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Electoral districting and gerrymandering are problems as old at the United States itself. In this project, by employing
opinion dynamics on some social networks and using their community structure, we seek to model elections in a
two party political system like the USA and simulate the phenomenon that gerrymanders attempt to use to their
advantage - electorates within different districts or spheres of influence tend to vote for different parties. We show
that this effect can be modelled successfully on a network by the voter model if community structure is strong, or by
slightly altering the dynamics of the voter model to include a feedback mechanism.

INTRODUCTION

The network is a concept that is ubiquitous in
physical and human sciences; a network is a config-
uration of agents (vertices or nodes), together with
connections between them (edges) which represent
some manner of interaction. Examples include bio-
logical networks such as food webs, where the ver-
tices and edges denote organisms and consumption
respectively; information networks such as the World
Wide Web, in which the vertices are web pages
and the edges hyperlinks; and social networks where
the nodes may correspond to people and the edges
friendship [1].

It is partly due to this universality that net-
work theory has become a burgeoning field of study
in recent years; more influential has been the abil-
ity, granted by the availability of greater computer
power, to collate the data that forms such large net-
works, sometimes of millions even billions of nodes,
and to conduct statistical analysis of their structure
1, 2].

Part of this research has involved modelling on
social networks collective patterns of behaviour that
emerge from individual interactions; these social
phenomena include opinion, cultural and language
dynamics [3]. For instance, one may simulate the
spreading of support for a political party within an
electorate [4]: the goal is to find some simple rules
of exchange between the nodes, each of which is en-
dowed with its own opinion, that propagates said
opinion and reproduces patterns observed in real
democratic systems.

One of democracy’s longest running points of
contention and forms of electoral skulduggery is the
gerrymander. Gerrymandering refers to the practice
of drawing electoral district lines in order to advan-
tage a particular political party or parties [5]. This
can and has taken several forms, for instance there
is partisan gerrymandering where districts are rede-
fined in order to favour one party over another; bi-
partisan, or ’sweetheart’, gerrymandering is where
parties collude in redistricting in order to secure the
re-election of incumbents; and there is gerrymander-
ing along ethnic-minority lines so that, depending

on the motivation, the vote of minorities is either
diluted or strengthened [6].

The term gerrymander itself originates from
1812 when Massachusetts governor, Elbridge Gerry,
presided over his party’s strategic redrafting of a
long, sinuous electoral district with the aim of win-
ning the consequent senatorial election by reducing
competition from their opponents. This district was
likened in print to a salamander, and hence the con-
temporary neologism gerrymander was coined from
the concatenation of the governor’s surname and -
mander.

Electoral districting remains an active debate
and area of study today, its problems and possible
solutions have been discussed not only in political
science [6, 7, 8] but also in mathematics [9, 10], com-
puter science [11, 12], physics [5], and law. Yet, the
focus of the majority of literature remains concerned
with the nation whose legislature gave birth to the
gerrymander - the United States. This is perhaps the
case because the United States’ status as the world’s
superpower puts it in a unique position of scrutiny a
propos its constitution and the opportunity of ger-
rymandering it affords. After every decennial census
the House of Representatives is reapportioned in ac-
cordance with the population changes observed, with
each state of the Union granted a number of seats
proportional to its population. Say a state is appor-
tioned n seats in the House; the state legislature is
then required to divide its territory into n electoral
districts of equal population which will each elect
one representative to take a seat in Congress. It is
the power granted to the incumbent state authori-
ties to redraw these boundaries, rather than to an
independent body such as the courts or an electoral
commission, that exposes American voters to this
electoral mischief.

OVERVIEW

In this paper, we consider the results obtained by
simulating elections on networks acquired from the
social networking site facebook.com. Members of the



site create a personal profile and can add other mem-
bers as ’friends’, creating links between their own
and their friends’ profiles, hence members and these
"friendships’ form the vertices and edges of a readily
accessible social network. At the time the data was
collected users of facebook required a valid univer-
sity email address and so the networks we consider
consist of exclusively students at the same institu-
tion [13]. The individual college networks we use
in this paper are those of the California Institute of
Technology (CA), commonly abbreviated to Caltech,
and two liberal arts colleges Reed (OR) and Haver-
ford (PA); these networks were chosen primarily for
their small size for ease and speed of computation.

On these networks we ran variants upon a partic-
ular opinion dynamic in order to model an ’election’.
In reality of course, most elections conducted in pub-
lic life - at least the ones in which the effects of ger-
rymandering has been considered - involve far larger
populations than those in our facebook networks; in-
stead our subject networks aim to act effectively as
a sampling of a population, or as a surrogate for an
electorate.

It is known from our everyday experience and
from studies conducted that individuals tend to
associate with others who are like themselves, for
example in terms of race, age or income [2]. This
is no different in political opinion or political party
affiliation: consider the population of a region or
nation at large, we expect it be more likely that
rural communities will vote Republican and urban
communities Democrat (or Conservative-Labour if
we cross the Atlantic). On a smaller scale, we expect
within a friendship group similar political leanings
just as we expect similarity in other cultural, racial
or economic traits (all four of course being compli-
catedly interconnected). This clustering of votes for
particular political parties on the grounds of neigh-
bourhood or friendship group is what we seek to
model in this paper; furthermore, we investigate if
these clusters can be harnessed so that these social
networks can be segregated in a natural way as to
influence the result of a possible election in the same
manner a gerrymander aims to.

MODELLING ELECTIONS

We model opinion as a binary variable: several
such models have been studied on networks for ex-
ample the voter, the Sznadj and majority-rule mod-
els [3], but it is the former [14] and variations upon
it that we shall consider on our college networks. In
a binary variable dynamic every node is in one of
two states, often termed the spin of a node thanks
to the study of thid field in statistical physics with
regard to ferromagnets [3]. In our case we form a
two party electoral system: one state may be ’vote

Republican’ the other 'vote Democrat’ (assuming ev-
erybody votes). In all our discussions we take the ini-
tial configuration of votes on the network to be disor-
dered: every node has an equal probability of voting
Republican or Democrat. It is generally assumed
that initially heterogeneity dominates [3], without
interaction with others every individual expresses a
purely personal response on the question of which
party they support (of course one could argue that
the formation of friendships, which are the edges of
our network, involve some prior interaction between
the nodes anyway).

In real world networks typically the distribution
of edges is both globally and locally inhomogeneous
[15]. One observes a high concentration of edges
within certain groups of nodes and a low number
of edges between these groups, these mesoscopic fea-
tures of a network are called communities [2]. In
social networks they may correspond to friendship
groups, or in the World Wide Web to groups of web
pages on related topics. Recently a variety of algo-
rithms have been designed to carry out community
detection; in this paper we employ one of these com-
putational techniques - the Newman’s leading eigen-
vector method [16].

We shall view the communities detected by the
eigenvector method on our networks to be analogous
to electoral districts, and consider the votes for the
two respective parties within these communities over
time and as we vary the voter model. Clearly we
cannot equate community structure with real elec-
toral districts - districts are not drawn along lines
of acquaintance but by the geography of the region,
our networks do not consider the physical proximity
of those who constitute the nodes only the notion
of ’friendship’ which, now in times of globalization
and greater mobility, no longer necessarily implies
close proximity of habitation. However, consider-
ing the votes within each community enables us to
investigate the behaviour of our opinion dynamics
with regard to the mesoscopic structure of our net-
works, and in particular the aforementioned social
phenomenon that people within the same commu-
nity share similar voting habits.

THE VOTER MODEL

The voter model is possibly the simplest opinion
dynamic and hence has been studied in great de-
tail both on regular lattices and real world networks;
it is one of the few non-equilibrium stochastic pro-
cesses that can be solved in any dimension [3]. All
nodes are endowed with some spin ¢ = +1(upspin
or downspin); a node i is chosen at random, then
one of its neighbours, j say, is randomly chosen, the
former then assumes the opinion of the latter, i.e.
0; = o;. In this paper, we term a single update to
be when the spin of single node is changed from one



Figure 1: Pie chart dendrograms for a run of the voter model on the Caltech network (a) initially, and after (b) 5,000, (c)
10,000, (d) 15,000, (e) 20,000 updates. The 7 pies correspond to the 7 communities found when the leading eigenvector method is
employed on the Caltech network; the radius of each pie is determined by the number of nodes in the corresponding community.

The pies themselves are colour coded according to vote or spin: blue signifying upspin (or

(or 'vote Republican’). For more details see [13]

state to another, if two nodes of the same opinion
are chosen we re-choose until two nodes of different
spin are picked (some other papers choose to define
their 'updates’ in a different manner).

The voter model is motivated by the idea of ’so-
cial influence’ - that individuals imitate their neigh-
bours and hence people tend to become more alike,
whilst the state of the population as a whole does
not play a direct role [3]. Indeed in any network with
a finite number of nodes, such as ours, the dynamics
always eventually reach consensus - either all nodes
with up spin or all with downspin [14].

The Caltech network consists of 762 nodes, and
employing the leading eigenvector method yields 7
communities; one community (District 4) contained
only two nodes and thus was neglected from our anal-
ysis. We ran the voter model from a disordered ini-
tial configuration of party votes several times, each
time up to consensus or to 20,000 updates, whichever
occurred first. We observed that the proportion
of votes for either party locally within the districts
largely reflected the party’s global vote. Figure 2 is a
line plot of the proportion of the vote in the different
communities over one run of the voter model: it illus-
trates that the division of the vote between the two
parties does not vary greatly across the 6 main com-
munities or ’districts’ as the number of updates of the
model increases. Figure 1 provides a second visual-
ization of the same run of the voter model - it shows

'vote Democrat’) and red downspin

5 pie chart dendrograms which display the propor-
tion of the vote in the 7 communities of the network
in its initial disordered state and after 5,000, 10,000,
15,000 and 20,000 updates. The dendrograms’ pies
correspond to the communities yielded by the lead-
ing eigenvector method, and the radius of each pie
is determined by the number of nodes in the corre-
sponding community. The pies themselves are colour
coded according to vote or spin: blue signifying up-
spin (or 'vote Democrat’) and red downspin (or 'vote
Republican’). It is observed that all the pies in a sin-
gle dendrogram are relatively similar, in accordance
with what I have explained.

Runs of the voter model were also conducted on
the 962 and 1445 node Reed and Haverford networks,
for which the leading eigenvector method returns 4
and 8 communities respectively (again small commu-
nities, namely Districts 7 and 8 of the Haverford net-
work are omitted from analysis). Similar behaviour
to that described for the Caltech network was ob-
served, yet notable anomalies did occur. Again, runs
of the voter model suggested that over time the pro-
portions of the vote in most districts of the same
network were similar; however, it was observed that
typically the proportions of the vote in District 2 of
the Reed network and District 5 of the Haverford
network often differed noticably from that in other
districts of the same network. Line plots Figures 3
and 4 provide a visualization of this - Figure 3 rep-
resents a run of the voter model on the Reed
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Figure 2: [Colour] A run of the voter model on the Caltech
network. Each line expresses the proportion of upspin nodes
(or votes for the Democrats) in one of the communities. A line
showing the proportions of the vote in the two node District
4 is omitted for clarity.
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Figure 3: [Colouwr] A run of the voter model on the Reed net-

work. Each line expresses the percentage of upspin nodes in a

particular community. The green line corresponds to District
2.
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Figure 4: [Colour] A run of the voter model on the Haver-
ford network. Each line expresses the percentage of upspin
nodes in a particular community. The red line corresponds to
District 5.

network (the green line representing the vote in Dis-
trict 2), and Figure 4 a run on the Haverford network
(the red line representing the vote in District 5).
We undertook further analysis of the communi-
ties of our 3 networks to account for the differences
observed across the districts when the voter model
was run. Community detection algorithms like the
eigenvector method partition networks so that every
node is binned into a community; intuitively we ex-
pect that some of these communities to be ’stronger’
or 'better defined’ than others. How can we pin
down and quantify this vague notion of how well
defined or isolated individual communities are?

The leading eigenvector method depends on max-
imizing a quality function called modularity - a
global measure of the quality of a partition [16].
We utilized instead a measure of local modularity
- a quantity associated with a single community or
module rather than a partition of communities [17].
Suppose C is a community, consider B - the set of
vertices that are on the boundary of C (i.e. nodes
that have at least one neighbour which is not in C).
Intuitively, we think of C having a sharp boundary
if the proportion of edges which have a node in B
at one end and a node in C at the other is much
greater than proportion of edges which have a node
in B at one end and have a node that is not in C
at the other [17]. It is this idea of a sharp boundary
that the measure of local modularity takes to be the
defining factor of a well defined or isolated commu-
nity.

The boundary adjacency matrix B;; of community
C is defined to be:

1 1 if nodes 7 and j are connected and

B;j = at least one of them is in B

0 otherwise

The local modularity, R, of community C is defined

to be: o

2. Bij T
where 0(4,7) equals 1 if either node 4 is in C and
node j is in B (or vice versa) and 0 otherwise, and
where T is the number of edges with one or more end-
points in B, and I is the number of edges which have
both endpoints in C and at least one of them is in B
[17]. The local modularity R takes a value between
0 and 1 which is proportional to the sharpness of the
boundary B of community C. We calculated local
modularity for each of the respective communities in
the Caltech, Reed and Haverford networks, see Table
1. All the Caltech communities have local modular-
ities below 0.5, as do the majority of districts of the
Haverford and Reed networks. However, District 2
of the Reed and 5 of the Haverford networks have
a relatively high local modularity in comparison; so
we may speculate that how isolated or distinct these



Figure 5: Pie chart dendrograms for a run of the voter model on the modified Caltech network where the communities are
complete subgraphs (a) initially, and after (b) 5,000, (c) 10,000, (d) 15,000, (e) 20,000 updates.

Network & District | No. of Nodes | R |

Caltech 1 158 0.4250
Caltech 2 112 0.3436
Caltech 3 87 0.3722
Caltech 5 178 0.3678
Caltech 6 105 0.3436
Caltech 7 120 0.3024
Reed 1 128 0.2683
Reed 2 179 0.5301
Reed 3 184 0.3345
Reed 4 471 0.5957
Haverford 1 434 0.3763
Haverford 2 226 0.2588
Haverford 3 307 0.3273
Haverfoed 4 158 0.1831
Haverford 5 288 0.6353
Haverford 6 25 0.1507
Caltech* 1 158 0.8094
Caltech* 2 112 0.7409
Caltech* 3 87 0.6227
Caltech* 5 178 0.8369
Caltech* 6 105 0.7076
Caltech* 7 120 0.7094

Table 1: Local Modularity of Communities, Caltech* de-
notes the modified version of the Caltech network where each
community is a complete subgraph.

communities are has some bearing on the voting be-
haviour observed.

To try and establish this connection more fully
we asked how the voter model would behave if we
artificially strengthened the community structure of
the Caltech network by making each of the 7 com-
munities a complete subgraph (i.e. adding edges to
the network so that every node is connected to ev-
ery other node in its community). Table 1 displays

the local modularities of our new communities, the
values of which are considerably higher than the cor-
responding communities in the original Caltech net-
work and serve as testament to the fact that these are
much more clearly distinct districts. A typical run
of the voter model on this new network is illustrated
in Figures 5 and 6. Figure 5 shows on this new ar-
tificial network there are enormous variations in the
voting proportions across communities, in compari-
son to the original Caltech network of Figure 2. As
a result of these greatly fluctuating voting propor-
tions over time, if we view our communities as elec-
toral districts we have different 'winners’ in different
districts over time. In the former run of the voter
model since the proportion of votes in each district
was similar over time each returned the same win-
ner; however as illustrated in Figure 6 the current
network returns a plurality of winners over time: in
some districts the Republicans win and in others the
Democrats win.

Communities with high local modularity have a
lower proportion of edges with end points in other
communities, hence if the initial randomly selected
node the voter model chooses is in such a community
the randomly chosen neighbour involved in the sub-
sequent dynamic is more likely to belong to it also.
Thus the stronger the community structure of a net-
work the greater degree of independence in the vot-
ing dynamics of each community, resulting in visibly
differing voting proportions over time. We should
note however that the communities of the original
Caltech network reflect the House structure of the
institution: the fact that the original communities
are in some sense ’correct’ has led to the network be-
ing suggested as a benchmark network to test future
methods [13]. From our perspective it also suggests



that even though communities correspond roughly
to what one would expect we in fact require commu-
nities to be very pronounced to display appreciably
different voter dynamics.
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Figure 6: [Colour] A run of the voter model on the modified
Caltech network where each community is a complete sub-
graph. Each line expresses the percentage of upspin nodes in
a particular community.

THE VOTER MODEL WITH FEEDBACK
MECHANISMS

As mentioned, the classic voter model shall al-
ways run to consensus on a network of finite nodes.
In the situation of fair multiparty elections however,
complete consensus of an electorate is not a realistic
outcome - support for more than one party persists.
Furthermore, if we take the United States as the tem-
plate of our two party system the increased polariza-
tion of opinion in that nation in recent years leads
us to the expectation that the division of the popu-
lar vote between our parties should be kept roughly
around the 50:50 mark - for instance, examine the
popular vote for the two main political parties in the
post-war presidential elections (discounting votes for
minor third party candidates) displayed in Table 2.

| Year | Republican Vote | Democrat Vote |

2004 51.49% 48.51%
2000 49.73% 50.27&
1996 45.26& 54.74%
1992 46.54% 53.46&
1988 53.90% 46.10%
1984 59.17% 40.83%
1980 55.30% 44.70%
1976 48.95% 51.05%
1972 61.79% 38.21%
1968 50.40% 49.60%
1964 38.66% 61.34%
1960 49.91% 50.09%
1956 57.76% 42.24%
1952 55.29% 44.71%
1948 47.68% 52.32%

Table 2: Popular vote in the last 15 American presidential
elections: we consider only the popular vote of the population
who voted either Republican or Democrat, votes for other
candidates are omitted.

With this in mind, we altered the dynamic of the
voter model to include various feedback mechanisms.
Modifications of the voter model which have been the
subject of study in the past have included the addi-
tion of noise [18]; the so called 'noisy voter model’
includes the possibility that a node can flip its spin
(or 'change its vote’) spontaneously when equal to
all its neighbours. In a similar manner we sought to
introduce flips of random nodes, the probability of a
flip being dependent on the global proportion of up
and down-spin nodes, with the aim of swinging the
proportion of the vote for our pseudo- Republicans
and Democrats about the 50:50 mark over time.

Suppose the voter model is run on a network of
N nodes; after every update of the voter model the
following dynamic is enacted:

FEEDBACK MECHANISM FM(I) - Suppose there are
p upspin (’vote Democrat’) nodes and q downspin
("vote Republican’) nodes. If p < ¢ then a random
downspin node is chosen, and flipped with probabil-
ity &. If p > ¢ then a random upspin node is chosen,
and flipped with probability &.

For FM(i) consensus is an unstable state, rather than
an absorbing state as with the traditional voting
model. Note however, that the probability of a flip
occurring after an update is always at least 0.5, thus
resulting in a high frequency of random flips being
imposed on top of the ordinary voter model. In our
second feedback mechanism we reduced this num-
ber, whilst maintaining consensus to be an unstable
state, by making the probability that a flip occurs
dependent on the difference between the two votes
instead:

FEEDBACK MECHANISM FM(11) - Suppose there are
p upspin and q downspin nodes. The probability
that some node is flipped is ‘p;,q‘. If p < ¢ then
this flip will be of some random downspin node to
upspin, and if ¢ < p this flip will be of some random

upspin node to downspin.

We first investigated runs of FM(i) and FM(ii) on a
one dimensional lattice of 100 nodes from an initial
disordered state. Figure 7 provides a visualization of
a run of the original voter model, FM(i) and FM(ii)
on the lattice. We represent the nodes of the lattice
at any one time by a strand of cells: each cell cor-
responds to a node of the lattice and the two neigh-
bouring cells to the adjacent nodes. The colour of
a cell expresses the spin of the corresponding node -
white for up, black for down. The plots in Figure 7
are created by the strands at each step of the respec-
tive models placed one above the other as time goes
on. Figure 8 (LEFT) plots the number of opinion
clusters, ng;, of one run of each of the three models
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Figure 10: A run of the voter model on a 30x30-node two-dimensional lattice (from left to right): initially, after 5,000, 10,000,
15,000 and 20,000 updates.

Figure 11: A run of FM(i) on a 30x30-node two-dimensional lattice (from left to right): initially, after 5,000, 10,000, 15,000
and 20,000 updates.

Figure 12: A run of FM(ii) on a 30x30-node two-dimensional lattice (from left to right): initially, after 5,000, 10,000, 15,000

and 20,000 updates.
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Figure 13: [LerT] The number of opinion clusters, n.;, and [RIGHT] the relative giant cluster size, ggim, of a run the voter
model (blue circles), FM(i) (green dots) and FM(ii) (red crosses) on the Caltech network.



on the lattice. We define an opinion cluster on a net-
work to be a group of nodes such that all nodes in
the group have the same spin and for any two nodes
in the group there exists a path between them only
passing through nodes within the group. Another
measure we use as an indicator of the dynamics is
gdim, the relative giant cluster size, the size of the
largest opinion cluster divided by the total number
of nodes [19]; Figure 8 (RIGHT) plots this measure
for a run of our three models on the lattice.

Figures 7 and 8 show that on the one dimensional
lattice for the voter model large clusters quickly
emerge, the clusters of one of the two spins spread,
merging and proceeding to consensus. For FM(i)
there are typically large numbers of clusters, how-
ever cluster structure is not preserved by the dy-
namic and clusters do not persist through time; for
FM(ii), on the other hand, the frequency of small
clusters is greatly reduced and clusters persist for
much longer. FM(i) and FM(ii) were also run on a
30x30 two dimensional lattice. Figures 10-12 pro-
vide a visualization in a similar fashion to that we
described for one dimensional lattices - a 30x30 grid
represents the lattice, each square of the grid corre-
sponding to a node and the adjacent squares (above,
below, left and right) to the node’s neighbours. The
voter model’s behaviour on the lattice has been very
well studied in statistical physics, it is observed that
as the model is run opinion clusters grow but the
interfaces are very rough. Figures 9-12 demonstrate
that for FM(i) also cluster boundaries are not par-
ticularly clear and, as in the 1D case, many small
clusters, often of single nodes, persist over time; for
FM(ii) there are fewer clusters interfaces and their
boundaries are somewhat sharper.

Finally, FM(i) and FM(ii) were run on the Cal-
tech network illustrated in Figures 14 and 15 respec-
tively, where the colour lines plot the proportion of
upspin nodes in each of the districts over time, and
the black line the global proportion of upspin nodes.
The overall proportion of upspin nodes varies very
little from 50% for FM(i) whereas for FM(ii) the
proportion fluctuates more freely around this mark.
Figure 13 demonstrates that both models produce
a similar number of opinion clusters, the largest of
which constituting just over half of the nodes. In
fact when we look at the dynamics more closely we
find that there are always two large clusters: one vot-
ing Democrat, the other Republican, the remaining
opinion clusters being very small, often of just one or
two nodes. It is clear from Figures 14 and 15 that in
both cases the vote within each community can vary
from the proportions of the overall vote, and this is
the effect we wished to model - the popular vote will
return a winner for one of the two parties, but within
some of the communities the other party will in fact
be the majority. If we compare the dynamics of the
vote within our districts when FM(i) and FM(ii) are
run to the vote in our earlier artificial
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Figure 14: [Colour] A run of FM(i) on the Caltech network.
Each coloured line expresses the proportion of upspin nodes
(or votes for the Democrats) in one of the communities, the
black line represents this figure for the whole network. A line
showing the proportions of the vote in the two node District
4 is omitted for clarity.
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Figure 15: [Colour] A run of FM(ii). Each coloured line
expresses the proportion of upspin nodes (or votes for the
Democrats) in one of the communities, the black line repre-
sents this figure for the whole network. A line showing the
proportions of the vote in the two node District 4 is omitted
for clarity.

communities when the original voter model was run
(see Figure 6), we note that the vote across commu-
nities varies much greater in the latter situation. So
although the addition of our feedback mechanisms
to the voter model is able to simulate local variations
from a global vote of around 50% for each party, if
we have a very strong community structure to be-
gin with the original voter model alone is successful
at producing concentrations of support for the two
parties within different communities.

CONCLUSIONS & FURTHER WORK

Using the Facebook networks of three Ameri-
can colleges we modelled two-party elections and



the phenomenon that people belonging to the same
sphere of influence tend to hold similar political opin-
ions. Using Newman’s eigenvector method to detect
community structure in our networks, and the voter
model as our primary opinion dynamic we found that
one requires relatively strong community structure
to observe concentrations of different opinions within
different communities. By the addition of random
flips to the voter model via feedback mechanisms we
were able to simulate communities as electoral dis-
tricts, keeping the global vote fairly similar for each
party whilst producing different results in different
districts.

Further work should include the investigation of
the voting patterns on other networks. For instance
we wish to model on larger networks, which were not
practically possible given our little time and com-
puting power, as well as on benchmark networks; in
this manner we may be able to establish more fully
the link between local modularity and fluctuations
in voting proportions. Furthermore one could inves-
tigate other binary variable opinion dynamics such
as the Sznadj model, or other feedback mechanisms.
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