B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 1 Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. \mathbb{CP}^1 as a quotient of spheres.

Recall that the complex projective space $\mathbb{C}P^1$ is the space of complex lines through 0 in \mathbb{C}^2 . By thinking about how a complex 1-dimensional vector space intersects the sphere $S^3 \subset \mathbb{R}^4 = \mathbb{C}^2$, show that $\mathbb{C}P^1$ as a topological surface can be viewed as a quotient

$$\mathbb{C}P^1 = S^3/S^1$$

where you need to explain how the group S^1 acts on S^3 .

Exercise 2. The Möbius band.

The open Möbius band is the quotient

$$M = [0,1] \times (0,1) / ((0,y) \sim (1,1-y) \text{ for all } y \in (0,1)).$$

Briefly explain why M is a smooth surface. Find (a homeomorphic copy of) M inside the real projective space $\mathbb{R}P^2$ and inside the Klein bottle K. The Möbius band \overline{M} , is obtained by replacing (0,1) by [0,1] above. Show¹ that the boundary of \overline{M} is homeomorphic to S^1 . Show that $\mathbb{R}P^2 = (\text{closed disc}) \cup \overline{M}$ glued along the circular boundary, and $K = \overline{M} \cup \overline{M}$.

Exercise 3. Riemann surfaces arising from polynomial equations.

Briefly explain a natural way to make the sets

- (1) $S_1 = \{(z, w) \in \mathbb{C}^2 : w^2 = (z 1)(z 2)\} \cup \{+\infty\} \cup \{-\infty\}$ (2) $S_2 = \{(z, w) \in \mathbb{C}^2 : w^2 = (z 1)(z 2)(z 3)\} \cup \{\infty\}$

into Riemann surfaces. Find homeomorphisms $S_1 \cong$ sphere, $S_2 \cong$ torus. (Hints in footnote²)

Exercise 4. The Klein bottle as a quotient of \mathbb{R}^2 .

Consider the quotient

$$S = \mathbb{R}^2 / G$$

where $G = \mathbb{Z}^2$ acts by $(n,m) \bullet (x,y) = ((-1)^m x + n, y + m)$ on \mathbb{R}^2 , where $n, m \in \mathbb{Z}$. Briefly explain why S is a smooth surface. Show that S is homeomorphic to the Klein bottle.

Exercise 5. The space of lines in \mathbb{R}^2 .

Let S be the set of all straight lines in \mathbb{R}^2 (not necessarily through 0). Show that there is a natural³ way to make S into a topological surface. Show that S is homeomorphic to the open Möbius band M.

Date: This version of the notes was created on October 17, 2014.

¹*Hint.* Try cutting out a clever disc from $\mathbb{R}P^2$.

²Hints. It helps if you first ask yourself what local holomorphic coordinate you would use at solutions (z, w)of $w^2 = z$ (recall from lecture notes the discussion of the square root $z^{1/2}$). Then try to build the solution set S_1 by gluing two cut-domains: two copies of $\mathbb C$ cut from 1 to 2. Just like for $\log z$ in lectures, each subset you cut gives rise to two copies of that subset in the Riemann surface. In order to be able to draw the Riemann surface inside \mathbb{R}^3 , it is convenient to reflect one of the cut-domains about the x-axis. Near infinity, try using the coordinates $X = \frac{1}{z}$ and $Y = \frac{w}{z}$ instead of z, w, and ask yourself what happens for X = 0 (corresponding to " $z = \infty$ "). For S_2 you will need a second cut, from 3 to ∞ , and try instead $Y = \frac{w}{z^2}$.

³Hint. For example, lines which are not vertical can be parametrized by 2 numbers: the angle $\theta \in$ $(-\pi/2,\pi/2)$ which tells you how much the line is tilted, and $r \in \mathbb{R}$ which is the signed distance of the line from the origin $0 \in \mathbb{R}^2$ (using the + sign if the line passes above 0, and the - sign if it passes below 0).