
C3.4 ALGEBRAIC GEOMETRY - EXERCISE SHEET 1

Comments and corrections are welcome: ritter@maths.ox.ac.uk

(1) Zariski topology

(a) Verify that arbitrary intersections and finite unions of affine varieties are affine
varieties.

(b) Show that affine algebraic varieties in An

C
are closed in the Euclidean topology.

(c) List the open and closed subsets of A1

C
(in the Zariski topology).

Describe briefly1 the closed subsets of A2

C
.

(d) Show that the Zariski topology on A2

C
is not the product topology on A1

C
× A1

C
.

(2) Irreducibility

(a) Show that An is irreducible.
(b) Show that an affine variety X ⊂ An is irreducible if and only if every non-empty

open subset U ⊂ X is dense in the Zariski topology.2

(c) Let X be an irreducible affine variety. Show that any two non-empty open sets
intersect in a non-empty open dense set.

(3) Reduced3 algebras as coordinate rings

(a) Show that
√
I ∩ J =

√
I ∩

√
J for any ideals I, J .

(b) Show that the ideal (xy, xz) ⊂ k[x, y, z] is radical but not prime.
Draw the variety it defines in A

3.
(c) Let X ⊂ An be an affine variety. Show that a radical ideal in k[X ] is the

intersection of all the maximal ideals containing it.4

(d) Show that a variety X ⊂ An has two disjoint components if and only if the
coordinate ring k[X ] may be written as the product of two finitely generated
reduced k-algebras.5

(4) The pull-back map between coordinate rings. Suppose that F : X → Y is a
morphism of affine varieties.
(a) Show that F ∗ : k[Y ] → k[X ] is injective if and only if F is dominant, i.e. the

image set F (X) is dense in Y .
(b) Show that F ∗ : k[Y ] → k[X ] is surjective if and only if F defines an isomorphism

between X and some algebraic subvariety of Y .
(c) Find an example where F is injective but F ∗ : k[Y ] → k[X ] is not surjective.
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1If you wish to do this precisely, there is one tricky part, namely showing that V(f, g) is a finite set of
points when f, g ∈ k[x, y] have no common factor. Hints: work over the field F = k(x) = Frac k[x], and recall
that the gcd of f, g over F is an F -linear combination of f, g. Rescaling this to remove denominators, deduce
that a k-linear combo of f, g lies in k[x]. Can you now bound the possible x-coordinates of points in V(f, g)?

2Hint: show that X is reducible if and only if there is an open set which is not dense.
3A ring is reduced if it has no nilpotent elements except zero. An element r is nilpotent if rm = 0 for some

m ≥ 1. Recall an ideal I ⊂ R is radical if
√
I = I, where

√
I = {r ∈ R : rm ∈ I for some m ≥ 1} is the

radical of I. Notice that an ideal I ⊂ R is radical iff R/I is reduced.
4Hints. Using methods of this course, it is easier to first translate this into a geometrical statement, and

prove that. The algebraic proof instead uses a theorem due to Krull: the nilradical nil(A) = {x : xm = 0 some
m} of a ring A equals the intersection of all its prime ideals. One applies this to the ring A = R/I.

5Hint. Recall the Chinese Remainder Theorem: if I1, I2 are coprime ideals in R (meaning I1 + I2 = R),
then I1 ∩ I2 = I1 · I2 and there is a ring isomorphism R/(I1 ∩ I2) → R/I1 × R/I2, f 7→ (f + I1, f + I2).
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