. However, because the discrete characteristics in the first group can be classified

by enumeration, assortative mixing by discrete characteristics becomes a special case of

assortative mixing by scalar properties. However the diagnostics described for each of the

types of assortative mixing is different, and for this reason, the naming convention for

each of these groups are kept the same as in [6] to distinguish between the two groups.

The assortative mixing discussed below follows that given in [4].

3.2.1 Assortative Mixing of Discrete Characteristics

In a network, if the nodes are classified according to some discrete set of characteris-

tics that are enumerative (i.e. they do not fall in any particular order), for example

geographical location, then assortative mixing can be quantified by an assortativity coef-

ficient, which can be defined in terms of a mixing matrix.

In [5], an element of the mixing matrix, Eij, is defined as the number of edges that

connect nodes of types i and j. The mixing matrix is symmetric on an undirected network,

and it can be asymmetric on directed networks. In this work, we shall explicitly define

the mixing matrix for directed networks by

Eij = number of edges that connect source nodes of type j to target nodes of type i.

The interpretation of this definition of the mixing matrix for both a directed and an

undirected network is illustrated by an example. Consider the directed network and its
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undirected counterpart, given in Figure 3.2, in which there are three types of mixing

characteristics distinguished by the colour (green •, yellow •, or purple •) of the node.

(a) Directed Network (b) Undirected Network

Figure 3.2: Example networks in which there are three types of mixing characteristics
distinguished by the colour of the node.

The combination of node types that should be counted for each element of the mixing

matrix for both the directed network and the undirected network is indicated in Figure

3.3.

(a) Mixing matrix for the directed network (b) Mixing matrix for the undirected network

Figure 3.3: An example: The type of edge and node combination that should summed
for each element in the mixing matrix E.

Hence, the mixing matrix for the directed network is given by

E =


Node Colour G Y P

G 1 1 1

Y 1 0 0

P 2 1 0

,
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and the mixing matrix for the undirected network is given by

E =


Node Colour G Y P

G 1 2 3

Y 2 0 1

P 3 1 0

,
where G represents a green node, Y a yellow node, and P a purple node.

In an undirected network, the edges have no direction, so Eij = Eji and the mixing

matrix is symmetric. However, for a directed network, Eij may not necessarily be equal

to Eji. The normalised mixing matrix measures the fraction of edges that connect nodes

of different types and is given by

e =
E

‖E‖
, (3.8)

where the matrix norm ‖ · ‖ used is taken as the sum of all of the elements of the matrix

[5]. The normalised mixing matrix e can be thought of as a joint distribution of node

types i and node type j, because its elements satisfy∑
ij

eij = 1.

Using the mixing matrix, we can define the probability distributions of the types of nodes

at the ends of an edge by

ai =
∑
j

eij and bj =
∑
i

eij. (3.9)

In an undirected network, ai = bi. However, for a directed network, {ai} can be in-

terpreted as the probability distribution of the type of the target node and {bi} as the

probability distribution of the type of the source node.

The assortativity coefficient given in [4], lies in the range [−1, 1] and is defined as

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
=

Tr e− ‖e2‖
1− ‖e2‖

, (3.10)

as
∑

i eii = Tr e and

∑
i

aibi =
∑
i

[(∑
j

eij

)(∑
k

eki

)]
=
∑
jk

∑
i

ekieij =
∑
jk

e2 = ‖e2‖.

An assortativity coefficient value of 0 corresponds to no assortative mixing, as this hap-

pens when eij = aibj, implying
∑

i eii =
∑

i aibi and resulting in the numerator of (3.10)

being equal to zero. There is perfect assortative mixing if r = 1; this happens when
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∑
i eii = 1. If the network is perfectly dissortative, then r is negative and (according to

[4]) takes the value

rmin = −
∑

i aibi
1−

∑
i aibi

= − ‖e2‖
1− ‖e2‖

, (3.11)

because Tr e = 0 (no like-for-like mixing), and the diagonal of the matrix e indicates the

proportion of edges that join similar nodes.

3.2.2 Assortative Mixing by Scalar Properties

Assortative mixing can also be done according to scalar properties (e.g. age) of a network

node. Analogously to Section 3.2.1, we can define a normalised quantity eij as the fraction

of edges that connect nodes associated with a value of j to a node of value i. The

values that i and j take could be either discrete (making eij elements of a matrix, just as

described in Section 3.2.1) or continuous, in which case eij is a function of two continuous

variables. The concepts used for the discrete case can be generalised to the continuous

case, but in this work we shall only consider the discrete case as given in [4].

In the discrete case, the matrix eij can be used to calculate the standard Pearson

correlation coefficient, a measure of assortativity defined by

r =

∑
ij ij(eij − aibj)

σaσb
, (3.12)

where, σa and σb are the respective standard deviations1 of {ai} and {bj}, the probability

distributions of the edges that end and start at nodes with values i and j, given by (3.9).

Similar to the assortativity coefficient defined in Section 3.2.1, the Pearson correlation

coefficient given in (3.12) also lies in the range [−1, 1], where a value of 1 indicates perfect

assortative mixing and a value of −1 indicates perfect disassortativity.

3.2.3 Degree Assortativity

A special case of assortative mixing by a scalar node property is mixing by node degree

and is referred to as degree correlations in [5]. With this type of assortativity, we can see

if nodes of high degree preferentially associate themselves to other nodes of high or low

degree. Mixing by node degree can be quantified using the Pearson correlation coefficient

given by (3.12).

1Appendix B gives the formulas used to determine the standard deviations of a discrete probability
distribution.
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Undirected Networks

For undirected networks, the matrix used to calculate the Pearson correlation coefficient,

for degree assortativity, [3] has entries

exy = the proportion of edges that connect nodes of degrees x and y, (3.13)

which shall be referred to as the degree distribution matrix 2. Because exy is a symmetric

matrix, the associated probability distributions (the corresponding ai and bj given in

(3.12)) are the same. Hence we denote the associated probability distributions of the

degrees of nodes as {qx}, where

qx =
∑
y

exy. (3.14)

The assortativity coefficient for mixing by node degree in an undirected network is,

therefore, given by

r =

∑
xy xy(exy − qxqy)

σ2
q

, (3.15)

where σ2
q is the variance of the distribution {qx}.

Thinking of {qx} in terms of a network, it is in fact the distribution of one less than

the node degree, also called the excess degree distribution. It can be written in terms of

the degree distribution {px}, given in (3.3), by

qk =
(k + 1)pk+1∑

j jpj
. (3.16)

In [3], the Pearson correlation coefficient is rewritten in terms of the degrees of the

nodes at the ends of edges. If the degrees of the nodes at the ends of the ith edge of an

undirected network are denoted by xi and yi, then the Pearson correlation coefficient for

an undirected network with m edges can be given by

r =
1
m

∑m
i=1 xiyi −

[
1
m

∑m
i=1

1
2
(xi + yi)

]2
1
m

∑m
i=1

1
2
(x2

i + y2
i )−

[
1
m

∑m
i=1

1
2
(xi + yi)

]2 . (3.17)

Note that the summations in (3.17) are taken over the edges of the network.

Directed Networks

In a directed network, the mixing by node degrees becomes more complex, as each node

has both in- and out-degrees. There are at least 4 different ways to define the Pearson

2The notation convention for the indices have changed from i, j to x, y in subsection only for undirected
networks. This is done in order to avoid confusion in Section 6.4, where quantities stated in this particular
subsection are rewritten in terms of the adjacency matrix.
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correlation coefficient, by considering the different combinations of the degrees taken at

the ends of a directed edge. Mark Newman [4] defined the assortativity coefficient for

degree correlations in directed networks as

r =
1

σin
q σ

out
q

[∑
jk

jk(ejk − qin(j)qout(k))

]
, (3.18)

where an element of the degree distribution matrix ejk is defined as the proportion of

directed edges with a source node of out-degree k and target node of in-degree j. In

(3.18), qin(k) is the proportion of directed edges with a target node of in-degree k and

qout(k) is the proportion of directed edges with a source node of out-degree k. Also, σin
q

and σout
q are the standard deviations of

{
qin(k)

}
and {qout(k)}, respectively. Note that by

the definition of the expectation of a discrete distribution, given in Appendix B, (3.18)

can be rewritten as

r =
1

σin
q σ

out
q

[∑
jk

jkeout
jk − µin

q µ
out
q

]
, (3.19)

where µin
q and µout

q are the expectations of the distributions
{
qin(k)

}
and {qout(k)}, re-

spectively. The Pearson correlation coefficient (3.19) measures the tendency of nodes to

connect to other nodes that have a similar out-degree to their in-degree. It can some-

times be more useful to consider an assortativity that measures the tendency of nodes

connecting to other nodes with similar out-degrees to their own out-degree. This is called

out-assortativity. Also, in-assortativity refers to the tendency of nodes connecting to other

nodes with similar in-degrees to themselves. The following out- and in-assortativity co-

efficients are taken from [7].

Out-Assortativity Constructing the out-degree distribution matrix, eout, with its en-

tries, eout
jk taken as the proportion of directed edges with a source node with an out-degree

of k and a target node with an out-degree of j, we can define the probability distribution

{qout(k)} of a directed edge with a source node that has an out-degree of k as

qout(k) =
∑
k

eout
jk ,

and the probability distribution {q′ out(k)} of a directed edge with a target node that has

an out-degree of k as

q′ out(k) =
∑
j

eout
jk . (3.20)

The out-assortativity coefficient is then defined as

rout =
1

σout
q σ out

q′

[∑
jk

jkeout
jk − µout

q µ out
q′

]
, (3.21)
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where σout
q and σout

q′ are the standard deviations of {qout} and {q′ out} respectively, and

µout
q and µout

q′ are the expectations of the distributions {qout} and {q′ out} respectively.

In-Assortativity Similarly, we can construct an in-degree distribution matrix, ein, with

the entries ein
jk taken as the probability of a directed edge with a source node that has an

in-degree of k and a target node that has an in-degree of j. The probability distribution{
qin(j)

}
of a directed edge with a target node that has an in-degree of j is then given by

qin(k) =
∑
j

ein
jk,

and
{
q′ in(j)

}
is the probability distribution of a directed edge with a source node that

has an in-degree of j. It is given by

q′ in(k) =
∑
k

ein
jk.

The in-assortativity coefficient can then be defined as

rin =
1

σin
q σ

in
q′

[∑
jk

jkein
jk − µin

q µ
in
q′

]
, (3.22)

where σin
q and σin

q′ are the standard deviations of
{
qin
}

and
{
q′ in
}

respectively, and µin
q

and µin
q′ are the expectations of the distributions

{
qin
}

and
{
q′ in
}

respectively.

3.3 Clustering

Clustering is an important property in social networks. It is often found that if a node

i is connected node k and node k is connected to node j, then there tends to be a high

probability that node i is connected to node j [6]. A path of length two consists of three

nodes and two edges and is constructed as shown in Figure 3.4 by the solid edges. The

Figure 3.4: A path of length two (solid edges) is closed if the dashed edge is present.

path is closed if it forms a triangle, as shown in Figure 3.4 if the dashed edge exists and
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is called a loop of length three. Transitivity is a special type of clustering and can be

quantified by the clustering coefficient, which is defined as the fraction of paths of length

two in the network that are closed:

C =
number of loops of length 3 in the network

number of paths of length 2 in the network
. (3.23)

A clustering coefficient can also be defined locally for each node in the network. For

node i, the local clustering coefficient in [6] is given by

Ci =
number of loops of length 3 in which i participates

number of paths of length 2 for which i is the central node
. (3.24)

For nodes with degree 0 or 1, the numerator and denominator are zero; in these cases,

the local clustering coefficient Ci is 0. The clustering coefficients lie in the range [0, 1],

where a coefficient of 0 implies no transitivity in the network and 1 implies complete

transitivity.
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Part II

Mathematics Genealogy Networks

22



Chapter 4

Description of the Data Set

The data set used in this work has been extracted from an SQL database provided1, of

the data underlying the Mathematics Genealogy Project website. This data set consists

of 137,138 individuals who have acquired a doctorate in mathematics from 1363 up to

2012.2 A total of 138,167 advisor-advisee relations are listed. An individual in the data

set can have up to a maximum of 5 advisers and up to a maximum of 103 advisees.

However, these extreme cases are rare in the data set (see Section 5.2).

Issues with the data

For each individual in the data set, there are fields that indicate the year, the name

of the university, the country, and the subject area in which they were awarded their

degree. However some of these fields are empty for some individuals. Table 4.1 shows the

actual amount of information available. The first column in Table 4.1 lists the different

characteristic information for each individual. The second column indicates the total

number of different categories of a characteristic. For example there are 61 different

countries listed as the location from which an individual was awarded their degree. The

third column is the number of individuals in the data set that have non-empty fields. For

example, 46,369 of the 137,138 individuals, that is 34% include the subject classification

of their dissertation (MSC), and the other 66% have empty fields.

Although not all of the 137,138 individuals have information on all the four char-

acteristics listed in Table 4.1, all individuals are included when constructing the three

networks. The fields that are missing for each individual are filled in with zeros, so that

in any diagnostic calculated involving any of the associated characteristics of the indi-

viduals, the numerical label of zero for the characteristic, represents the group of the

1The data has been kindly provided to us by Mathematics Genealogy Project and Mitch Keller.
2In the data set, there are 4 individuals with 2010 listed as the year they were awarded their degree,

no individuals with 2011 and only 1 individual with 2012.
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Characteristic Number of categories Individuals that have associated characteristic

Year 463 92% (125,708)
University 659 20% (27,154)
Country 61 22% (29,623)

Subject Area (MSC) 97 34% (46,369)

Table 4.1: Information available in data set.

individuals with no information.

Year degree awarded

Only 125,708 out of the 137,138 individuals in the data set have information about the

year they were awarded their degree. Of these, 376 individuals have two or more years

associated to them, which are not necessarily consecutive years. Upon inspection, the

few individuals that were checked have multiple degrees awarded to them. Based on this

finding, for these 376 individuals, the earliest year is taken for the purpose of subsequent

computation, as it indicates the first of the multiple degrees the individual was awarded.

4.1 Method of Labelling Nodes

The 137,138 individuals in the data set can be identified by a unique numerical identifier

that lies in the range 1 to 139,228. Due to the structure of the database, the individuals

are labelled according to this unique numerical identifier. This implies that the adjacency

matrix for any network where the nodes are taken to be the individuals will be of a size

139,228 by 139,228. The dimensions of the adjacency matrix will therefore be larger than

the number of nodes, 137,138, and will contain columns and rows of zeroes. A numerical

scheme is also implemented to classify the different types of a characteristic. For example,

each country listed in the database is assigned a unique number label.

4.2 Basic Trends over Time

We can use the year an individual was awarded their degree to explore how diagnostics

that involve calculating quantities for each individual, changes over time. However, since

not all the individuals in the data set have a year associated to them, it is useful to

understand how the individuals are grouped over different time periods. In this section

we look at the number of individuals awarded their degree in different time periods,

and the number of advisers an individual had for their degree over time. The data

24



presented in this section is based only on the 125,708 individuals who have information

listed on the year they were awarded their degree. Therefore caution must be taken when

interpreting the results here, as the remaining 8% of the individuals in the data set could

have been awarded their degree any time, and adding their details, if it were available,

could influence the results.

Figure 4.1 helps to understand when individuals were awarded their degree and hence

how the mathematics genealogy tree grows over time. Let Ci denote the number of

individuals that were awarded their degree in the ith century. Figure 4.1a is a plot of

Ci for i = 14, . . . , 21. It seems that the majority of individuals in the MGP data set

were awarded their degree in the 20th century based on Figure 4.1a. This result would

stand even if the 11,430 individuals that are missing information on their year, were to

be associated with any century, because the next largest Ci is C21 which takes the value

of around 30,000 (60,000 less than Ci). Hence adding 11,430 more individuals would not

change the fact that the majority of the individuals in the MGP data set were awarded

their degrees in the 1900s.

The number of individuals that were awarded their degree in year j has been plotted

in Figure 4.1b for j = 1363, . . . , 2012. It is also evident from Figure 4.1b that only a small

number of individuals were awarded their degrees prior to the 20th century. Hence when

looking at network diagnostics over time, it is important to bear in mind that statistically

significant trends cannot be drawn from diagnostics that are calculated pre 20th century

for such small number of individuals. And so caution must be taken when looking at the

early periods pre 20th century. However Figure 4.1b further indicates that the number of

degrees awarded per year in the MGP data set began to grow from the late 1800s, with

a significant increase in the mid 1900s to the 1970s. The number of degrees awarded

decreases slightly per year in the 1970s, but shortly after, it continues to increase rapidly

up until 2009. The numbers fall rapidly in the 2010s indicating that the data set for this

period is incomplete.

Figure 4.1c is a truncated and enlarged version of Figure 4.1b that plots the number of

individuals per year from 1860 onwards, in which some of the trends observed in Figure

4.1b can be seen in more detail. There is a steady gradual increase in the number of

degrees awarded per year from 1860 to 1959, but with a dip over the post-World War II

years from 1944 to 1947. From 1959 onwards the number of degrees awarded per year is

greater than 500. From Figure 4.1c one can see that over the short period of 1959 to 1970,

the number of degrees awarded per year increased from a little over 500 to approximately

1800. After which the number of individuals awarded a degree per year remained in the

range of 1500 to 2000 up until the year 1984. In the period 1984 to 1998, the number grew

per year to 3800. After which the numbers began to decrease gradually over a period to
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a value of 3400 observed in 2004, with an anomaly in year 2000 when it peaked. After

seeing the largest number of individuals awarded in a year in 2005, the numbers decrease

rapidly from 2006 to 2012. One could speculate that this recent decrease from 2006 to

2010 could be due to the recent downturn in the economy.

(a) For each century.

(b) For years 1363 to 2012.

(c) For years 1860 to 2012.

Figure 4.1: Number of individuals awarded a degree over time.

Figure 4.2 shows how the number of advisers an individual has had in the data set

has changed over each century. For each century, the number of individuals are grouped

by the number of advisers they have had, and the proportion of individuals in each of
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these groups is plotted in Figure 4.2. If we denote Cj for the set of individuals that were

Figure 4.2: Number of advisers an individual has over time (proportion of individuals).

awarded their degree in the jth century, the proportion of individuals in century j with i

advisers is calculated as

Number of nodes with i advisers

|Cj|
.

Figure 4.2 indicates that the maximum number of advisers an individual has had, has

increased in the past 3 centuries. (The proportion of individuals with more than two

advisers are so small that they are not visible in Figure 4.2 in the 19th, 20th and 21st

centuries.) Although it is interesting to compare the proportions for the earlier centuries,

one has to bear in mind that these figures are based on small number of individuals in

that time period. We consider the data with statistical significance to begin in the late

1800s if not from the 20th century onwards. In each of the 19th, 20th, and 21st centuries,

the majority of individuals (∼ 80%) had just 1 advisor.
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Chapter 5

Mathematics Genealogy as a
Directed Network

The most natural formulation of the mathematics genealogy tree (see Figure 1.2 as an

example of one) is as a directed network, where the nodes are the individuals and the

direction in the edges represents the direction of advice, from which one can infer the

transfer of information from advisor to advisee.

5.1 Adjacency Matrix

We can encapsulate the mathematics genealogy data as a directed network, in which

there is a directed edge from every advisor to each of their advisees. Hence the elements

of the adjacency matrix for this directed network are given by

Aij =

{
1 if individual j advised individual i,

0 otherwise.

This directed network is also a directed acyclic graph, by the nature of advising an

individual. An advisor can never be a descendant of their student, so cycles cannot form.

The clustering coefficient defined in Section 3.3, is thus always zero for a directed acyclic

graph. For this reason, the clustering coefficient has not been considered for this network

representation of the MGP data set. The diagonal entries of the adjacency matrix are

zero, as there are no self-edges due to the fact that one cannot supervise oneself to be

awarded a degree.

5.2 Degree

The mean degree of this network is c ≈ 1.0075. Figure 5.1 is a plot of the in-degree

(number of advisers an individual has) distribution of this directed network.
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Figure 5.1: In-degree distribution of the directed network.

Figure 5.2 is a plot of the out-degree (number of advisees an individual has) distribu-

tion of this directed network, which is also plotted against a log-log scale in the top right

corner of the same figure.

Figure 5.2: Out-degree distribution of the directed network.

The in-degree and out-degree distributions of the directed network given in Figures

5.1 and 5.2 show that most of the nodes in the network have low in- and out-degrees,

as expected by the mean degree of c ≈ 1.0075. From Figure 5.2, one can see that the

out-degree distribution has a significant ‘tail’ to the distribution, corresponding to nodes

with substantially higher out-degrees. Comparing the highest in-degree to the highest
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out-degree, indicates that in the mathematics community, it is possible for individuals to

have many more advisees (103) than advisors (5).

5.3 Out- and In-Degree Assortativity

From the adjacency matrix of this directed network, A, the elements of the degree dis-

tribution matrices are computed as

eout
jk =

Number of directed edges from a node with out-degree (k − 1) to a node with out-degree (j − 1)

Total number of directed edges in network
,

for j, k = 1, 2, . . . , (maximum out-degree + 1),

ein
jk =

Number of directed edges from a node with in-degree (k − 1) to a node with in-degree (j − 1)

Total number of directed edges in network
,

for j, k = 1, 2, . . . , (maximum in-degree + 1).

Figure 5.3 is a visual representation of eout, the 104 × 104 out-degree distribution matrix1,

where maroon(�) indicates a value of zero, and the colour gradation green (�) to blue

(�) represents values increasing from 0 to 1.

Figure 5.3: Visual representation of the out-degree distribution matrix (order of rows
reversed).

1Note that the y-axis in Figure 5.3 increases from bottom up, so this visual representation is actually
of eout but the rows are in reverse order.
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The maximum in-degree of the directed network is 5, so the in-degree distribution

matrix is a 6 × 6 matrix because some individuals have an in-degree of zero. The in-

degree distribution matrix is given explicitly by

ein =
1

138167



In-degree 0 1 2 3 4 5

0 0 0 0 0 0 0

1 11, 558 80, 430 11, 948 28 0 0

2 6, 712 20, 827 6, 472 10 1 0

3 53 89 26 0 0 0

4 3 3 2 0 0 0

5 3 1 1 0 0 0


. (5.1)

Since assortativity considers connected nodes, the first column of eout represents source

nodes (advisers) with an out-degree of zero, and since there are no such edges, the first

column is zero. Similarly, the first row of ein represents target nodes (advisees) with an

in-degree of zero. However, by the definition of a target node (advisee), a target node

always has at least one in-degree. Hence the first row entries of ein are all zero.

The out-assortativity coefficient (3.21) is calculated to be 0.2188 and the in-assortativity

coefficient (3.22) is calculated to be 0.8373, for this directed network. Both Figure 5.3

and the out-degree assortativity coefficient rout ≈ 0.2188 only slightly greater than zero,

indicate a slight assortative mixing by out-degrees in the directed network. In terms of

the mathematics genealogy tree and advisor-advisee relations, advisees who have many

academic siblings2 have a tendency to go on to become advisers with many of their own

students. Also, advisers who advise a small number of students have a slight tendency

to influence their advisees to have small number of students themselves.

The fact that rin ≈ 0.8373, which is not only positive but close to 1, indicates a

strong assortative mixing by in-degree, so advisers with a high in-degree have a tendency

to associate with advisees with high in-degree. In terms of advisor-advisee relations, this

means that advisers who were supervised by many individuals (advisers with high in-

degree) have a tendency to advise a student with other individuals (advisees with high

in-degree). That said, the in-assortativity coefficient might be a bit of an over statement

of the results, as rin is really dominated by the eout
1,1 element of the in-degree distribution

matrix.

Evolution of rout and rin Over Time

Here we consider how the out- and in-degree assortativity coefficients change over time.

The year associated to a node refers to the year the individual was awarded their degree.

2Academic siblings are individuals who have the same adviser.
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The assortativity coefficients are calculated using edges with advisees associated with

the earliest year (t0) to a final time T that varies from t0 to the latest year in the data

set. Therefore, as T increases, more individuals are added to the network for which each

rout and rin are calculated. In effect, the degree assortativity coefficients are cumulative

figures, calculated as more advisees are added to the network over time.

The year of the advisee is taken and not of the adviser to define the inclusion of edges

in the network, for which the assortativity coefficients are calculated. This is because

we want to examine the advising relationship (influence of advisers on the supervising

behaviour of their advisees) and it makes more sense to include the advisees in the

network.

In Figures 5.4 and 5.5, the red area-plot indicates the proportion of edges in the entire

directed network included in the calculation of the assortativity coefficients to give a feel

as to how the network grows over time. Each rout and rin were computed for cumulative

groups of years from 1363 up until the latest year in the data set, with a step size of 133

(13 years worth of nodes added to network for each coefficient) and plotted in Figure 5.4a

and Figure 5.4b respectively.

Both the assortativity coefficients for each group of years illustrated in Figure 5.4

exhibit interesting behaviour from the late 1860s onwards. Also, the proportion of edges

included in the calculation pre-1900s, is too small to deduce statistically significant trends

from (see Section 4.2). Due to both these reasons, yearly (step size of one) cumulative

rout and rin are plotted in Figure 5.5a and Figure 5.5b respectively, for years inclusive of

1860 up until the latest year in the data set.

A positive out-degree assotativity coefficient corresponds to assortative mixing by

out-degree, and the closer the value of the coefficient is to one, the stronger the tendency

for advisers to be connected to an advisee with a similar out-degree. In other words,

individuals with many academic siblings go on to have many advisees of their own.

Figure 5.5a indicates that the out-degree assortativity coefficient remains relatively

steady at 0.11 from 1860 up until 1900, at which point the coefficient increases to 0.184

in 18 years. From 1918 to 1933, the out-degree assortativity coefficient for the directed

network remains steady around a value of 0.185. There is a period of decrease in the

out-degree assortativity coefficient between 1934 and 1942, from a value of 0.183 to a

value of 0.166, after which it begins to increase steadily to a value of 0.2273 in 1983. The

out-degree assortativity coefficeint remains in the range of 0.21 and 0.23 between 1984

up until 2012.

3A step size of 13 is chosen so that the period from 1363 onwards is split into 50 year groups, therefore
each assortativity coefficient is calcualted 50 times.
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(a) Out-degree assortativity coefficient rout (blue) and the proportion of the 138,167 edges included in
caluclation (red).

(b) In-degree assortativity coefficient rin (blue) and the proportion of the 138,167 edges included in
caluclation (red).

Figure 5.4: Assortativity coefficients as individuals are added to the network per 13 years
(1363 - 2012).

A positive in-degree assortativity coefficient close to one implies a strong tendency for

advisers to be connected to (i.e. advise) advisees with a similar in-degree. In other words,

advisers with a lot of advisers have a tendency to have advisees with a lot of advisers,

and advisers with a small number of advisers have a tendency to have advisees also with

a small number of advisers.

Although the proportion of edges from the entire directed network seems to grow
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(a) Out-degree assortativity coefficient rout (blue) and the proportion of the 138,167 edges included in
calculation (red).

(b) In-degree assortativity coefficient rin (blue) and the proportion of the 138,167 edges included in
calculation (red).

Figure 5.5: Assortativity coefficients as individuals are added to the network per year
(1860 - 2012).

exponentially, from 1860 up until 2009, the in-degree assortativity coefficient plotted in

Figure 5.5b increases steadily from 0.57629 in 1860 up until 1970, to a value of 0.83, after

which the in-degree assortativity coefficient remains around 0.83.
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Chapter 6

Mathematics Genealogy as
Undirected Networks

In the directed network representation of the mathematics genealogy tree, which is a

directed acyclic graph, the clustering coefficients defined in Section 3.3 cannot be consid-

ered, as it contains no cycles, in particular cycles of length of three. However, if we were

to make the directed network undirected, then it is possible for loops to form and the

clustering coefficients defined in Section 3.3 can be computed. For the purpose of looking

at clustering, we consider two types of undirected networks, the undirected counterpart

to the directed acyclic graph formed in Chapter 5 and a sibling network, in which indi-

viduals are connected to their supervisors as well as their academic siblings by undirected

edges. Academic siblings are individuals supervised by the same advisor.

Considering the sibling network also has another advantage. Studying the structural

properties of the sibling network and comparing it to that of the undirected network,

can also provide us an insight into the interactions between academic siblings, as well as

insights into the academic families of 2 generations, consisting of academic parents (the

advisers of an individual) and their academic children (advisees of an individual).

6.1 Undirected Genealogy Network

This is exactly the same as the directed acyclic graph representation described in Chapter

5, except that the edges are now undirected instead of directed. The adjacency matrix

of the undirected counterpart will be denoted as U and has elements

Uij =

{
1 if there is an advisor-advisee relationship between j and i,

0 otherwise.

By construction, U is symmetric.

This undirected network has a mean degree c ≈ 2.0150, which is double the mean

degree of the directed network given in Chapter 5. Using the degree of the nodes for
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which we have information on the year an individual was awarded his/her degree, we can

calculate the mean degree of the nodes over time. If we denote Υj the set of nodes that

were awarded their degree in year j, the mean degree for year j is given by∑
i∈Υj

ki

|Υj|
, (6.1)

where we recall that ki is the degree of node i, and |S| denotes the cardinality1 of the

set S. Figure 6.1 is a plot of the mean degree defined in (6.1) for the undirected network

over time. The mean degree over the first few centuries up until the 20th century is very

Figure 6.1: Mean degree of nodes in the undirected network over time.

volatile. This can be explained by the few number of nodes over those years for which

the mean has been calculated (see Figure 4.1 and Section 4.2). During the 1900s, the

average degree in the undirected network increases and peaks at the value between 4 and

6 around the mid 1900s, from after which point it decreases. The average degree continues

to decrease through the first decade of the 21st century too, to an average degree of 1

(excluding the last bar in Figure 6.1, which represents the degree of the individual who

was awarded their degree in 2012). It is difficult to conclude at this stage if the average

degree of an individual is indeed decreasing over the first decade of the 21st century, as

the data is still young, in the sense that all individuals that were awarded a degree in

the last few decades may not have completed their academic life yet and may not have

advised all the students that they might.

6.2 The Sibling Network

An academic sibling of an individual in the mathematics genealogy tree is defined to be

another individual who has the same advisor. Here, the sibling network has the same

edges as stated for the undirected network given in Section 6.1, but in addition, also has

1The cardinality of a finite set is the number of distinct elements in the set.
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edges between academic siblings. A small example to illustrate how the edges in the

sibling network compares to the undirected (counterpart of the directed acyclic graph)

network is given in Figure 6.2, where the extra edges in the sibling network are indicated

by in green.

Figure 6.2: Difference between the structure of the two undirected networks considered
here, illustrated by a small subset example.

The adjacency matrix of the sibling network will be denoted as S and has elements

Sij =

{
1 if there is an advisor-advisee or sibling relationship between j and i,

0 otherwise.

The edges between each sibling can be found by computing all of the combinations

of the pairs of nodes that share the same advisor. The adjacency matrix of the sibling

network, S, is much denser than the adjacency matrix of the undirected matrix, U (see

Section 6.3). Figure 6.3 is a plot of the mean degree, given by (6.1), over time for the

sibling network. The sibling network has a mean degree of 14.8499, significantly larger

than the undirected network given in Section 6.1. Just as for the undirected network

Figure 6.3: Mean degree of nodes in the sibling network over time.

given in Section 6.1, the mean degree of the sibling network given in Figure 6.3 over the

first few centuries up until the 20th century is very volatile, due to the few number of

nodes over those years for which the mean has been calculated (see Section 4.2). The
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mean degree can be seen to oscillate between 15 and 20 over the first two thirds of the

1900s, until 1970. A noticeable drop by 2.5 in the mean degree is observed in 1971, after

which the mean degree is fairly constant for a decade with a value of about 17. From 1982

onwards, there is a gradual decrease in the mean degree to a value of approximately 10 in

2010. As for the undirected case in Section 6.1, the decrease observed in the mean degree

for the sibling network over the past 4 decades, may not be a trend in time and could

be accounted for by the data being young. However, if this is indeed an emerging trend,

this suggests that academic families of 2 generations, consisting of parents and children,

are getting smaller. The family relations used here, such as parents and children, can be

inferred to the academic genealogy, for example academic parents are the advisers of an

individual, and academic children are the advisees of an individual.

6.3 Degree Distributions

The undirected and the sibling networks by construction have the same number of nodes,

137,138, as the directed network given in the previous chapter. However, the number

of edges, m, in the siblings network differs from the number of edges in the directed

network and its undirected counterpart network. The siblings network has 880,109 more

edges than the other two networks, which have 138,167 edges. Hence, the sibling network

is much denser than the undirected network. Figure 6.4 is a histogram of the degree

distribution of the nodes of the undirected network and is plotted on a log-log scale

which is included as an inset in the top right corner of the same figure.

Figure 6.4 indicates that the majority of nodes in the undirected network have a

degree of 1 or 2, which is in agreement of the degree distribution of the directed network

given in Figure 5.2.

Figure 6.5 is a histogram of the degree distribution of the nodes of the sibling network,

and is plotted on a log-log scale which is included as an inset in the top right corner of

the same figure.

Although the majority of nodes in the sibling network have a degree of 1 which can

be seen from Figure 6.5, the degree distribution of the sibling network is more spread

out over the other degrees than that of the undirected network, given in Figure 6.4. A

significant proportion of nodes have a degree of more than 1. It can be seen that the

degree distribution has a significant ‘tail’ to the distribution, corresponding to nodes with

substantially higher degree.
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Figure 6.4: Degree distribution of the undirected network.

6.4 Degree Assortativity: Pearson Correlation Coef-

ficient

Although we can use (3.17) to calculate the Pearson correlation coefficient of the degrees,

but because the terms in the formula contain summations over edges, we would need to

use the edge list. Using the edge list to calculate with requires computing with for loops

and this is computationally inefficient in MATLAB. Hence we rewrite each of the terms in

(3.17) in terms of the adjacency matrix. Suppose the adjacency matrix of an undirected

network is A and the degree vector, say k (where ki is the degree for node i), then we

can rewrite each term in (3.17) as∑
i∈E

xiyi =
1

2

∑
i,j∈N

Aijkikj =
1

2
(A k)T k,

∑
i∈E

(xi + yi) =
1

2

∑
i,j∈N

Aij(ki + kj) =
1

2

2
∑
j∈N

(∑
i∈N

Aijki

)
j

 =
∑
j

(A k)j,

∑
i∈E

(x2
i + y2

i ) =
1

2

∑
i,j∈N

Aij(k
2
i + k2

j ) =
1

2

2
∑
j∈N

(∑
i∈N

Aijk
2
i

)
j

 =
∑
j

(A (kT k))j,

where we recall that E is used to denote the set of edges, and N to denote the set of

nodes. There is a factor of 1
2

in the above expressions because the adjacency matrix of

an undirected network counts every edge twice.
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Figure 6.5: Degree distribution of the sibling network.

Hence, the Pearson correlation coefficient given in (3.17) can be written as

r =

1
2m

(A k)T k −
[

1
2m

∑
j(A k)j

]2

1
2m

∑
j(A (kT k))j −

[
1

2m

∑
j(A k)j

]2 , (6.2)

where

2m =
∑
i

ki. (6.3)

The Pearson correlation coefficient calculated using (6.2) for the undirected network

is −0.2324 and for the sibling network is 0.8335.

Because a Pearson correlation coefficient r < 0 indicates disassortative mixing, this

suggests in the undirected network, high-degree nodes have a tendency to attach to low-

degree nodes. However, in the sibling network, a positive assortativity coefficient that

indicates assortative mixing suggests that high-degree nodes have a tendency to attach

to high-degree nodes.

6.5 Clustering Coefficients

The clustering coefficient given by (3.23) requires one to calculate the number of loops of

length 3 and the number of paths of length 2 in the network. We can write the number

of paths of length 2 in the network in terms of A, the adjacency matrix of the network,

as ∑
ij
i 6=j

∑
k

AikAkj =
∑
ij
i 6=j

A2
ij = ‖A2‖ − Tr(A2),
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because AikAkj = 1 if and only if there is an edge between nodes i and k and between

nodes k and j. In this calculation, i 6= j is required, or else this would just be a loop of

length 2, i.e one would double count the edges. Similarly, the number of loops of length

3 is ∑
i

∑
jk

AijAjkAki =
∑
i

[
A3
]
ii

= Tr(A3),

so we can calculate the clustering coefficient (3.23) from the adjacency matrix of the

network by

C =
Tr(A3)

‖A2‖ − Tr(A2)
. (6.4)

In the undirected network, loops of length 3 form only when an academic grandparent

and parent together advise a child, as edges only connect advisers and advisees. Paths

of length 2 in the undirected network can only occur in the following cases

• when an advisee has strictly more than 1 adviser, or

• when an adviser has strictly more than 1 advisee, or

• when an individual has at least 1 adviser and at least 1 advisee.

The clustering coefficient for the undirected network is C ≈ 0.0060, which indicates that

not many loops of length 3 occur compared to the number of paths of length 2. There

are several different cases when paths of length 2 can arise in the undirected network,

therefore a clustering coefficient of C = 0.0060 for the undirected network, indicates that

there are not many loops of length 3 formed. In terms of the mathematics genealogy

tree, this network diagnostic suggests that not many advisers and advisees supervise the

same individual.

In the sibling network, however, loops of length 3 can arise if an individual has more

than one advisor (who are siblings) or more than one advisee, as not only are advisers

and advisees connected by an edge, but there are edges between academic siblings. As

siblings are also connected, paths of length 2 can only arise in the following cases:

• when an individuals advisers’ siblings do not supervise them as well, or

• when an individual has no siblings and at least 2 advisers that are not siblings, or

• when an individual has no siblings, 1 advisee, and 1 one adviser, or

• when an individual has no siblings, 1 advisee and at least 2 advisers that are not

siblings.
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A clustering coefficient of C ≈ 0.8654 calculated for the sibling network indicates that

there are not many more paths of length of 2 than there are loops of length 3 in the

network. The fact that several nodes in the sibling network have a degree in the range

of 1 to 20, (from the degree distribution of the network given in Figure 6.5), it is not

surprising that there are a large proportion of loops of length 3 present in the sibling

network when an individual only needs to have more than 1 advisee or more than 1

adviser who are siblings.

Local Clustering Coefficient over Time

Similarly, we can write the local clustering coefficient (3.24) in terms of A, the adjacency

matrix of the network, and is given by

Ci =
A3

ii(∑
j

A2
ij

)
− A2

ii

. (6.5)

We define the local clustering coefficient in order to study clustering in both the undirected

networks over time. We can do this because the local clustering coefficient is defined for

each individual in the data set, so we can associate a year with each coefficient that

we calculate, whereas this is not possible for the clustering coefficient given in (6.4).

For each individual, we calculate the local clustering coefficient using (6.5) and then

group the coefficients by the year the individual was awarded their degree. The mean

local clustering coefficient is plotted for different year groupings for both the networks in

Figure 6.6. If we denote Cj for the set of nodes that were awarded their degree in the jth

century, the mean clustering coefficient for century j is given by∑
i∈Cj

Ci

|Cj|
, (6.6)

where Ci denotes the local clustering coefficient for node i. The mean clustering coefficient

for each century the data is available for, is plotted in Figures 6.6a and 6.6b for the

undirected and sibling networks respectively. If the set of nodes that were awarded their

degree in year j is denoted as Υj, the mean clustering coefficient for year j is given by∑
i∈Υj

Ci

|Υj|
. (6.7)

Figures 6.6c and 6.6d are plots of the mean clustering coefficient (6.7) for each year

starting from the earliest year in the data set (1363), for the undirected (red) and sibling

(blue) networks, respectively. A large variance in the mean local clustering coefficients

pre-1900s is due to the small number of individuals it has been averaged for per year, and
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so statistically significant trends cannot be deduced from these numbers (see Section 4.2).

Figures 6.6e and 6.6f are plots of the mean clustering coefficient for each year starting

from 1860, for the undirected and sibling networks respectively.

(a) Undirected network: Mean Ci per century (b) Sibling network: Mean Ci per century

(c) Undirected network: Mean Ci per year (d) Sibling network: Mean Ci per year

(e) Undirected network: Mean Ci per year from 1860 (f) Sibling network: Mean Ci per year from 1860

Figure 6.6: Mean local clustering coefficient, Ci over time for the undirected and sibling
network.

From Figure 6.6a, one can see that the mean local clustering coefficient for each cen-

tury peaks in the 16th century for the undirected network with a value of 0.0188, after

which it continues to decrease per century until the 20th century. The mean local cluster-

ing coefficient for the 21st century is relatively the same as for the previous century in the

undirected network. However, for the sibling network, the mean of the local clustering

coefficient taken from each century increases every century from the 14th century to the

20th with a value of 0.625, after which it decreases for the current century to 0.536. Any

‘trend’ stated for the period prior to the 20th century should be treated with caution as

these figures are not statistically significant, due to the small number of individuals these

coefficients have been calculated for.

Examining the local clustering coefficients averaged per year for the undirected net-

work, in Figure 6.6c, and for the sibling network given by Figure 6.6d, we can see that

these coefficients are very volatile from 1363 up until the early 1900s. This volatility can
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be explained by the small number of individuals in each year group that the local cluster-

ing coefficient has been averaged for, (see Figure 4.1 and Section 4.2). For this reason, we

restrict our attention to the 20th and 21st centuries in Figures 6.6e and 6.6f. From Figure

6.6e, we can see that the mean local clustering coefficient per year for the undirected net-

work oscillates roughly every 5 years between values of 0.003 to 0.006, which is very small

in magnitude compared to the mean clustering coefficients for the sibling network. The

mean clustering coefficient for the sibling network for each year, indicated in Figure 6.6f

is fairly stable around a value of 0.6 during the 20th and 21st centuries, with a noticeable

dip that occurs between the years 1920 and 1960, where the decrease happens in the first

3 years to a value of 0.4, and gradually increases back up to 0.67. Towards the late 1990s,

and into the beginning of the 21st century, the mean local clustering coefficient gradually

begins to decrease to a value of 0.5 observed in 2009, the last year that has a number

of nodes greater than a 1,000. It might not be reliable to deduce trends from the mean

local clustering coefficients calculated for nodes who received their degree after 2009 due

to the low number of nodes the information is available.
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Chapter 7

Conclusions

The Mathematics Genealogy Project data was represented as a mathematics genealogy

tree, to explore the advisor-advisee relationship in the community of mathematicians and

infer from this the influence an advisor has on their advisees’ supervising behaviour, or

how the advisees are influenced by their advisers.

We analysed the MGP as a data set to try and understand its main characteristics in

Chapter 4. The mathematics genealogy tree was modelled by 3 different networks, and

various network diagnostics were calculated in Chapters 5 and 6 to better understand

the advisor-advisee relationship in the community of mathematicians, and possibly infer

from this how advisees are influenced by their advisers.

Observations in the MGP data set

Exploring the MGP data set itself, in Chapter 4, without using network theory, gave us

an insight into how the mathematical community has developed, and how new members

join the family of mathematicians.

An individual in the data set was found to have up to a maximum of 5 advisers and

a maximum of 103 advisees. This indicates that in the mathematics community, it is

possible for individuals to have many more advisees than advisers.

The number of degrees awarded and the number of advisers an individual had over

time1 was analysed.

The number of mathematical degrees that is awarded over time can be used to quantify

and measure the growth of the community of mathematicians. Analysis showed that the

majority of individuals in the MGP data set were awarded their degree in the 20th century

and the first tenth of the 21st century. The number of degrees awarded per year started

increasing in the late 1800s with a massive increase in growth rate beginning in the mid

1Some individuals in the data set do not have a year associated with them, so this result is based on
the individuals who had information listed on the year they were awarded their degree.
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1900s, that still continues up until today. The years from 1860 to 1959 was a period

of steady growth of the mathematics genealogy tree, except for a dip in the number of

degrees awarded we observed over the post-World War II years of 1944 to 1947, suggesting

a pause in growth of the community during this 3 year period. In the 1970s, the number

of individuals awarded a degree per year remained relatively constant, until 1985, when

the numbers began to climb rapidly and continued to increase throughout the 1990’s.

The year in which the most number of individuals in the data set were awarded a degree

was observed to be in 2005. However shortly after 2005, there was a significant decrease.

One could speculate that this could be due to the recent downturn in the economy.

The number of individuals awarded a degree in the 2010s decreased sharply from 2009,

indicating that the data for the 2010s is incomplete.

In Chapter 4 we also observed that the maximum number of advisers an individual

had, increased in the past 3 centuries. However, in each of the 19th, 20th, and 21st

centuries, the majority of individuals (∼ 80%) had just 1 advisor.

Observations using Network Theory

By modelling the Mathematics Genealogy Project data set of 137,138 individuals as a

network and computing network diagnostics, we are able to better understand the advisor-

advisee relationship, and possibly infer from this how the advisees are influenced by their

advisers.

The Directed Network

The first network we constructed was the directed network in Chapter 5, in which the

nodes were taken as the individuals and the directed edges to be the direction of advice

in the advisor-advisee relationship. The plot of the in- and out-degree distributions and

the mean degree of the directed network in Chapter 5 just reconfirmed that the majority

of individuals in the MGP data set have 1 advisor, and also that the maximum number of

advisers an individual had was 5 and the maximum number of advisees an individual had

was 103. However these network diagnostics also indicated that both of the extreme cases

of 5 advisers and 103 advisees are rare. The out-degree distribution plot also indicated

that the majority of advisers have just 1 advisee.

We then calculated the degree assortativity diagnostic on the directed network, in the

hope to better understand the advisor-advisee relationship, and infer from this the influ-

ence the advisor has on their advisee, in terms of their advising behaviour. Calculations

indicated a slight assortative mixing by out-degrees, which, in terms of the mathematics

genealogy tree and the advisor-advisee relations, implies that advisees who have many
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academic siblings have a tendency to go on to become advisers with many of their own

students. Also, advisers who advise a small number of students have a slight tendency to

influence their advisees to have small number of students themselves. The in-assortativity

coefficient calculated for the directed network, indicated a strong assortative mixing by

in-degree. In terms of the adviser-advisee relations, this suggests that advisers who were

supervised by many individuals have a tendency to advise a student with other individ-

uals, or that advisers who were supervised by few individuals have a tendency to advise

students by themselves or only with few other individuals. But closer inspection of the

in-degree distribution matrix indicated that this result was mainly driven by the second

case. In which case, individuals who were supervised by just 1 adviser had a tendency to

advise their students by themselves.

These tendencies seen for the directed network as a whole, was observed to increase

in strength, as more individuals were added to the mathematics genealogy tree over time.

The Undirected Networks

Unable to consider clustering (as defined in Section 3.3) for the directed network, the

mathematics genealogy tree was then modelled by two undirected networks.

Interested to see the interactions between academic siblings, we constructed the sibling

network, in Chapter 5. The nodes of the sibling network were taken as the individuals

and the edges to be between advisers and advisees and also between academic siblings.

However diagnostics calculated from this could not be directly compared to the directed

network, therefore we also constructed the undirected counterpart to the directed network

in tandem.

Studying the structural properties of the sibling network and comparing it to that

of the undirected network, can provide us an insight into the interactions between aca-

demic siblings, as well as insights into academic families of 2 generations, consisting of

academic parents (the advisers of an individual) and their academic children (advisees of

an individual).

The mean of the total number of advisers and advisees an individual had, was found

to be 2, whereas the mean of the total number of advisers, advisees and academic siblings

and individual had, was found to be 15. These results suggest that the mean number of

siblings an individual in the MGP data set has is 13. The mean of the total number of

advisers and advisees an individual had was analysed per year (mean degree per year in

the undirected network). This analysis showed that the mean number of advisers and

advisees in total an individual had, increased during the 1900s and peaked at the value

between 4 and 6 around the mid 1900s, from which point it decreased through the first

decade of the 21st century, to an average of 1. However it is difficult to conclude at this
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point in time if the average number of advisers and advisees an individual had, is indeed

decreasing over the first decade of the 21st century, as the data is still young. It is young

in the sense that all individuals that were awarded a degree in the last few decades may

not have completed their academic life yet, and may not have advised all the students

that they might.

The mean of the total number of advisers, advisees, and academic siblings an individ-

ual had was also analysed per year (mean degree per year in the sibling network). This

analysis showed that there was a noticeable drop in the mean of the total number of ad-

visers, advisees, and academic siblings an individual had, by 2.5, to a value of 17 observed

in 1971, after which the mean remains fairly constant up until 1982. A decrease seen in

the mean of the total number of advisers, advisees and academic siblings an individual

had over the past 4 decades, might not be a trend in time and could be accounted for by

the data being young. However, if this is indeed an emerging trend, this suggests that

academic families of 2 generations, consisting of parents and children, are getting smaller.

Individuals have fewer advisers, advisees and academic siblings in total than previously

seen.

The degree distribution of the undirected network indicates that the majority of the

individuals in the mathematics genealogy tree have a total of 1 or 2 number of advisers

and advisees combined. The degree distribution of the sibling network shows that the

majority of individuals have up to a total of 20 number of advisers, advisees and academic

siblings combined.

The Pearson correlation coefficient of the degrees calculated for the undirected network

indicates that the undirected version of the directed network is marginally disassortative.

We can interpret this result in terms of the mathematics genealogy tree and advisor-

advisee relations as individuals who have many advisers and advisees, have a tendency

to be connected to individuals with less number of advisers and advisees, where the

connection here can be taken as both to receive and give advice.

The Pearson correlation coefficient of degrees calculated for the sibling network indi-

cates a strong assortative mixing by degree, quite the opposite result for the undirected

network. This result indicates that individuals in the data set have a tendency to super-

vise or to be supervised by other individuals that have a similar total number of advisers,

advisees and academic siblings. With this diagnostic by itself, it is difficult to understand

if the sibling network is indeed suggesting an interesting structure of the mathematics

genealogy tree, or that adding the extra edges between academic siblings has lost too

much information to be able to extract something useful using this diagnostic.

The clustering coefficient calculated for the undirected network, indicated that there

is not much transitivity in the network, i.e. not many loops of length 3 formed, which
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occurs only when advisees pair with their advisers to supervise another individual in this

network. In terms of the mathematics genealogy tree, this network diagnostic suggests

that not many individuals advise students with their own advisers. The frequency of this

type of advising behaviour was found to be fairly constant over time.

The clustering coefficient calculated for the sibling network, however, indicates almost

perfect transitivity in the network, i.e. many loops of length 3 form in comparison to

the number of paths of length 2. In terms of the mathematics genealogy tree, a loop of

length 3 in a sibling network can arise when an individual in the data set has more than

1 advisee or more than 1 adviser who are siblings. The fact that several individuals in

the data set have up to a total of 20 number of advisers, advisees and academic siblings,

it is not surprising that an individual would have more than 1 advisee or 1 adviser who

are siblings (at least 2 academic parents of an individual that were advised by the same

academic grandparent of the individual). This leaves us to question, once again, if adding

extra edges between siblings to the undirected network loses too much of the structure

of the mathematics genealogy tree for the purpose of this diagnostic.
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Chapter 8

Discussions

By modelling the Mathematics Genealogy Project data set of 137,138 individuals as a

network and computing network diagnostics, we are able to better understand the advisor-

advisee relationship, and possibly infer from this how the advisees are influenced by their

advisers. Some of the main results mentioned in Chapter 7 are discussed and possible

explanations are hypothesised here.

In-degree Assortativity

Using various degree assortativity diagnostics gives us an insight into the difference in

the number of advisers and/or the number of advisees between two nodes connected in

a network, as discussed in Chapter 7. It was shown in Chapter 5 that there is a very

strong assortative mixing by in-degrees in the directed network, where the in-degree of

a node in the directed network represents the number of advisers an individual has in

the mathematics genealogy tree. In other words, this result indicates that individuals

have a strong tendency to connect to other individuals with the same number of advisers,

and from computing the in-degree assortativity coefficient per year, as more individuals

were added to the network, this tendency has been observed to generally increase over

time. There are possible explanations for advisees to have a tendency to go on and advise

similar numbers as their own advisers. One could hypothesise that the advisees agree with

their advisers on the number of supervisors a student needs which might be necessary

in their line of research area. This is assuming that individuals are advised by advisers

interested in a similar research area as the subject area of their degree. For example, in

the case of high in-degrees, i.e. when individuals are supervised by many advisers, the

research area of an individual could require them to study a number of subject areas and

may imply that individuals need advice from experts in different fields. Alternatively, in

the case of low in-degree, i.e. the case when individuals have few advisers, the subject

areas might be very specialised and focused, and might only need or get advice from very
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few advisers. If one had the Mathematics Subject Classification numbers to classify the

subject area associated with each node, one could explore this possibility.

Out-degree Assortativity Versus Degree Assortativity of the Undi-
rected Network

The calculations in the Chapter 5 suggest that there is a slight assortative mixing by

out-degrees in the Directed network.

Figure 8.1: Black edges represent the out-
degree, and the purple directed edges repre-
sent the in-degree added.

In Chapter 6, however, the Pearson cor-

relation coefficient of the degrees calcu-

lated for the undirected network indicates

that the undirected version of the directed

network is marginally disassortative, i.e.

high-degree nodes have a slight tendency

to attach to low-degree nodes. We con-

sider the cases when these results coincide.

We note that by adding the in-degrees for

each node, in effect, we can make the di-

rected network, which is slightly assorta-

tive by out-degrees, into an undirected net-

work which is slightly disassotative by de-

grees. The different cases of how this might

happen is indicated in Figure 8.1. The

black edges are the edges in the directed

network that point to a node (edges that

point away from the nodes are not considered in the calculation of rout). The purple edges

can be interpreted to represent the edges that need to be added to make the undirected

network slightly disassortative by degree. Because all of the situations given in Figure

8.1, indicated by the calculations of the out-degree assortativity coefficient of the directed

network and the Pearson correlation coefficient of the undirected network, cover several

of the possible combinations of in- and out-degrees of an advisor and an advisee in the

directed network, not much can be deduced from this on its own. Further analysis needs

to be done to understand which of these cases indicated in Figure 8.1 is most common

in the mathematics genealogy network, and also what the driving factor is. For example

one could hypothesise that in some subject areas, an individual would only need 1 or 2

advisers, and explore how the number of advisers for each subject area changes over time.
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Another interesting point to note is that the near to perfect transitivity found in the

sibling network could be driven by individuals with many advisees as a result of cases 1

and 2, given in Figure 8.1, found at large in the mathematics genealogy directed network.
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Chapter 9

Further Work

9.1 Assortativity Using Other Characteristics

We have only considered the special case of assortative mixing by degree. Although the

data of other characteristics for each individual in the Mathematics Genealogy Project

data set is limited (Table 4.1), one can still construct a smaller network using the subset

of nodes for which that data is available.

Assortative mixing by the location and university name at which the degree of an

individual was awarded, is considered here separately, for all three networks, the directed

(DAG), undirected and sibling networks and the results are can be found in Table 9.1.

Node Label DAG Undirected Sibling

Country 0.7007 0.6995 0.8955
University 0.1251 0.1235 0.7292

Table 9.1: Assortativity Coefficient

The numbers given in Table 9.1 are calculated using (3.10). If either node at the ends

of an edge has no label information (blank fields in the data), then the edge is excluded

from the mixing matrix and hence the computation.

The numbers in Table 9.1 indicates a high assortative mixing by the country from

which the degree is awarded, for all three networks. The assortativity coefficients for

mixing by university for the directed and undirected networks indicates only a slight

assortative mixing (assortativity coefficients are close to zero), whereas mixing by uni-

versity that awarded the degree is highly assortative in the Sibling network. This could

indicate that although advisers and advisees might not have a strong tendency to have

been awarded degrees from the same university, but academic siblings have a strong ten-

dency to be awarded a degree from the same university. This suggests that advisers might
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have a strong tendency to advise their advisees in the same universities, which is perhaps

worth exploring in further detail.

Interesting as these results may be, however, this approach does not give a full picture

of the whole family of mathematicians, as missing information would imply excluding

edges in diagnostics. Consider the small example network in Figure 9.1, in which the

nodes coloured green have missing type labels. If any of the nodes in an edge do not have

a type label associated to them, they are not included in the mixing matrix, and hence

diagnostic calculation. Therefore the edges that will not be included as a result of missing

node label, are indicated by a dashed blue line in the figure. As a result, the assortativity

coefficient might not give an accurate picture of the actual structure of the mathematics

genealogy. Ideally, if one can obtain the missing fields1, so that the data set is nearly

Figure 9.1: A small example network with missing node type labels.

complete, then one can delve further into the tendency patterns and associative behaviour

of individuals in the mathematical community by using assortativity mixing for initial

probing of the data. Mixing with subject area can be used to trace and understand the

evolution of research groups, but it can also be used to help explain the trends discussed in

the conclusion. For example, in the conclusion, it was mentioned that a possible reason

for an assortative mixing by in-degree in the directed network was due to the subject

area an individual studied. One can try and develop new diagnostics for each of the

three networks, to explore if there is a correlation between the subject area an individual

studies and the number of advisees they have (the out-degree of the individual). One

could also explore how this correlation changes over time.

1In Appendix A, we discuss our attempt to obtain the full list MSC numbers for subject area is
discussed.
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9.2 Community Structure

A network is said to show community structure if there are groups of nodes that are

densely connected to each other, referred to as communities, but sparsely connected

to other densely connected groups [5]. According to [6], community detection is the

search for naturally occurring communities regardless the size of the network. In the

past 9 years there has been an extensive amount of research in community detection in

networks [8], and several methods to detect communities have been proposed. However,

one would need to generalise the notion of community structure to work on a directed

acyclic graph, as this has not yet been done. It would be particularly interesting to

identify any such communities in the mathematics genealogy network, as we can start

explore characteristics of communities. For example we could investigate if communities

form mainly for people with similar research areas, or location from which the degree

is obtained. This area opens up numerous in-leading opportunities to investigate the

structure of the mathematics genealogy network and the traits of the communities of

mathematicians.
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Appendix A

Change in Dissertation Topic

A.1 Original Proposal

The original title of this Dissertation was “Mathematical Genealogy and the Evolution of

Mathematical Research Groups”, and the aim was to understand how different subject

areas of mathematical research have evolved in time. The proposed method was similar

to the approach taken for this dissertation (described in Chapter 1): first represent the

Mathematics Genealogy Project data as a genealogy network, classify the individuals in

research groups, and then use network analysis and various computations to understand

the evolution of research groups.

Mathematics Subject Classification Number as Subject Area

The Mathematics Subject Classification (MSC) number1 is an alphanumeric classifica-

tion scheme used to classify items in the mathematical literature to help users find the

items of present or potential interest to them. This list has been produced and updated

jointly by the editorial staffs of Mathematical Reviews and Zentralblatt fur Mathematik

in collaboration with the mathematical community. This classification scheme is com-

monly used by many mathematical journals, in products derived from the Mathematical

Reviews Database (MRDB) such as MathSciNet and in Zentralblatt MATH (ZMATH).

The Mathematics Subject Classification is a hierarchical scheme2 with three levels of

structure: the first (top) level is represented by a two-digit number, the second by a

letter, and the third (most specific) by another two-digit number. Currently, there are

97 first-level classification groups in total.

The Mathematics Genealogy Project data set has the top level, i.e. the first two

digits of the Mathematics Subject Classification number for the thesis, which could be

used to classify the subject that the individual studies. (See the bar chart in Figure A.1

1http://www.ams.org/mathscinet/msc/msc2010.html
2http://en.wikipedia.org/wiki/Mathematics_Subject_Classification
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for the distribution of Mathematics Subject Classification numbers in the Mathematics

Genealogy Project data set). However, this data available in the Mathematics Geneal-

ogy Project data set is limited, as 66% of all the individuals listed in the Mathematics

Genealogy Project database do not include a Mathematics Subject Classification number

of their thesis.

Figure A.1: Mathematics Subject Classification (MSC) number available in the Mathe-
matics Genealogy Project (MGP) data set.

MathSciNet: Source for MSC Numbers

The Mathematical Genealogy Project data set contains the MR Author ID for each

individual. The MR Author ID3 is a unique identifier assigned to each author in the

MRDB. The MR Author ID can be used to find each individual from the Mathematical

Genealogy Project in the MathSciNet database4. This is useful, as the MathSciNet lists

the subject areas of the publications of each MR Author ID in the ‘Author Profile’ pages.

Figure A.2 is a screen shot of an example of such an ‘Author Profile’ page. One can

see from Figure A.2 that the subject areas are listed under the heading ‘Publication (by

number in area)’ and have different font sizes. From the html code on which the ‘Author

Profile’ pages in the MathSciNet site are based (see the example in Figure A.3), one

can deduce that the font size of each area is dependent on the number of publications

of the individual in that area. Also the subject areas are categorised using the MSC

numbers. Based on examining a few examples of mathematicians I am familiar with, I

have concluded that the number of publications seems to be understated, but that, the

3http://www.ams.org/publications/math-reviews/mr-authors
4MathSciNet is an electronic searchable database, available online, that has both the reviews and

citation information of mathematical research publications.
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Figure A.2: Screen shot of an ‘Author Profile’ on MathSciNet.

dominant area of research still seems to be correct. Hence, it is reasonable to take the

research group assigned to each individual in the Mathematics Genealogy Project data

set, as the area in which they have produced the most publications, i.e. the area with

the largest font size.

A.2 Progress Made

In order to obtain the Research Groups classification, the list of MR Author IDs for each

individual in the Mathematics Genealogy Project was obtained, and an automated data

scraper using Python, using the BeautifulSoup package was written by me. The scraper

uses the MR Author ID to find and retrieve the html code for their corresponding ‘Author

Profile’ web page on MathSciNet, as the url5 is the same for each individual, only differing

in the MR Author ID. Using the BeautifulSoup package, the scraper then parses the html

code, making it easier to obtain the relevant information which is stated under the heading

‘Publication (by number in area)’. It then extracts the two-digit MSC number, the font

size, and the publication count (see Figure A.3).

5http://www.ams.org/mathscinet/search/author.html?mrauthid=MR Auth ID
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Figure A.3: The data scraper: The top window is the html code retrieved by the data
scraper, and the bottom window is the output file. In the html code, the data scraper finds
the code circled in red, (highlighted in red is the same text but zoomed in). The scraper
then saves the the MR Author ID from input list, the MSC number, font size, publication
count, and the MR Author ID in the html code into in an output file (indicated by green
arrows).

A.3 Reason for Change

In total, there were approximately 82,000 individuals for whom the data scraper was

obtaining information. After acquiring data for almost half of the individuals in the list,

my access to the MathSciNet was removed. After which I was requested by the OUCS6

and the OxCERT7 to stop scraping data by and delete all acquired data on behalf of the

AMS8, hence the reason to change the focus of dissertation.

6Oxford University Computing Services.
7Responsibility for network security within the University of Oxford lies with the Oxford University

Computer Emergency Response Team (OxCERT).
8American Mathematical Society, of which MathSciNet is a service they provide.
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Appendix B

Expectation and Standard Deviation
of Discrete Distributions

Consider a discrete distribution {Xk}. The mean µ is equal to the expectation of the

distribution, E[X], and is given by

µ = E[X] =
∑
k

k Xk. (B.1)

The variance of the distribution is calculated using the following expression:

Var[X] = E[X2]− (E[X])2 = E[X2]− µ2, (B.2)

where

E[X2] =
∑
k

k2 Xk. (B.3)

The standard deviation is then

σ =
√

Var[X]. (B.4)

60



Appendix C

Summary of Results

Network Properties and
Diagnostics

Directed Acyclic Graph Undirected Counterpart Sibling

Total nodes n 137,138 137,138 137,138
Total edges m 138,167 138,167 1,018,246
Mean degree c 1.0075 2.0150 14.8499
Pearson r rin ≈ 0.8373 −0.2324 0.8335
correlation coefficient rout ≈ 0.2188
Assortativity coefficient rc 0.7007 0.6995 0.8955
for country
Assortativity coefficient rs 0.1251 0.1235 0.7292
for school
Clustering coefficient C / 0.0060 0.8654

Table C.1: Basic network statistics for each entire network (1363 - 2012).

61



Bibliography

[1] R. Malmgren, J. Ottino, and L. A. N. Amaral. The role of mentorship in proteégé
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