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Abstract

We consider a model where each company’s asset value follows a jump-diffusion
process, and is connected with other companies via global factors. Motivated by
ideas in Bush et al. (2011), where the joint density of asset values is evolved in a
large basket approximation, we develop an algorithm for the efficient estimation of
CDO index and tranche spreads consistent with underlying CDSs, through a finite
difference simulation of the resulting SPDE. We verify the validity of this approxima-
tion numerically by comparison to results obtained by direct Monte Carlo simulation
of the basket constituents. A calibration exercise assesses the flexibility of the model
and its extensions to match CDO spreads from pre-crisis and crisis periods.

Key words: basket credit derivatives, structural models, jump-diffusion, SPDE, Monte
Carlo methods

1 Introduction

Basket credit derivatives are financial instruments which help manage the credit risk of
portfolios of defaultable assets. The credit crunch of 2008 highlighted the need for a more
robust and sophisticated methodology to price and hedge complex credit instruments,
such as collateralized debt obligations (CDOs).

Most of the currently used models fall into one of two categories, reduced-form and
structural. In the first approach, a random time of default is modelled directly, typically
as the jump of a Poisson process. Due to simplicity and ease of implementation, reduced-
form models are commonly used in practice, even though they do not have direct economic
grounding.

An alternative are structural models, which are based on the natural observation that
default depends on the value of a company’s assets versus its debt. In these models,
default happens when the asset value falls below a given barrier. Merton (1974) assumes
that a firm’s asset value follows geometric Brownian motion, and that the company can
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default only at the maturity of the debt. Using first passage time theory, Black & Cox
(1976) extend the model by allowing default at any time.

A survey of the literature on reduced-form and structural models can be found, eg,
in Schönbucher (2003) and Bielecki & Rutkowski (2002).

Bush et al. (2011) propose a new approach to the pricing of large portfolios of credit
risky assets. The authors consider a structural model where firm values are driven by
exchangeable diffusion processes where the dependence between firms is due to exposure
to a common market factor. The innovation is that the joint density of the portfolio,
which determines portfolio losses, is described by a stochastic partial differential equation
(SPDE), the solution of which is shown to be the limit of the empirical measure of firm
values for large basket size. This allows a macroscopic look at the basket, in the spirit of
conditionally independent factor models, and has increasing computational advantages
for large baskets. The model is by definition dynamic, and can handle both standard
products, like CDOs, and more exotic ones, like forward starting CDOs.

It is found, however, that the fit of the basic diffusion model to two data sets, pre-crisis
and during the crisis, is not accurate enough for practical use. There are well documented
improvements of structural credit models, for instance by considering: unobservable de-
fault barriers (Duffie & Lando (2001)); asset value processes modelled by jump-diffusions
(Zhou (1997); Hilberink & Rogers (2002); Hu & Ye (2007); Kiesel & Scherer (2007); and
Lipton & Sepp (2009)) or more general Levy processes (Fang et al. (2010)); stochastic
volatility (Fouque et al. (2008)); contagion effects (Haworth & Reisinger (2007)); stochas-
tic recovery rate (Finger et al. (2002)).

In this work, we focus on the numerical implementation and calibration of large basket
models as outlined above, which allows us to address questions of practical feasibility,
market fit, and to assess the justification of the large basket approximation. We focus
here on jump-diffusion models, in which a default can happen both expectedly, due to the
diffusion part, and unexpectedly, due to the jump part, by a sudden fall in a company’s
value. We will discuss at the end of this article how the other extensions listed above
might be incorporated in this framework.

The article is organised as follows. In Section 2, we briefly explain the credit instru-
ments that we analyse later. In Sections 3 and 4, we present our structural model for
single- and multi-name credit derivatives and derive an SPDE model for the joint density
of a large credit portfolio. Additionally, in Subsection 4.3, we check the validity of the
large basket approximation for a large but finite number of companies. Section 5 gives
details of the numerical implementation of the model. Finally, in Section 6, we outline
how to calibrate the model efficiently and analyse if the model is flexible enough to match
market spreads both in pre-crisis and in crisis periods, while Section 7 concludes with
remarks on further improvements of the model.

2 Basket Credit Derivatives

A collateralized debt obligation (CDO) is a set of fixed income securities whose payments
depend on credit events in a pool of defaultable assets, like loans, bonds or credit default
swaps (CDSs). In this article, we analyse a synthetic CDO, whose portfolio consists of
CDSs.

A CDO offers products with different risk profiles, based on so-called tranches. The
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risk connected to tranches varies from equity tranches, which are typically unrated or
speculative-grade, investment-grade mezzanine tranches, to senior tranches, which can
even have AAA rating. By dividing the pool of defaultable assets into tranches, for
instance investors who would not be allowed to invest directly in the underlying assets,
because of their too low ratings, can invest in senior tranches.

Each tranche of a CDO is defined by an attachment point, a, and a detachment point,
d > a, which are typically given as a percentage of a portfolio notional, eg, for the equity
tranche typically a = 0% and d = 3%. The tranche notional is given as the difference
between a and d.

Let the reference portfolio for a synthetic CDO consist of N CDSs, each with notional
N0 = 1/N . The total loss of the portfolio is then given by

Lt = N0(1−R)
N∑
i=1

1{τi≤t}, (2.1)

where R is a recovery rate, τi is the default time of the i-th entity. The outstanding
notional, Zt, of a single tranche is given by

Zt = [d− Lt]+ − [a− Lt]+.

The STCDO (Single Tranche CDO) protection buyer pays a running spread cCDO on
the outstanding tranche notional only, at a set of payment dates Tj , where 1 ≤ j ≤ n.
Denote the payment intervals by %j = Tj −Tj−1, and the value of a bank account at time
t by bt.

We now derive a formula for cCDO, following Bush et al. (2011). It is assumed that
default risk is hedgeable, eg, with defaultable bonds, which translates into the existence
of a pricing measure Q under which the discounted values of traded credit risky assets are
martingales. For an overview of pricing approaches see, eg, Schönbucher (2003), Brigo &
Mercurio (2007).

The value of the fee leg of the contract, BcCDO, is then given by

BcCDO = cCDO
n∑
j=1

%j
bTj

EQ[ZTj ].

The value of the protection leg, D, is a function of tranche losses incurred in the intervals
(Tj−1, Tj ], and can be written as

D =
n∑
j=1

1

bTj
EQ[ZTj−1 − ZTj ].

Since, at time t = 0, the fair values of fee and protection legs have to be equal, BcCDO =
D, the STCDO spread is given by

cCDO =

∑n
j=1

1
bTj

EQ[ZTj−1 − ZTj ]∑n
j=1

%j
bTj

EQ[ZTj ]
.

Similarly, for a synthetic CDO index with outstanding index notional

ZIt = N0

N∑
i=1

1{τi>t},
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the pricing formula is

cI =
(1−R)

∑n
j=1

1
bTj

EQ[ZITj−1
− ZITj ]∑n

j=1
%j
bTj

EQ[ZITj ]
,

For a single-name CDS, we have

cCDS =
(1−R)

∑n
j=1

1
bTj

EQ[1{Tj−1> τ} − 1{Tj>τ}]∑n
j=1

%j
bTj

EQ[1{τ>t}]
, (2.2)

where EQ[1{τ>t}] = P (τ > t) is the survival probability of the reference entity with
default time τ .

Tranche spreads depend crucially on the joint default probability of CDSs and hence
on the dependence structure of the underlying firms. In contrast, index spreads only
depend on expected losses in the entire portfolio.

3 A Single-Name Structural Model

We begin by discussing a model and pricing formulae for the individual CDSs in this
section, and present the full multi-name model in Section 4. The results here will also be
used for the calibration of multi-name models.

3.1 The Model Setup

We model a company’s asset value, At, by a jump-diffusion process

dAt
At

= α dt+ σ dWt + (Y − 1) dNt, (3.1)

where σ is the asset volatility, W is a standard Brownian motion, N a Poisson process
with intensity λ, (Yk − 1) is the size of the kth jump of the compound Poisson process∑Nt

k=1(Yk − 1). We assume that W , N , Y are mutually independent, and that {Yk} are
independent and identically distributed (i.i.d.). Under the risk-neutral pricing measure
Q, EQ [dAt/At] = r dt. Since EQ [(Y − 1) dNt] = λν dt with ν = EQ[Yk − 1], α = r − λν.

A solution to (3.1) is given by

At = A0 exp

{(
α− 1

2
σ2

)
t+ σWt

} Nt∏
k=1

Yk, A0 > 0. (3.2)

If λ = 0, then Nt = 0, and we obtain geometric Brownian motion. As Merton (1976)
notes, Y − 1 is the relative change of At through jumps. What is more, in the special
case when {Yk} are log-normally distributed, conditional on Nt, At is also log-normally
distributed.

Following Black & Cox (1976), one can define the default time τ as the first passage
time of the company’s asset value of a constant default barrier B,

τ = inf {t > 0 : At ≤ B} .

4



We assume that A0 > B and P (Yk > 0) = 1, such that the asset process remains positive.
In order to eliminate explicit dependence on B, we introduce the distance-to-default

Xt =
1

σ
(ln(At)− ln(B)). (3.3)

Since, A0 > B, X0 > 0. By applying Itô’s lemma to (3.3) and using (3.1), we obtain

dXt = β dt+ dWt + Π dNt, (3.4)

where β = 1
σ (r − λν − 1

2σ
2), Π = lnY/σ. The first passage time τ of Xt is now

τ = inf {t > 0 : Xt ≤ 0} .

Implicit here is the assumption that default can be monitored continuously, while we will
later work in a framework where default can only be detected at a discrete set of times
t1, . . . , tn, and then set

τ = min {t ∈ {t1, . . . , tn} : Xt− ≤ 0} .

We account for default in X by setting

Xt = 0 ∀ t ≥ τ . (3.5)

3.2 Distribution of the Jump Amplitude

We are aiming towards a computationally tractable, yet economically convincing struc-
tural default model. To meet these conditions, we need a distribution of jump amplitudes
that enables sufficiently fast calculation of the survival probability of individual firms, yet
gives realistic market dynamics.

Zhou (1997) suggests a jump-diffusion model with log-normal jumps, as first intro-
duced in the general context of financial modelling by Merton (1976) as an extension to
the Black-Scholes approach. In contrast, Kou (2002), Hilberink & Rogers (2002), Hu &
Ye (2007) and Lipton & Sepp (2009) propose a double exponential jump size distribu-
tion. Kou (2002) specifically argues that although both types of jumps can lead to the
leptokurtic feature of equity returns observed in the market, in continuous time double-
exponential jump-diffusion models have better analytical tractability. As Kou & Wang
(2003) show, due to the lack of memory associated with the exponential distribution,
there exists an analytical solution, via Laplace transforms, to the distribution of first
passage times for the double exponential case. Such a solution does not exists for the
log-normal model. However, as Ramezani & Zeng (2007) note, the transition density of
log-normal jump-diffusions has a more convenient form than of double-exponential ones.

What is more, Ramezani & Zeng (2007) assess empirically the performance of double
exponential jump-diffusion compared to log-normal jump-diffusion and geometric Brow-
nian motion in matching stock prices. Because of the inherent link between equity and
credit in structural models (Merton (1976)), empirical findings in equity markets are
relevant for the present setting. They find that both double-exponential and log-normal
jump-diffusions give a better fit to market data than geometric Brownian motion. In their
study, double-exponential jump-diffusions outperform log-normal ones when stock indices
are concerned, however, for individual stocks the results are inconclusive. It should be
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noted that a slightly better performance of the double-exponential jump-diffusion model
can be attributed to the presence of an extra parameter.

We focus in the following on the log-normal case, for reasons of convenience, which
will become clear in Section 3.3, however, the overall framework is independent of the
jump size distribution.

3.3 Computing Survival Probabilities for Log-Normal Jumps

The initial distance-to-default X0, together with the jumps, determines default probabil-
ities at the very short end, while diffusion plays a role over the medium time range and
the drift only for long time horizons. One could therefore use CDS spreads with different
maturities to back out the different parameters. We will follow a different tack later on
and use information from tranche spreads, and use CDS spreads only to infer X0.

A key ingredient in the pricing of CDSs, which are used for the calibration of CDO
models in our framework, is the survival probability P (τ > t). For a log-normal jump-
diffusion model, an analytical formula for the survival probability does not exist, hence
Zhou Zhou (1997) applies a Monte Carlo algorithm. Since this approach is computation-
ally demanding when a portfolio of CDSs is considered, in order to obtain an analytical
approximation to survival probabilities, Willemann (2007) assumes that a firm has sur-
vived to a given monitoring time out of t1, . . . , tn, if at this particular time the asset value
is above the barrier. As the author notes, this is a crude approximation, and the survival
probability in the model is overestimated, especially when t is high,

P (τ > tn) = P (Xtn > 0, Xtn−1 > 0, . . . , Xt1 > 0) < P (Xtn > 0).

We now derive a practically tractable algorithm to calculate the survival probability
for log-normally distributed jumps. The proofs of the following Propositions are given in
Appendix 3.3.

Proposition 3.1. Let 0 < tn ≤ T be a monitoring date, X a jump-diffusion process
driven by (3.4) with Π ∼ N(µΠ, σ

2
Π). The survival probability at time tn, for n ≥ 2 is

given recursively by

p(Xtn = xtn , τ > tn−1) =

∫ ∞
0

p(Xtn = xtn | Xtn−1 = xtn−1) p(Xtn−1 = xtn−1 , τ > tn−2) dxtn−1 ,

P (τ > tn) =

∫ ∞
0

p(Xtn = xtn , τ > tn−1) dxtn . (3.6)

Proposition 3.2. The probability of no default at t1, and the density of Xt1, are given
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by

P (τ > t1) =
∞∑
c=0

P (Xt1 > 0 | Nt1 = c) · p(Nt1 = c)

= e−λt1
∞∑
c=0

Φ

(
µXt1

σXt1

)
(λt1)c

c!
, (3.7)

p(Xt1 = xt1) =
∞∑
c=0

p(Xt1 > 0 | Nt1 = c) · p(Nt1 = c)

= e−λt1
∞∑
c=0

1

σXt1

φ

(
xt1 − µXt1

σXt1

)
(λt1)c

c!
, (3.8)

where Φ(·) is the cumulative standard normal distribution, φ(·) is the standard normal
density, µXt1

= x0 + βt1 + cµΠ, σ2
Xt1

= t1 + cσ2
Π.

Proposition 3.3. The density of Xtn, conditional on Xtn−1, for n ≥ 2, is given by

p(Xtn = xtn | Xtn−1 = xtn−1) =
∞∑
c=0

p(Xtn = xtn | Xtn−1 = xtn−1 ,∆Ntn = c) · p(∆Ntn = c)

= e−λ∆t
∞∑
c=0

1

σXtn |Xtn−1

φ

(
xtn − µXtn |Xtn−1

σXtn |Xtn−1

)
(λ∆t)c

c!
, (3.9)

where ∆t = tn − tn−1, ∆Ntn = Ntn − Ntn−1, φ(·) is the standard normal density,
µXtn |Xtn−1

= xtn + β∆t+ cµΠ, σ2
Xtn |Xtn−1

= ∆t+ cσ2
Π.

Remark 3.1. The recursion given in above Propositions, can be computed using straight-
forward numerical integration, as the integrands are sums of standard normal densities.
What is more, the sums converge quickly, since (λ∆t)c

c! → 0 rapidly as c → ∞, especially
for λ � 1, as is the case for the calibration results given later in the paper, and for
∆t = 0.25, ie, for quarterly monitored defaults.

Remark 3.2. A similar recursion is suggested in Fang et al. (2010). The difference is
that the recursion given by Fang et al. is backwards, ie, first p(Xtn−1 = xtn−1 , Xtn > 0)
is obtained, then p(Xtn−2 = xtn−2 , Xtn−1 > 0, Xtn > 0) and finally p(Xt1 = xt1 , Xt2 >
0, . . . , Xtn−1 > 0, Xtn > 0). In our case, we first calculate p(Xt1 = xt1), then p(Xt2 =
xt2 , Xt1 > 0) and, in the end, p(Xtn = xtn , Xtn−1 > 0, . . . , Xt1 > 0), which gives immedi-
ately P (τ > tn) = P (Xtn > 0, . . . , Xt1 > 0) for each tn, 0 ≤ tn < T . The latter approach
is more efficient for pricing CDSs, since for all monitoring times, tn, the survival proba-
bility is needed.

3.4 Continuous vs Discrete Default Monitoring

Both continuous monitoring of default (eg, Black & Cox (1976) and Hu & Ye (2007))
and discrete monitoring (eg, Hull et al. (2010) and Fang et al. (2010)) is assumed in
applications of structural default models. In practice, a default is announced on a daily
basis, as Fang et al. (2010) argue.
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Figure 1: Survival probability at t = 5 in the log-normal jump-diffusion model with m
default monitoring dates per year, where m = 2, . . . , 252. Parameters are taken from a
calibration to market data from 5 December 2008 (see Section 6 for details).

In order to make models computationally more tractable, some studies, eg, Hull et al.
(2010) and Bush et al. (2011), assume that default is detected only on spread payment
dates. We follow this line and thus assume that defaults are monitored quarterly.

In order to check the impact of this approximation, we calculate survival probabilities
for m = 2, . . . , 252 monitoring dates per year, ie, from half-yearly to daily monitoring, at
time t = 5, ie, at the maturity of CDSs that we will use later to calibrate CDO pricing
models. The results are shown in Fig. 1. As expected, the survival probabilities converge
and are a decreasing function of m. The difference between the survival probability
calculated for m = 4, ie, for the number of monitoring times we will assume in the
computations, compared to m = 252, ie, the maximum realistic monitoring times per
year, is 0.59 percentage points.

Remark 3.3. The question of continuous versus discrete monitoring of defaults is mathe-
matically equivalent to that of continuous versus discrete barrier monitoring when pricing
barrier options.Broadie et al. (1997), in a diffusion model, approximate prices of discrete
barrier options by formulae for continuously observed but shifted barrier, precisely (The-
orem 1.1 in Broadie et al. (1997))

Vn(H) = V
(
H e−βσ

√
∆T
)

+ o

(
1√
n

)
, (3.10)

where Vn(H) is the price of a discretely monitored knock-out call option, V (H) is the price
of a corresponding continuously monitored barrier option, β is a generic constant derived
by the authors, n is the number of monitoring times at intervals ∆T . This correction
accounts for the probability of undetected barrier crossings between monitoring dates.

In a finite activity jump model, as the probability of a jump in an interval of length ∆T
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is O(∆T ), and that of an undetected down-up combination even O(∆T 2), we conjecture
similar asymptotic behaviour.

As we calibrate the initial distance-to-default, X0, to CDS spreads, which are func-
tions of the survival probabilities, the barrier correction (3.10) is implicitly invoked. This
is seen from (3.3), which shows that a shift of the initial position is equivalent to an
opposite shift of the default barrier. When we use the calibrated model later to price
basket derivatives based on the same monitoring dates, the difference between monitoring
frequencies should be small.

4 A Multi-Name Structural Model

In this section, we extend the single-name jump-diffusion to a multi-name model, with
the view of pricing basket credit derivatives.

The works closest to our basic setup are Willemann (2007) and Kiesel & Scherer
(2007), where Willemann (2007) uses a log-normal jump-diffusion multi-name model to
price CDOs, while Kiesel & Scherer (2007) use a double exponential jump distribution.

4.1 The Model Setup

We extend the single-name model to the setting of a portfolio of CDSs on N different
companies, which is consistent with (3.1) for the individual names, but makes a special
assumption on the dependence structure, namely,

dAit
Ait

= (r − λν) dt+
√

1− ρ σdW i
t +
√
ρ σdMt + (Y − 1) dNt, (4.1)

where M is a standard Brownian motion, ρ ∈ [0, 1), lnY ∼ N(µY , σ
2
Y ), (W i) is a standard

Brownian motion, W i, M , N , Y are mutually independent.
W i is an idiosyncratic factor, specific to each company, which affects the value of each

company’s assets alone, such as the management of a company. M , N and Y represent
global factors that affect the default environment of all companies. As Hull et al. (2010)
note, such a global factor could be for instance the S&P 500 index. Other candidates
could be Gross Domestic Product, or more specifically investment spending, central bank
interest rates or the unemployment rate, since they indicate the phase of the business
cycle of the economy.

The jumps N together with Y , model sudden effects by global factors on the situation
of companies, while M models more gradual influences. We aim at taking into account
predominantly negative jumps and consider only µY < 0. The intensity of N , λ, then
measures the frequency of economic shocks. If the absolute value of the jump mean is high,
then λ can be interpreted as the frequency of economic crises. A similar interpretation
can be found in Willemann (2007).

Like in the univariate case, we consider the distance-to-default Xi
t = 1

σ (ln(Ait) −
ln(Bi)), where Bi is a constant default barrier. We assume Xi

0 > 0 and the dynamics of
Xi
t are then given by

dXi
t = β dt+

√
1− ρ dW i

t +
√
ρ dMt + Π dNt, (4.2)

where β = (r − λν − 1
2σ

2)/σ, Π ∼ N(µΠ, σ
2
Π), µΠ = µY /σ, σ2

Π = σ2
Y /σ

2.
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Figure 2: Histogram of Xi
0 obtained by calibration to 5 year CDS spreads from the iTraxx

Main Series, on two different dates pre- and during the crisis. On the left also shown is
the density of Xi

0 used in Subsection 4.3 for the simulation of synthetic credit baskets.

The distribution of distances-to-default Xi
0 indicates the current state of the market.

If the mass of the distribution is close to zero, as shown in Fig. 2, right, for the iTraxx
constituents in December 2008, then the financial situation of companies is relatively
bad; if the mass is concentrated far away from zero, as shown in Fig. 2, left, again for the
iTraxx but in February 2007, the economic climate is good.

It is worth discussing in more detail a main premise of the model, namely that the
volatility parameter σ is identical for all firms. Credit indices usually consist of companies
from different industry sectors and different regions, and clearly there will be differences
between the variances of asset values. If we allowed individual σi for each company in
the portfolio, the dynamics would be, instead of (4.1),

dAit
Ait

= (r − λν) dt+
√

1− ρ σidW i
t +
√
ρ σidMt + (eσiΠ − 1) dNt, (4.3)

where σΠ and µΠ still have the same values for all companies. In terms of Xi
t ,

dXi
t = βi dt+

√
1− ρ dW i

t +
√
ρ dMt + Π dNt, (4.4)

where βi = (r − λν − 1
2σ

2
i )/σi, and the initial distance-to-default is Xi

0 = (ln(Ai0) −
ln(Bi))/σi. The volatility dependence of the default probabilities, is therefore to a large
extent captured by the initial credit quality through Xi

0, and, especially for not too long
maturities, the effect of the drift will be negligible compared to the diffusive and jump
components.

The consequence of identical driving processes for all firms is that, as long as Xi
0 are

exchangeable random variables, ie, their joint law is invariant under permutation, the firm
values Xi

t are also exchangeable. This allows us to study a large basket approximation in
the following Section 4.2. Furthermore, conditional on Xi

0, M and J , Xi
t are independent.

For practical applications, the initial Xi
0 will be calibrated to individual CDS spreads

allowing through this heterogeneity in the portfolio.
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The dependence between companies in the model is determined by diffusion correla-
tion, represented by a single parameter ρ, together with perfect jump correlation for all
companies, governed by common jump times of Nt and the same jump sizes, Π. A simple
calculation shows that the overall correlation between Xi

t and Xj
t , i 6= j, driven by (4.2),

is

ρ
Xi

tX
j
t

=
ρ+ ζ

1 + ζ
, (4.5)

where ζ = λ(σ2
Π + µ2

Π).
In the present setting, the dependence between companies can vary from slight, if

the values of ρ, λ, |µΠ|, σΠ are small, to extremely strong, if the values are high. A few
years ago, taking into account such a strong dependence might have been regarded as
unrealistic, but the recent credit crunch, which affected not only financial markets but
also the global real economy, showed that the dependence between companies can indeed
be very strong. One might consider to allow different exposure to market factors by
individual companies, which we do not do here for ease of calibration and computation,
and since we are more concerned with the macroscopic behaviour of the basket.

4.2 The Large Basket Limit

Willemann (2007) derives analytical approximations to the survival probability for each
company in the basket, and semi-analytical approximations to the portfolio loss distri-
bution. In contrast, Kiesel & Scherer (2007) simulate the asset value process for each
company to estimate joint default probabilities, which is not subject to model simplifi-
cations, but computationally expensive, since the basket size is typically large, eg, 125
for the iTraxx index. We make a virtue of this by using a large basket approximation in
the spirit of Bush et al. (2011), extending the model there to jump-diffusions. Using this
approach, the computational effort is essentially independent of the number of compa-
nies. We will test the validity of the large basket approximation in Section 4.3, and its
numerical solution in Section 5.

Following Bush et al. (2011), we study the evolution of the empirical measure of{
Xi
t , i = 1, . . . , N

}
,

νN,t =
1

N

N∑
i=1

δXi
t
, (4.6)

where δx is a Dirac measure centred at x. We are particularly interested in the limiting
behaviour of νN,t for large N ,

νt = lim
N→∞

1

N

N∑
i=1

δXi
t
. (4.7)

In the diffusion case, λ = 0 in (4.2), Kurtz & Xiong (1999) show that for exchangeable
Xi
t with

E|X1
0 |2 <∞ (4.8)

the limit νt exists and its density is the unique solution of the stochastic partial differential
equation

dv(t, x) = −βvx(t, x) dt+
1

2
vxx(t, x) dt−√ρvx(t, x) dMt. (4.9)
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It is a straightforward application of Itô’s lemma (Bush et al. (2011)) to see that a solution
is given by

v(t, x) = u(t, x−√ρMt),

if u(x, t) satisfies the deterministic PDE

ut =
1

2
(1− ρ)uxx − βux (4.10)

with initial condition u(0, x) = v0(x), the density of Xi
0.

The intuitive explanation is that in the large basket limit, the independent drivers
have averaged to a deterministic diffusion, while the market factor M drives the whole
basket.

Adding finite activity jumps, as per (4.2), we get the following result.

Proposition 4.1. For Xi
t as per (4.2) with Xi

0 satisfying (4.8), the limit empirical mea-
sure νt defined in (4.7) exists and has a density v of the form

v(t, x) = u(t, x−√ρMt − Jt), (4.11)

Jt =

Nt∑
k=1

Πk, (4.12)

and u satisfies (4.10). Moreover, v satisfies the SPDE

dv(t, x) = −βvx(t, x) dt+
1

2
vxx(t, x) dt−√ρvx(t, x) dMt

+ v(t−, x−Π) dNt − v(t−, x) dNt. (4.13)

Proof. See Appendix B.

In the present setting, we are especially interested in losses, ie, barrier crossings of
Xi
t . Bush et al. (2011) derive an initial boundary value problem for the purely diffusive

SPDE for the case of a continuously active default barrier.
For computational convenience, we make the assumption that defaults are only ob-

served at a discrete set of times, which we take quarterly to coincide with the payment
dates (see discussion in Section 3.4). If a firm’s value is below the default barrier on one
of the observation dates Ti, it is considered defaulted and removed from the basket, so
we use (4.2) in [0, τ i), and set

Xi
t = 0 t ≥ τ i, (4.14)

τ i = min{t ∈ {T1, . . . , Tn} : Xi
t− ≤ 0}. (4.15)

Then, the empirical measure can be written in the form

ν̄N,t = νN,t + δ0L
N
t /(1−R), (4.16)

LNt =
1

N
(1−R)

N∑
i=1

1{τi≤t}, (4.17)

νN,t =
1

N

∑
1≤i≤N

τ i>t

δXi
t
. (4.18)
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Proposition 4.2. For Xi
t as per (4.2) in (0, τi), together with (4.14), where Xi

0 satisfy
(4.8), the limit empirical measure

ν̄t = lim
N→∞

ν̄N,t (4.19)

exists and has the form ν̄t = νt + δ0Lt/(1−R), where νt has a density v satisfying (4.13)
for t ∈ (Tk, Tk+1), 0 ≤ k < n, and

Lt = (1−R)

(
1−

∫ ∞
−∞

v(t, x) dx

)
. (4.20)

Moreover, with probability one,

lim
t↓Tk

v(t, x) =

{
limt↑Tk v(t, x) x > 0,

0 x < 0.
(4.21)

Proof. The existence of the limit (4.19) and of a density which solves the SPDE in
(Tk, Tk+1) is a repeated application of Proposition 4.1. The form of the loss variable
(4.20) is a direct consequence of the definitions and of the convergence of the measures.
Together with (4.14), this implies (4.21). Details will be given in Bujok (2012).

We discuss the numerical computation of (4.20) via (4.13) in Section 5.

4.3 Validity of the Large Basket Approximation

In this section we analyse if the size of common CDO baskets, typically N = 125, is large
enough to use the (numerical) solution to the limiting SPDE (4.13) obtained for N →∞,
as approximation to the evolution of firm values. We construct “nested” baskets of size
Nk = 5k, k = 1, . . . , 9, ie, the Nk-basket contains all firms of the Nk−1-basket etc. For
each basket, we calculate expected tranche losses, E [Yt], for t = 5 years, where

Yt = [Lt − a]+ − [Lt − d]+,

and the losses are either calculated from (2.1) by “direct” Monte Carlo simulation of
(4.15), (4.2), or by (4.20) where v is the solution to the SPDE.

To create hypothetical baskets of different sizes, we simulate initial distances-to-
default, Xi

0. For direct Monte Carlo simulation, the samples serve directly as starting
values for (4.2), whereas for the SPDE, we construct the empirical measure (4.16) at
t = 0. For simplicity, we draw Xi

0 from a normal distribution, where the mean µX0 = 4.6
and standard deviation σX0 = 0.8 are roughly fit to Xi

0 obtained in a calibration exercise
from data of 22 February 2007, see Fig. 2, left.

We calculate expected tranche losses conditional on these initial positions, ie, we
average tranche losses over a large number of sample paths, but do not resample the
initial positions. This is theoretically slightly less elegant but closer to the practical
situation where initial values are backed out from implied default probabilities.

The differences between the direct Monte Carlo and SPDE results are due to: error
of the finite difference discretisation of the SPDE; simulation error, both for the SPDE
and direct Monte Carlo; large basket approximation of the dynamics. We want to focus
on the latter effect, therefore we choose a high number of grid points and time steps to
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reduce the discretisation bias, and a high number of simulations to reduce the Monte
Carlo error to a negligible size.

As seen in Fig. 3, the difference between the SPDE results and those from direct
Monte Carlo simulation of the basket vanishes (within the sampling error of Xi

0, which
we will investigate in the next subsection) for large N .

The SPDE results depend on N only via the initial sample Xi
0, which is chosen to

be the same here as for the direct Monte Carlo simulation. Therefore, the results in
Fig. 3 indicate that the approximation error of tranche spreads due to approximating the
evolution of the firm value distribution by the SPDE is noticeably smaller than the effect
of the finite sample approximating the continuous density at t = 0.

Closer inspection reveals that this is due to the fact that the tails of the initial distri-
bution of Xi

0 are not well resolved for moderate N , which affects junior tranches, which
measure losses in the left tail, more than senior tranches. To verify this numerically, we
repeated the experiment with all mass centred in a single point Xi

0 = z, where z is a
constant, for all firms in the portfolio. Thus the initial condition becomes independent of
the basket size. This gave a significantly smaller difference, especially for junior tranches.

For N = 125, ie, k = 3, the results of both methods are close, hence we argue that
this number of companies is sufficiently large to use the large basket approximation.

4.4 Computational Issues of Direct Simulation

The cost of simulating the basket directly increases linearly with the basket size, while
the difference of expected tranche losses to the ones obtained in the large basket limit
becomes smaller. We carried out a preliminary numerical experiment with 106 paths,
but the obtained confidence intervals for Monte Carlo estimators were too wide to draw
reliable conclusions about the difference between direct Monte Carlo and SPDE methods
for large baskets. This can be observed in Fig. 4.A, where we present results for the equity
tranche. In this preliminary experiment, we calculated expected losses for k ≤ 7, which
was the largest of the baskets that was computable with the above number of simulations
within an hour on a standard desktop computer.

To calculate expected tranche losses with confidence intervals as shown in Fig.4.B for
the final experiment (standard deviation 4 × 10−6), requires between 107 to 108 paths,
which multiplied by a basket size from Nk = 5 to Nk = 59, and n = 20 monitoring times,
gives a computational complexity from 1010 to 1014, measured by the number of random
variables to be drawn. This can be seen in Fig. 4.C and 4.D. It turned out in practice that
a computational complexity of order 1010 was feasible on a standard computer within an
hour, but 1014 was not.

To this end, we developed a nested variance reduction method, drawing on ideas from
the Multi-level Monte Carlo method, proposed in Giles (2008). The main idea is that the
expected tranche loss for a basket of size Nk−1, serves as control variate for the basket

containing Nk companies, and so on. Writing Y
(k)
t for the tranche loss of an Nk-basket,

E[Y
(k)
t ] = E[Y

(1)
t ] +

k∑
j=2

E[Y
(j)
t − Y (j−1)

t ], (4.22)

and we define independent estimators Ŵ (j) for the expectations in the sum, using N
(j)
sims
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paths. We find empirically that

V ar[Ŵ (j)] ∼ N−1
j (N

(j)
sims)

−1, (4.23)

which is what one would expect: the N
(j)
sims simulations are independent, and for each

simulation, conditional on the common factors, the losses are a sum of independent
random variables. Expressions (4.22) and (4.23) motivate to keep the product of the
number of companies and number of samples asymptotically constant across all levels
in order to obtain optimal overall complexity for fixed a variance ε2. This means most
samples are used on the coarsest levels (ie, small Nj) and the complexity spent on each
level is approximately the same. With this choice, as the number k of levels and therefore
estimators increases, and the required variance needed on each level is ε2/k for overall
variance ε2, the overall complexity only grows proportional to k2 ∼ (logNk)

2 rather than
proportional to Nk.

In fact, the optimal number of simulations can be obtained a posteriori for each level
similar to the formulae in Giles (2008). The theoretical underpinning for this method and
complexity bounds are the subject of current research and will be given in Bujok (2012).

5 SPDE Simulation of the Large Basket Model

The key ingredient in the calculation of index and tranche spreads are the basket losses.
We ascertained in Section 4.3 that the large basket approximation from Section 4.2 is
sufficiently accurate for the considered basket size. Therefore, the losses may be obtained
from the large basket density v as per (4.20), where v has to be approximated by a
numerical solution to the SPDE. In this section, we outline a numerical method based on
Monte Carlo simulation on top of a PDE solver. In the presence of non-smooth (initial)
data, and with senior tranche prices depending on very low probability events, a carefully
adapted numerical scheme is necessary for good accuracy.

We discuss the calibration of model parameters, including initial conditions, in Section
6, and assume these as given here.

5.1 Setup and Finite Difference Discretisation

We can take advantage of the representation (4.11) of the solution to the SPDE problem
(4.13) piecewise in time, as the boundary condition is not active in intervals (Tk, Tk+1),
and therefore the Brownian driver and the jump part only introduce a shift to the solution,
accumulated over the entire interval. Conditional on the number of jumps that occur in
the interval, the shift is normally distributed. Using Proposition 4.2, a different density
with identical losses can therefore defined by

v(t, x) =

{
0 x ≤ 0, t = Tk+1,

v(k)(t− Tk, x−
√
ρ(Mt −MTk)− (Jt − JTk)), else if t ∈ (Tk, Tk+1],

(5.1)

for 0 ≤ k < n, where Jt =
∑Nt

i=1 Πi, and v(k) is the solution to the (deterministic) problem

v
(k)
t =

1

2
(1− ρ)v(k)

xx − βv(k)
x , t ∈ (0,∆T ) = (0, Tk+1 − Tk) (5.2)

v(k)(0, x) = v(Tk, x) (5.3)
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assuming monitoring dates are equally spaced with intervals ∆T = Tk+1 − Tk.
This suggests the following inductive strategy for k = 0, . . . , n− 1:

1. Start with v(0)(0, x) = v0(x), the initial empirical measure.

2. Solve the PDE (5.2) numerically in the interval (0, T1), to obtain v(0)(T1, x).

3. Simulate MT1 , JT1 evaluate v(T1, x) according to (5.1).

4. For k > 0, having computed v(Tk, x) in the previous step, use this as initial condition
for v(k), and repeat until k = n.

To solve the PDEs (5.2) by a finite difference method, we approximate the measure
by one with support [xmin, xmax], and set zero boundary conditions at xmin and xmax.

Proposition 5.1. If vb is the solution to (5.1)-(5.3), where (5.2) holds only on (−b, b),
with v(k)(t,−b) = v(k)(t,−b) = 0, then

E[Zbt ]→ E[Zt] for b→∞,

where Zbt is the outstanding tranche notional derived from losses Lbt of vb.

Proof. See Appendix B.

In practice, we pick xmin and xmax experimentally large enough such that the effect
of the truncation is negligible.

Then, introduce a grid x0 = xmin, x1 = xmin + ∆x, . . . , xj = xmin + j∆x, . . . , xJ =
xmin + J∆x, where ∆x = (xmax − xmin)/J , timesteps t0 = 0, t1 = ∆t, . . . , tI = I∆t,
where ∆t = ∆T/I, and define an approximation vij to v(ti, xj) by the difference scheme

vij − v
i−1
j

∆t
= θ

{
1

2
(1− ρ)

vij+1 − 2vij + vij−1

∆x2
− β

vij+1 − vij−1

2∆x

}
(5.4)

+(1− θ)

{
1

2
(1− ρ)

vi−1
j+1 − 2vi−1

j + vi−1
j−1

∆x2
− β

vi−1
j+1 − v

i−1
j−1

2∆x

}
. (5.5)

For an introduction to finite differences in financial instrument pricing see, eg, Tavella
& Randall (2000). The scheme is of second order accurate in ∆x for smooth solutions.
The Crank-Nicolson scheme θ = 1

2 is of second order accurate in ∆t, and is uncondition-
ally stable for sufficiently smooth solutions, but does not converge for initial conditions
comprising of δ-distributions as in the present setting. We address this, together with
aspects of approximating non-smooth initial and interface conditions (4.21) accurately
on the grid, in the following section.

5.2 Initial and Interface Conditions

The initial condition has the form

v(0, x) =
1

N

N∑
i=1

δ(x− xi),
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where xi is the observed initial distance-to-default of firm i.
To achieve second order accuracy in ∆x, the δ’s have to be “split” between adjacent

grid points. The correct weighting can be written as integral of linear splines

Φk(x) =
1

∆x
min (max(x− xk + ∆x, 0),max(xk + ∆x− x, 0))

over the initial condition, ie,

v0
k =

1

∆x

∫ xmax

xmin

Φk(x)v(0, x) dx.

Note that the initial condition is a probability measure and in particular the above def-
inition is well defined for Dirac measures. By this construction, ∆x

∑J
k=0 v

0
k = 1. See

also Pooley et al. (2003) for applications of this idea to option pricing and estimation of
sensitivities.

To incorporate the interface condition (5.1) at t = Tk, one has to evaluate the grid
function at shifted arguments xj −

√
ρ(Mt −MTk) − (Jt − JTk), which do not normally

coincide with grid points. To deal with this, we first define a piecewise linear interpolant

v̂, obtained in the last step over the previous interval [Tk−1, Tk], v
(k),I
j , I the number of

timesteps, by

v̂(Tk, x) =

J∑
j=0

Φj(x−
√
ρ∆M −∆J)v

(k),I
j , (5.6)

where ∆M = MTk −MTk−1
, ∆J = JTk − JTk−1

. Then, approximate (5.1) by setting

v
(k+1),0
j =

∫ max(xj+∆x/2,0)

max(xj−∆x/2,0)
v̂(Tk, x) dx, (5.7)

and use this as initial condition for the next interval. This ensures that

∆x

J∑
j=0

v
(k+1),0
j =

∫ xmax

0
v̂(Tk, x) dx,

so the cumulative density of firms with firm values greater than 0 is preserved. It also has
the effect that the solution is smoothed at x = 0. In contrast to simpler, eg, pointwise
application of the interface condition, this procedure guarantees second order conver-
gence in ∆x. See Pooley et al. (2003) for averaging procedures to restore higher order
convergence for non-smooth payoffs in option pricing.

Finally, it is well-known that Crank-Nicolson timestepping has reduced convergence
order for discontinuous initial conditions, and does not converge at all for Dirac initial
conditions, unless the timesteps are chosen very small. This severely slows down the
performance. A simple and well-established remedy is to replace the first Crank-Nicolson
steps with backward Euler steps, a practice now known as “Rannacher start-up” Ran-
nacher (1984). The analysis in Giles & Carter (2006) shows that the optimal balance
between accuracy and stability is achieved by replacing the first two Crank-Nicolson
steps by four backward Euler steps of half the stepsize. We do this at t = 0, and also at
t = Tk, where the interface conditions introduce discontinuities at x = 0.
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5.3 Loss Simulation

For a given realisation of the market factors, we can approximate the loss functional
(4.20) at time Tk, using (5.6) and (5.7), by

L̂Tk = (1−R)

(
1−

∫ xmax

0
v̂(Tk, x) dx

)
= (1−R)

(
1−∆x

J−1∑
j=1

v
(k+1),0
j

)
. (5.8)

We first study the discretisation error of (5.8) in ∆t and ∆x numerically, first for a
single realisation of the path of the market factors. Fig. 5 shows, for a typical set of
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Figure 5: Estimated discretisation error of L̂Tn for increasing J (left) and I (right) for
a single realisation of the path of the market factors. The error estimator is based on
Richardson extrapolation of the numerical solutions on subsequent refinement levels.

model parameters, how many grid points (I) and how many timesteps between payment
dates (J) are necessary for a desired accuracy ε. We clearly see second order convergence
in ∆t and ∆x. Note that the time smoothing scheme, weighted approximation of initial
positions and adapted averaging, as per Section 5.2, are essential to achieve this.

Next, we want to compute expected losses and outstanding tranche notionals. If we
explicitly include the dependence on the Monte Carlo samples φi of

√
ρ(MTi −MTi−1) +

JTi − JTi−1 in (5.8) by writing L̂Tk(φ), φ = (φi)1≤i≤n, where φi are independent, then for
Nsims simulations with samples φl = (φli)1≤i≤n, 1 ≤ l ≤ Nsims,

EQ[ZTk ] ≈ EQ[max(d− L̂Tk , 0)−max(a− L̂Tk , 0)]

≈ 1

Nsims

Nsims∑
l=1

(
max(d− L̂Tk(φl), 0)−max(a− L̂Tk(φl), 0)

)
.

We expect (weak and strong) convergence for this estimator of order ∆x2 + ∆t2, which
is confirmed by numerical tests. In the following, we fix ∆x and ∆t at values which have
proven empirically to give negligible discretisation error.

For the following simulations, we have used two data sets: from 22 February 2007 and
5 December 2008. Initial positions for individual firms were calibrated to their individual
CDS spreads, and were well within the range [xmin, xmax] = [−10, 20].

We now analyse the convergence of the obtained Monte Carlo estimator. The es-
timated expected tranche losses with confidence intervals are given in Figure 6. For 22
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February 2007, for super senior tranches especially, the standard error is higher relative to
the values than for equity and mezzanine ones, especially. The reason behind this is that
a large number of companies have to default in order to affect senior tranches and such an
event is rare. For this date, the estimated parameters imply normal market conditions,
where multiple defaults are highly unlikely (see Section 6 for a discussion of calibration
results). In order to price senior tranches more accurately, variance reduction techniques
such as importance sampling should be applied, see, eg, Carmona et al. (2009), however
the accuracy of the results for the basic scheme was found sufficient for the purposes of
this study.

6 Calibration and Results

The first step in using a model is to estimate its parameters by calibrating the model
to market data. We fit the jump-diffusion model and, for comparison, the pure diffusion
model, to CDO index and tranche spreads.

6.1 Stating the Calibration Problem

The initial distances-to-default of the individual names are thereby calibrated to their
short-term CDS spreads, to ensure consistency of the multi-name CDO model with single-
name CDS models. We fit the remaining parameters defined in Section 4.1 to index
spreads for M maturities (usually 5-, 7- and 10-year, ie, M = 3) and G tranche spreads
for each maturity (usually G = 6). The number of calibration prices, M · (G+ 1), is then
typically much larger than the number of parameters, here 5. We therefore cannot expect
the model to fit all prices exactly, and formulate the calibration exercise as a weighted
least-squares problem.

Problem 1. Given market spreads at time t = 0, of CDO tranches, Cj0(Ti), and the CDO
index, CI0(Ti), for maturities Ti, i = 1, . . . ,M , tranches j = 1, . . . , G, and given spreads
c0 =

(
c1

0, . . . , c
N
0

)
for CDSs written on N underlying companies, solve the minimisation

problem

M∑
i=1

G∑
j=1

αji

(
Cj0(Ti)− Cj,θ,x00 (Ti)

)2
+

M∑
i=1

αi

(
CI0(Ti)− CIθ,x00 (Ti)

)2
→ min

θ
, (6.1)

where θ = (ρ, σ, λ, σΠ, µΠ), subject to

(i) x0 =
(
x1

0, . . . , x
N
0

)
is a solution to

c0 = cθ0(x0), (6.2)

(ii) ρ ∈ [0, 1), σ > 0, λ > 0, σΠ > 0, µΠ < 0,

where cθ, Cj,θ,x00 , CIθ,x00 denote CDS, CDO tranche and index spreads calculated in the

model with parameter vector θ, x0 is a vector of initial distances-to-default, α = (αji , αi)
is a scaling vector.
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The minimisation problem has a scaled least-squares objective function, linear in-
equality constraints (ii) and non-linear equality constraints (i).

Since CDO tranche and index spreads have different orders of magnitudes, we scale
the data by α to make each observation roughly equally important, precisely, we choose
the weights α as powers of ten such that the scaled market prices lie between 0.1 and 1.
Alternative choices are discussed in Section 6.4.

The non-linear constraints are incorporated directly into (6.1) by numerical inversion
of (6.2) giving x0 = x0 (σ, λ, σΠ, µΠ) = x0(θ). We then solve the minimisation problem
(6.1) with bounds on the parameters. A robust algorithm developed specially for this
kind of minimisation problems is the interior-reflective Newton method in Coleman & Li
(1994) and Coleman & Li (1996). We use this algorithm as implemented in the Matlab
Optimisation Toolbox.

6.2 Computational Issues

For each calibration, a number γ of Newton-type iterations is needed to solve (6.1) to
a specified accuracy, and in each iteration, an approximation to the objective function
and its derivatives is required. We address here ways of improving the computational
efficiency of the most costly components.

Search for Initial Distances-To-Default

Since we use finite differences to approximate the derivatives, xn0 is searched K = (1 +
2b)×N × γ times, where n = 1, . . . , N = 125, the number of CDSs in the portfolio, b = 4
is the number of parameters (excluding ρ, which does not affect x0), and γ is in the range
of 10− 20. Since K ≈ 1.5× 104, an efficient way of finding x0 from (6.2) is crucial.

Given CDS data, c0 = (ci0)1≤i≤N , we search for initial distances-to-default, x0 =
(xi0)1≤i≤N , taking advantage of properties of c0. CDS spreads decrease with the initial
distance-to-default, since higher x0 leads to higher survival probability, which entails lower
spreads, ie, if ci0 > cj0 then xi0 < xj0. Hence, for a CDS spread, cs0, where cmin

0 ≤ cs−1
0 <

cs0 < cs+1
0 ≤ cmax

0 , the initial distance-to-default, xs0, is in (xs+1
0 , xs−1

0 ). Hence, a good
starting point for xs0 is either xs+1

0 or xs−1
0 . Sorting spreads, then choosing starting points

as stated above, greatly decreases the computation time of x0.

Monte Carlo “Inside” the Objective Function

What is more, the objective function (6.1) is estimated by a Monte Carlo method, and
in order to obtain accurate results, a high number of simulations is needed, as seen
from the accuracy of expected tranche losses in Fig. 6. Given the numerical evaluation
of the objective function and its derivatives is part of an iterative solution method for
the optimisation problem, where the initial parameter iterates will be inaccurate, it is
unnecessary to evaluate the spreads there with high accuracy.

Let Ni, i = 1, . . . , Z, be an increasing number of paths, and let θiNi
be a sequence of

parameters obtained using Ni simulations, with an iterative scheme with starting value
θi−1
Ni−1

and γi iterations. Since the Monte Carlo estimator and Newton’s method both

converge, it is hoped that the θiNi
converge to the optimiser, while only few iterations are

needed for large Ni. This idea is a simple version of the Multi-layer method in Kaebe
et al. (2009).
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In the calibration exercises, we heuristically picked N1 = 6× 103, since for this num-
ber of simulations the estimator “starts converging”, as can be observed in Fig. 6, and
the computation time per iteration is very low. For N1, γ1 is about 15, whereas for
N3 = NZ−1 = 105, it is about 2-4, and, finally, for N4 = 106, it is only 1. The over-
all computation time of the calibration algorithm is significantly reduced compared to
calibration with uniformly NZ simulations, here by a factor of roughly 15.

It would be possible to automatise this procedure and find an optimal sequence Ni

to minimize the overall computational time, based on the variance of the Monte Carlo
estimator and the convergence speed of the optimisation algorithm.

6.3 Calibration Results

In order to check if the model is flexible enough to match market spreads both in quiet
and extreme market conditions, we calibrate it to pre-crisis data, from 22 February 2007,
and during the crisis, 5 December 2008. We do not use current data since the market is
not sufficiently liquid.

For the first data set (see Table 1), spread curves both for index and tranches are
increasing with time, super senior tranches (22%-100%) are close to zero, indicating that
the market does not expect any shocks in the near future. For the second period (see Table
4), all quotes are much higher (for example prices of super senior tranches are higher than
junior mezzanine (3%-6%) with maturity 5 years for 22 February 2007), the index spread
curve is inverted, curves for tranches are almost flat, hence the market anticipates that
the situation will get worse in the near future. We anticipate that parameters indicating
market turbulences will be considerably higher for the second data set.

We compare the calibration results by the ARPE (Average Relative Percentage Error),

ARPE =
1

s

s∑
i=1

|yi − yθi |
yi

, (6.3)

and the RMSE (Root Mean Square Error),

RMSE =

√√√√1

s

s∑
i=1

(yi − yθi )2, (6.4)

where y is a vector of observed prices, yθ is a vector of prices obtained from the model,
s the total number of calibration prices. It is important to note that the ARPE can be
used to compare calibration results between data sets with different orders of magnitudes,
while the RMSE can be used for comparing calibration results within the same or similar
data sets and will attach disproportionate weight to the equity tranche spreads. Also
recall that the calibration optimises (6.1).

Diffusion Model

Calibration results for the diffusion model are given in Tables 1 to 6. Root mean square
errors (RMSE) are very high, especially for 5 December 2008, but as was noted before,
this is partially a result of higher spreads for 5 Dec 2008 compared to 22 Feb 2007.

For 5 Dec 2008, the estimated correlation coefficient, ρ, is much higher than the
one obtained for 22 Feb, 2007. High correlation not only increases the probability of
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T=5 Years

Market Jump-Diffusion Diffusion

Index 21 24 17
Tranche 0%-3% 7.19% 11.07% 1.22%
Tranche 3%-6% 41 61 48
Tranche 6%-9% 10.8 15.2 10
Tranche 9%-12% 5 5.9 3
Tranche 12%-22% 1.8 2.5 0
Tranche 22%-100% 0.9 1.8 0

T=7 Years

Market Jump-Diffusion Diffusion

Index 30 32 25
Tranche 0%-3% 22.1% 24.7% 12.1%
Tranche 3%-6% 110 155 137
Tranche 6%-9% 32.5 39.5 41
Tranche 9%-12% 15 14 14
Tranche 12%-22% 4.9 3.9 2.0
Tranche 22%-100% 2 1.8 0

T=10 Years

Market Jump-Diffusion Diffusion

Index 41 37 32
Tranche 0%-3% 38% 35.4% 21.9%
Tranche 3%-6% 302.5 281.5 247
Tranche 6%-9% 83 87 97
Tranche 9%-12% 37 32 41
Tranche 12%-22% 12.5 7.3 9
Tranche 22%-100% 3.6 1.8 0

Table 1: Calibration results for 22 February 2007, iTraxx Main Series 6 index. Units are
basis points (bps) if not stated otherwise. Estimated parameters are given in Table 2,
measures of fit in Table 3. We assume that r = 0.042, R = 0.4.

Parameters Jump-Diffusion Diffusion

σ 0.16 0.18
ρ 0.11 0.22
λ 0.04 -
E[Y-1] -0.07 -
Var[Y-1] 0.01 -
ρ
Xi

tX
j
t

0.13 -

Table 2: Parameters estimated for 22 February 2007, overall correlation ρ
Xi

tX
j
t

as in (4.5).
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Measure of Fit Jump-Diffusion Diffusion

RMSE 1.17 4.34
ARPE 0.27 0.42

Table 3: Measures of fit for 22 February 2007. Root Mean Square Error (RMSE) is
defined by (6.4), Average Relative Percentage Error (ARPE) is given by (6.3).

companies to default together, but also to survive together. Hence, in order to fit equity
tranches, a low correlation is needed, whereas high correlation for the senior tranches.
This can be observed in Figure 3 in Bush et al. (2011), showing the implied correlation for
each tranche. Hence, in a diffusion model, there is usually a trade-off between matching
equity and senior tranches. The low correlation coefficient for 22 Feb 2007 results in zero
spreads for super senior tranches (22% − 100%), while equity tranches are underpriced.
For 5 Dec 2008, the model produces non-zero spreads for super senior tranches, owing
to a higher correlation coefficient, but still both super senior and equity tranches are
underpriced.

Jump-Diffusion Model

Tables 1 to 6 show calibration results for the jump-diffusion model. Compared to the
diffusion model, error measures for both data sets are much lower. What is more, the
jump-diffusion model gives spreads of roughly the correct magnitude for all tranches.
However, still some tranches are slightly underpriced, whereas other tranches are some-
what overpriced, albeit to a lesser extent than in the diffusion case.

In the jump-diffusion model, apart from ρ and σ, also λ, µY and σY affect multiple
defaults. Most importantly, unlike ρ, higher absolute values of jump parameters, with
µX < 0, always lead to more expected defaults. Therefore, the trade-off between matching
particular tranches is smaller and the overall fit is better in the jump-diffusion model.

Let us now analyse the situation on the market in 22 Feb 2007 and 5 Dec 2008, implied
by the model parameters. As mentioned in 4.1, the initial distances-to-default, obtained
from CDS spreads, indicate the current state of the market. As expected, on average,
x0 is lower for December 2008, around 4.0, whereas for February 2007, it is 4.3. It may
seem a bit surprising that the difference is so small, though a better picture is given by
the tails of the distribution of initial distances-to-default, as seen back in Fig. 2. For the
former data set, for 6% of the companies x0 is in (0,1], ie, 6% of the companies in the
portfolio are already in a bad financial situation, and for 26% x0 is in (0,2], whereas for
none of the firms in the latter data set x0 is in (0,2]. This well reflects the situation in
the market during a crisis and in normal conditions.

The jump intensity, λ, is 0.042 for 22 Feb 2007 and 0.035 for 5 Dec 2008 respectively.
This implies that under the risk neutral measure a market crash is expected to happen
every 25 years for 22 Feb 2007, and every 34 years for 5 Dec 2008. For the former
data set, market turbulences will be benign: if a jump occurs, on average a company’s
assets value will fall by 7%. For the latter, market conditions will worsen much more
severely: if a jump occurs, a company’s asset value will drop on average by 50%. Both
results agree with the adaptive expectation hypothesis, according to which in a quiet
economic conditions market participants anticipate that the good economic climate will
be continued, while after a serious market crash, another serious crash is expected.
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T=5 Years

Market Jump-Diffusion Diffusion

Index 215 245 200
Tranche 0%-3% 71.5% 76.5% 47%
Tranche 3%-6% 1576.3 1652 1158
Tranche 6%-9% 811.5 822 825
Tranche 9%-12% 506.1 504 636
Tranche 12%-22% 180.3 305 415
Tranche 22%-100% 77.9 77 56

T=7 Years

Market Jump-Diffusion Diffusion

Index 195 224 198
Tranche 0%-3% 72.9% 78.8% 50%
Tranche 3%-6% 1473.2 1557 1101
Tranche 6%-9% 804.2 805 805
Tranche 9%-12% 512.4 511 637
Tranche 12%-22% 182.6 311 434
Tranche 22%-100% 75.8 74 66

T=10 Years

Market Jump-Diffusion Diffusion

Index 175 204 188
Tranche 0%-3% 73.8% 81.2% 51.7%
Tranche 3%-6% 1385.5 1462 1016
Tranche 6%-9% 824.7 768 755
Tranche 9%-12% 526.1 500 607
Tranche 12%-22% 174.1 310 427
Tranche 22%-100% 76.3 69 70

Table 4: Calibration results for 5 December 2008, iTraxx Main Series 10 index. Units
are basis points (bps) if not stated otherwise. Estimated parameters are given in Table
5, measures of fit in Table 6. We assume that r = 0.033, R = 0.4.

Parameters Jump-Diffusion Diffusion

σ 0.13 0.18
ρ 0.35 0.8
λ 0.04 -
E[Y-1] -0.5 -
Var[Y-1] 0.17 -
ρ
Xi

tX
j
t

0.83 -

Table 5: Parameters estimated for 5 Dec, 2008, overall correlation ρ
Xi

tX
j
t

as in (4.5).

27



Measure of Fit Jump-Diffusion Diffusion

RMSE 2.42 8.95
ARPE 0.16 0.35

Table 6: Measures of fit for 5 December 2008. Root Mean Square Error (RMSE) is
defined by (6.4), Average Relative Percentage Error (ARPE) is given by (6.3).

To our knowledge, a similar calibration exercise is found only in Willemann (2007)
and Kiesel & Scherer (2007), however the latter study does not discuss the parameters
obtained. In Willemann (2007), a jump-diffusion model with log-normally distributed
jumps was calibrated to market data from 8 August 2005. The obtained jump intensity
is very small, λ = 0.0012, while the mean jump size is -96%. Under these settings, on
average there is a complete market wipe-out every 870 years. Such a market situation
would appear hard to reconcile with the timeframes market participants operate in, or
even the age of credit markets and the economy as we know it.

6.4 Further Results and Extensions

Here, we comment on some aspects of the practical use of the model.
First, we remark that in the course of the calibration we calculate sensitivities of the

prices with respect to the input parameters, which can be used for hedging with other
products exposed to the same variables.

In practice, a common hedge is the index hedge, and in that case it is important to
be able to calibrate the model accurately to index spreads. The results of Tables 1 and 6
are unlikely to be good enough for this, in contrast to those in Bush et al. (2011), where
the volatility is first calibrated to the index spreads, and then the correlation (as single
remaining parameter) is fit to tranche spreads, rather than performing an overall fit. A
better calibration to specific important data, say the index spreads, can be enforced by
increasing those weights in the least-squares functional. An interpretation of this is as a
penalty method for solving a least-squares optimisation problem for the remaining data,
where the penalty terms approximate equality constraints for the important data.

Table 7 shows that by increasing the weights of the index in the objective function
(Cases 1 and 2), the market observed spreads can be fit accurately, especially when
decreasing the weight of the super-senior tranche (Case 1). This is of course at the
expense of worse fit of tranche spreads (especially the last tranche in Case 1). Calibrated
parameter values and measures of fit are given in Tables 8 and 9, respectively.

7 Conclusions

In this article, we present an extension of the method proposed in Bush et al. (2011) and
discuss in detail its numerical implementation.

We hereby consider a multi-name jump-diffusion, show how the model can be cali-
brated to individual CDSs by means of semi-analytical formulae for survival probabilities,
derive a numerical method for basket credit derivatives based on a large basket approx-
imation and a Monte Carlo finite difference solution of the resulting SPDE, and outline
an algorithm for calibration to CDO index and tranche spreads. We also show that the
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T=5 Years

Market Case 1 Case 2

Index 215 214.6 222.0
Tranche 0%-3% 71.5% 81.6% 80.2%
Tranche 3%-6% 1576.3 1775.1 1675.4 9
Tranche 6%-9% 811.5 763.7 726.4
Tranche 9%-12% 506.1 419.9 417.2
Tranche 12%-22% 180.3 231.9 252.4
Tranche 22%-100% 77.9 12.7 36.2

T=7 Years

Market Case 1 Case 2

Index 195 193.8 198.1
Tranche 0%-3% 72.9% 83.7% 82.0%
Tranche 3%-6% 1473.2 1736.4 1575.1
Tranche 6%-9% 804.2 781.6 710.7
Tranche 9%-12% 512.4 448.2 422.5
Tranche 12%-22% 182.6 241.6 255.1
Tranche 22%-100% 75.8 7.6 30.2

T=10 Years

Market Case 1 Case 2

Index 175 174.6 175.3
Tranche 0%-3% 73.8% 85.4% 84.2%
Tranche 3%-6% 1385.5 1691.9 1488.8
Tranche 6%-9% 824.7 781.3 679.7
Tranche 9%-12% 526.1 452.6 409.3
Tranche 12%-22% 174.1 246.3 247.9
Tranche 22%-100% 76.3 3.4 23.7

Table 7: Calibration results for different weight vectors for 5 December 2008, iTraxx
Main Series 10 index. Case 1: αi = 10 (CI0(Ti))

−2, αji = (Cj0(Ti))
−2, j = 1, . . . , 5,

α6
i = 0.01 (C6

0 (Ti))
−2. Case 2: αi = 10 (CI0(Ti))

−2, αji = (Cj0(Ti))
−2, j = 1, . . . , 6.

Estimated parameters are given in Table 8, measures of fit in Table 9. We assume that
r = 0.033, R = 0.4.

Parameters Case 1 Case 2

σ 0.11 0.10
ρ 0.25 0.27
λ 0.042 0.0397
E[Y-1] -0.16 -0.34 6
Var[Y-1] 0.82 0.24
ρ
Xi

tX
j
t

0.85 0.82

Table 8: Parameters estimated for 5 December 2008, overall correlation ρ
Xi

tX
j
t

as in (4.5).
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Measure of Fit Case 1 Case 2

RMSE 4.24 3.64
ARPE 0.25 0.22

Table 9: Measures of fit for 5 December 2008. Root Mean Square Error (RMSE) is
defined by (6.4), Average Relative Percentage Error (ARPE) is given by (6.3).

large basket approximation is valid for a typical CDO portfolio. We provide an economic
interpretation of the model and its pricing performance.

The jump-diffusion model proves more flexible than the pure diffusion model to fit
market data in vastly different scenarios, with only a small number of parameters. We
conclude that the method proposed in Bush et al. (2011) has potential for practical ap-
plications. However, to employ the model for pricing and risk management in practice, it
is necessary to further extend the model to allow a richer dependence and term structure.
This can be achieved in a number of ways.

The extension to different finite activity jump processes, or even infinite activity,
assuming discrete default monitoring, is straightforward. The latter could potentially
be achieved by a time-change of the SPDE, were applicable. A stochastic volatility
common to all assets, correlated, eg, to the driving Brownian market factor, can be
included straightforwardly and would only require the simulation of an SDE for the
variance process and the solution of a PDE of the type (4.10) with this simulated variance
as diffusion coefficient. The inclusion of stochastic interest rates would follow similar lines.

Contagion effects can be introduced by making the correlation coefficient loss de-
pendent. Similar to local volatility models, such a “local correlation model” could be
specified to provide a perfect fit to tranche spreads, while the correlation does not impact
index and CDS spreads, which aids calibration. Contagion could also manifest in loss
dependent (and hence stochastic) recovery rates. The jump component will give a more
realistic term-structure for short maturities. The model could be further extended by a
random default barrier, which has been shown to give more realistic short-term credit
spreads and would be an obvious and simple extension to the model.

With such improved fit to standard tranches, the calibrated model would be suitable
for interpolating bespoke tranches on the same underlying pool. Applications to over-the-
counter basket products consisting of illiquid names would be conceivable if information
on the individual default probabilities could be obtained from, eg, balance sheets; if the
company is listed, parameters may be obtained from equity time series; finally, parameters
for global factors may be obtained from liquid products of names operating in similar
sectors.
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A Proofs of Results in Section 3.3

Proof of Proposition 3.1.

p(Xtn = xtn , τ > tn−1) = p(Xtn = xtn , Xtn−1 > 0, . . . , Xt1 > 0)

= p(Xtn = xtn , Xtn−1 > 0, τ > tn−2)

=

∫ ∞
0

p(Xtn = xtn , Xtn−1 = xtn−1 , τ > tn−2) dxtn−1 .
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Since

p(Xtn = xtn | Xtn−1 = xtn−1 , τ > tn−2) =
p(Xtn = xtn , Xtn−1 = xtn−1 , τ > tn−2)

p(Xtn−1 = xtn−1 , τ > tn−2)
,

we obtain

p(Xtn = xtn , τ > tn−1) =

∫ ∞
0

p(Xtn = xtn | Xtn−1 = xtn−1 , τ > tn−2)p(Xtn−1 = xtn−1 , τ > tn−2)dxtn−1 .

Observe now that for two subsequent monitoring times tn−1 and tn, such that 0 ≤
tn ≤ T , and x0 > 0, (3.4) can be written as

Xtn = x0 + βtn +Wtn +

Ntn∑
k=1

Πk

= Xtn−1 + β∆tn + ∆Wtn +

∆Ntn∑
k=1

Πk,

(A.1)

where ∆tn = tn− tn−1, ∆Wtn = Wtn −Wtn−1, ∆Ntn = Ntn −Ntn−1. By independence of
increments of Brownian motion and Poisson process respectively, ∆Wtn is independent
of Wtn−1, ∆Ntn is independent of Ntn−1. What is more, ∆Wtn ∼ N(0,∆tn) and ∆Ntn is
a Poisson process with intensity λ∆tn. Hence, knowing that Xtn−1 = xtn−1, we have

Xtn = xtn−1 + β∆tn + ∆Wtn +

∆Ntn∑
k=1

Πk. (A.2)

Then, by (3.5) and (A.2), we obtain

Xtn =

{
xtn−1 + β∆tn + ∆Wtn +

∑∆Ntn
k=1 Πk, xtn−1 > 0

0, xtn−1 = 0.
(A.3)

Hence,

p(Xtn = xtn | Xtn−1 = xtn−1 , τ > tn−2) = p(Xtn = xtn | Xtn−1 = xtn−1),

and we get

p(Xtn = xtn , τ > tn−1) =

∫ ∞
0

p(Xtn = xtn | Xtn−1 = xtn−1)p(Xtn−1 = xtn−1 , τ > tn−2)dxtn−1 .

Similarly,

P (τ > tn) = P (Xtn > 0, τ > tn−1) =

∫ ∞
0

p(Xtn = xtn , τ > tn−1) dxtn .

Proof of Proposition 3.2. Since, t1 is the first monitoring time, we have

P (τ > t1) = P (Xt1 > 0).
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By total probability

P (Xt1 > 0) =
∞∑
c=0

P (Xt1 > 0 | Nt1 = c) · p(Nt1 = c).

We observe that
∑c

k=1 Πk, where {Πk} are i.i.d. and Π ∼ N(µΠ, σ
2
Π), is normally dis-

tributed with mean cµΠ and variance cσ2
Π. By (A.1), condtional on Nt1 = c, Xt1 ∼

N(µXt1
, σ2

Xt1
), where µXt1

= x0 + βt1 + cµΠ, σ2
Xt1

= t1 + cσ2
Π. Then,

P (Xt1 > 0 | Nt1 = c) = Φ

(
µXt1

σXt1

)
.

What is more, Nt1 is a Poisson process with intensity λt1, hence

p(Nt1 = c) = e−λt1
(λt1)c

c!
,

and we obtain (3.7). Observe now that,

P (Xt1 ≤ xt1 | Nt1 = c) = P

(
Z ≤

xt1 − µXt1

σXt1

)
= Φ

(
xt1 − µXt1

σXt1

)
,

where Z ∼ N(0, 1), Φ(·) is the cumulative standard normal distribution, and

p(Xt1 = xt1 | Nt1 = c) =
1

σXt1

φ

(
xt1 − µXt1

σXt1

)
,

where φ(·) is standard normal density.

Proof of Proposition 3.3. By (A.1), conditional on ∆Ntn = c and on Xtn−1 = xtn−1,
Xtn is normaly distributed with mean µXtn |Xtn−1

= xtn + β∆t + cµΠ and variance

σ2
Xtn |Xtn−1

= ∆t + cσ2
Π, where ∆t = tn − tn−1, ∆Ntn = Ntn − Ntn−1. Similarly to

the case when t = t1,

p(Xtn = xtn | Xtn−1 = xtn−1 ,∆Ntn = c) =
1

σXtn |Xtn−1

φ

(
xtn − µXtn |Xtn−1

σXtn |Xtn−1

)
,

∆Ntn is a Poisson process with intensity λ∆t, therefore

p(∆Ntn = c) = e−λ∆t (λ∆t)c

c!
.

B Proofs of Results in Sections 4.2 and 5.1

Outline of Proof of Proposition 4.1. The proof follows the same lines as in Bush
et al. (2011), where an SPDE for the diffusion case with absorbing boundary is derived,
and also builds on the results in Kurtz & Xiong (1999) for diffusion on the infinite axis.
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For a test function φ and empirical measure νN,t, we define

FN,φt = 〈φ, νN,t〉 =
1

N

N∑
i=1

φ(Xi
t). (B.1)

By applying Itô’s lemma to (B.1) we obtain

FN,φt = FN,φ0 +
1

N

N∑
i=1

∫ t

0
φ
′
(Xi

s)
[
β ds+

√
1− ρ dW i

s +
√
ρ dMs

]
+

1

N

N∑
i=1

∫ t

0

1

2
φ
′′
(Xi

s) ds+
1

N

N∑
i=1

∫ t

0

[
φ(Xi

s− + Π)− φ(Xi
s−)
]
dNs.

(B.2)

In terms of νN,t, (B.2) can be written as

FN,φt = FN,φ0 +

∫ t

0
〈βφ′(x) +

1

2
φ
′′
(x), νN,s〉 ds+

∫ t

0

1

N

N∑
i=1

φ
′
(Xi

s)
√

1− ρ dW i
s

+

∫ t

0
〈√ρφ′(x), νN,s〉 dMs +

∫ t

0
〈φ(Xi

s− + Π)− φ(Xi
s−), νN,s−〉 dNs.

(B.3)

We are interested in the behaviour of FN,φt as N →∞. Similar to the diffusion case,
the idiosyncratic term given by

IN,φt =
1

N

N∑
i=1

∫ t

0
φ
′
(Xi

s)
√

1− ρ dW i
s (B.4)

is a martingale with zero mean and quadratic variation

[IN,φ]t =

∫ t

0

1

N2

N∑
i=1

|φ′(Xi
s)|2(1− ρ) ds ≤ t 1

N2
N max

x
|φ′(x)|2

√
1− ρ→ 0 as N →∞.

(B.5)
Therefore, in the limit, the idiosyncratic term vanishes.

Let ν0
N,t the empirical measure in the diffusion case (jump intensity λ = 0), and FN,φ,0t

defined as in (B.1), with νN,t replaced by ν0
N,t. Then by inspection of (4.6) with Xi

t as per
(4.2), the two measures in the diffusion and jump-diffusion case are explicitly related by

FN,φ,0t = F
N,φ(·−Jt)
t ,

where Jt given in (4.12) is a process which is piecewise constant in t.
As N → ∞, it is known that the empirical measure ν0

N,t tends to some ν0
t with

density v0, hence, including jumps, νN,t → νt with density v, which is related to v0 by
v(t, x) = v0(t, x− Jt). Therefore, (4.11) follows. Details will be given in Bujok (2012).

Then, FN,φt → F φt , where

F φt = 〈φ, νt〉 =

∫
φ(x)νt(dx) =

∫
φ(x)v(t, x)dx,
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and we can write

〈φ, νt〉 = 〈φ, ν0〉+

∫ t

0
〈βφ′(x) +

1

2
φ
′′
(x), νs〉ds

+

∫ t

0
〈√ρφ′(x), νs〉dMs +

∫ t

0
〈φ(x+ Π), νs−〉dNs

+

∫ t

0
〈φ(x), νs−〉dNs,

(B.6)

or, in terms of v,∫
φ(x)v(t, x) dx =

∫
φ(x)v(0, x) dx+

∫ t

0

∫ (
βφ
′
(x) +

1

2
φ
′′
(x)

)
v(s, x) dx ds

+

∫ t

0

∫
√
ρ φ

′
(x)v(s, x) dx dMs +

∫ t

0

∫
φ(x)v(s−, x) dx dNs

+

∫ t

0

∫
φ(x+ Π)v(s−, x) dx dNs.

(B.7)

Integrating by parts and using that φ has compact support, we obtain∫
φ(x)v(t, x) dx =

∫
φ(x)

(
v(0, x)−

∫ t

0
β
∂v

∂x
(s, x) ds

+

∫ t

0

1

2

∂2v

∂x2
(s, x) ds−

∫ t

0

√
ρ
∂v

∂x
(s, x) dMs

+

∫ t

0
v(s−, x−Π) dNs −

∫ t

0
v(s−, x) dNs

)
dx.

(B.8)

Since φ is arbitrary, we have

v(t, x) = v(0, x)−
∫ t

0

(
β
∂v

∂x
(s, x) +

1

2

∂2v

∂x2
(s, x)

)
ds−

∫ t

0

√
ρ
∂v

∂x
(s, x) dMs

+

∫ t

0
v(s−, x−Π) dNs −

∫ t

0
−v(s−, x) dNs,

(B.9)

which can be written in differential form as (4.13).

Proof of Proposition 5.1. We want to show

E[Zt − Zbt ] → 0 as b→∞.

As 0 ≤ Zt − Zbt ≤ Lbt − Lt it suffices to show E[Lbt − Lt]→ 0.
Define µt and µbt by

0 ≤ µbt =

∫ b

−b
vb(t, x) dx ≤

∫ ∞
−∞

v(t, x) dx = µt ≤ 1.

If we can show that for any given ε > 0, for sufficiently large b,

P [µt − µbt ≥ ε/2] ≤ ε/2, (B.10)
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it follows

E[Lbt − Lt] = E[µt − µbt ]
= E[µt − µbt |µt − µbt ≥ ε/2]︸ ︷︷ ︸

≤1

·P [µt − µbt ≥ ε/2]︸ ︷︷ ︸
≤ε/2

+E[µt − µbt |µt − µbt ≤ ε/2]︸ ︷︷ ︸
≤ε/2

·P [µt − µbt ≤ ε/2]︸ ︷︷ ︸
≤1

≤ ε.

We show by induction in k for t = Tk that (B.10) can be satisfied with ε/2 replaced by
εk = 3−(n−k) ε/2. Then, for k = n, we recover (B.10).

This is certainly true for k = t = 0, where u = u0 deterministic (given by the
observable Xi

0) and integrable on R.
Assume now this is true for t = Tk for all b ≥ bk for some bk. Write the event

Bk = {µTk − µ
bk
Tk
≥ εk}, CBk its complement, then

P [Bk+1] = P (Bk+1|Bk)P (Bk) + P (Bk+1|CBk)P (CBk)

≤ εk + P (Bk+1|CBk).

First, pick ak large enough such that

µTk − µ
ak
Tk+1− ≤ 2εk,

if CBk. This is a standard result for the PDE (5.2). Then, pick bk+1 such that

P (Ak) ≤ εk,

for
Ak = {ak + ∆Mk ≥ bk+1} ∪ {−ak + ∆Mk ≤ −bk+1},

such that

P (Bk+1|CBk) = P (Bk+1|CBk, Ak)P (Ak) + P (Bk+1|CBk, CAk)P (CAk)

≤ εk + εk.

This gives P [Bk+1] ≤ 3εk = εk+1.
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