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1. What is a tiling?

1.1. Examples.
A tiling (or tessellation) of the plane by polygons is a covering of the plane by polygons,

so that every point of the plane lies in some polygon, and the polygons do not overlap
except possibly along their boundaries (on edges or vertices).

Example.

(1) The tiling of the plane by unit squares:

(2) By decomposing the squares into triangles, the above turns into a tiling

by isosceles triangles:

In the Exercises you show that the plane can be tiled by a regular n-sided polygon (with
fixed side length) if and only if n = 3, 4, 6 (so regular triangles, squares or hexagons).

1.2. More complicated tilings.
Usually, we care about tilings using tiles from a certain finite collection of polygons. In

the above example: by a particular square, or a particular triangle. One can also allow
more general shapes than polygons, such as any subset of the plane that is homeomorphic
to a disc.1 For example, the following tiling is obtained from the tiling by squares after
deforming the tiles, using two types of tiles.

1.3. Markings and matching data.
In the above example, since drawing these squiggly edges is tiring, it is often more

convenient to put markings on the edges, which tell you how the tiles must fit together.

1So any region in the plane bounded by a closed curve with no self-intersections.
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Above, we use labels 1, 2 which are required to always be glued onto 1, 2 respectively. You
can also use arrows to prescribe in which direction you allow them to be glued.

Markings can also come in the form of artistic decorations on top of the tile types, and
the matching condition is that the decorations fit together nicely. For example, the Penrose
tiling using Penrose rhombi with decorations:

is made using the following two tile types with decorations:

1.4. Bad tiles.
Regarding the general definition of tiling. One needs some care in saying exactly what

a tiling is, because we want to avoid bad tiles (e.g. a tile made up of disconnected pieces,
or a tile having holes, or tiles that have parts which become infinitesimally thin), we want
to avoid tiles that are too large (e.g. unbounded tiles, like infinite strips), and nasty things
can happen if we allow infinitely many tile types (e.g. you usually do not want there to
be infinitely many tiles covering a finite region, for example this can happen if you use the
collection of tile types given by squares of any side length).

Exercise 1. Consider the infinite collection of tile types consisting of discs of any positive
radius. Can you tile the whole plane using only copies of tiles taken from this collection?

1.5. Periodic tiling, non-periodic tiling, and aperiodic tile sets.

A tiling is called periodic if the tiling has two translation2 symmetries in two non-parallel
directions.3

Example. Our favourite unit square tiling, pictured above, has translation

symmetries x 7→ x+n, y 7→ y+m for n,m ∈ Z. So, for example, x 7→ x+1, y 7→ y

2A translation is the addition of constants to the coordinates: x 7→ x + a, y 7→ y + b for some a, b ∈ R.
We assume that a, b cannot both be zero.

3Meaning, the translation constants (a, b), (a′, b′) are not proportional: (a, b) 6= (ka′, kb′) for all k ∈ R.
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and x 7→ x, y 7→ y + 1 are two non-parallel translations. So this tiling is,

of course, periodic.

A tiling is called non-periodic if it has no translational symmetry.4

Example. Take the usual tiling by unit squares, divide all squares along one

of the diagonals, except for one square, which you divide along the opposite

diagonal. This gives a non-periodic tiling:

A set F of tiles is called aperiodic if every tiling of the plane using copies of tiles from F
is always non-periodic. That is, no matter how you tile the plane with them, the tiling will
never have any translational symmetry.

We will only be studying the simplest aperiodic tile sets, discovered by Penrose in 1974.
However, historically, the first aperiodic set of tiles was discovered in 1966 by Robert Berger
(20,426 tiles, later reduced to 104 tiles), and in 1971 Raphael M. Robinson found an ape-
riodic set of 6 tiles. Other aperiodic tile sets were discovered in the late 1970s by Robert
Ammann.

1.6. Penrose tiles.
The Penrose Kite K and Dart D are defined by:

where φ is the golden ratio φ = 1
2(1+

√
5) (roughly 1.618). Notice K,D have markings (the

vertices are coloured white or black).
Another collection of two tile types are the Penrose Rhombi (recall a rhombus is an

equilateral parallelogram):

Notice these rhombi have markings (the vertices are coloured white or black, and the edges
with equal vertex colours are marked with arrows pointing towards the smaller angle).
Although here you could have picked any side-length (provided both rhombi have the same

4Notice: “not periodic” does not necessarily imply “non-periodic”. There could be one translational
symmetry.
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side-length), it is convenient to use φ, since then there is a natural way to pass from a tiling
by K,D to a tiling by such rhombi, and vice-versa.

A third collection of six Penrose tiles is made up of pentagons and pentacles:

As usual, rather than these squiggly tiles, it is easier to work with tiles with markings:

In the Exercises you will show that you can naturally pass from a tiling by pentagons/pentacles
to a tiling by K,D.

1.7. References on Penrose tilings. There is very little published on Penrose tilings
beyond survery papers which do not contain any proofs. The nicest surveys I know of are:

(1) Roger Penrose, Pentaplexity, Eureka 39, 1979.5

(2) Martin Gardner, Penrose Tiles to Trapdoor Ciphers, CUP, 1997.6

The only reference that I know of, which contains proofs, is the following book, but it
seems to be out of print:

(3) Branko Grünbaum and Geoffrey C. Shephard, Tilings and Patterns, W.H. Freeman
& Company, 1986. (Careful: the reprint paperback is allegedly abridged, missing
chapters 8-12, of which 10 was the chapter on Penrose tilings)

2. The Extension Theorem

2.1. How do you know that you can tile the whole plane?
Some tilings, like our favourite tiling by squares above, have such symmetry that it is

obvious that you can tile the entire plane even though you have only shown, with a drawing,
how to build a tiling of a finite region. However, for tilings involving more complicated tiles,

5Reprint of Pentaplexity: A class of non-periodic tilings of the plane published in The Mathematical
Intelligencer 2.

6The first chapter, on Penrose tilings, is a reprint of Extraordinary non-periodic tiling that enriches the
theory of tiles, Scientific American 236, 110–121, January 1997.
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even though you may be able to tile a very large region, if you don’t see a repeating pattern
then how do you know that you can tile the whole plane?

If you play with Penrose tiles, you will in fact notice that, very often indeed, when you
try to build a larger and larger region you eventually get stuck because no other tile fits.
This is because the tile that you choose to place in a certain spot may affect your chances
of extending the tiling later on in some completely different spot.

More dramatically, Penrose tilings have a non-locality property, in the following sense.
You have built a large patch of your tiling so far, and it turns out that on opposite sides of
this large patch you have to make a choice of which tiles to place: one for each of the two
opposite sides. It turns out, in some situations, that the tile that you place on one of the
two opposite sides determines uniquely the tile that you must place on the opposite side
– otherwise you will get stuck later on in a completely different spot! This suggests that
locally, there is no recipe (algorithm) to decide which tile you must place, because you must
also keep track of the global geometry of your tiling (namely, the other tile you picked on
the opposite side, affects your chances of extending the tiling).

Exercise 2. Can you write an algorithm for a computer which, given a finite tiling patch
(by Penrose tiles), can tell you in finite time whether this patch can be indefinitely extended
in some way to give a Penrose tiling of the entire plane?7

So with the exception of some special Penrose tilings (the cartwheel tiling, the sun, the
star), it seems to be rather difficult to build a Penrose tiling in practice. The extension the-
orem allows one to prove the existence of Penrose tilings, without building them explicitly.

2.2. What the extension theorem says, intuitively.
To avoid confusions, we will call partial tiling the tiling of a connected subset of the plane

(rather than the whole plane).
The extension theorem says that if you use a finite set F of tile types, and if you can find

a sequence of partial tilings S1, S2, . . . covering larger and larger discs Br1(0), Br2(0), . . .
centred at zero (so the radii rn → ∞), then there exists a tiling of the whole plane.

Examples. If the partial tilings S1 ⊂ S2 ⊂ S3 ⊂ · · · are contained inside

each other concentrically,8 then obviously you get a tiling of the whole plane:

S1 will never be changed after step 1, S2 will never be changed after step 2,

and so on: so we are building the tiling inductively.

The extension theorem does not require the Si to be contained inside each other concen-
trically. In fact, the Si may be completely unrelated to each other.

Examples.

(1) Consider the following partial tilings by the unit square:

7Later, we will show that any finite region of a Penrose tiling has an identical copy in any other Penrose
tiling. So you could ask the computer to check the finite patch against a known tiling T of the plane: so
if you find a copy of the patch inside T , then you know that you can extend the patch using T ! But this
checking will not stop in finite time if there is no copy of the patch inside T .

8If these partial tilings are contained inside each other, but not concentrically, then it is not clear whether
you can find a tiling of the whole plane. For example, the balls B1(1), B2(2), B3(3), . . . are contained inside
each other but their union is ∪Bn(n) = {(x, y) ∈ R2 : x > 0}, only half of the plane.
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These are patches of our usual tiling by unit squares except tilted by

increasing angles α1, α2, . . . which converge to 45 degrees. So none of the

partial tilings S1, S2, . . . are subsets of each other, and the limit tiling

(the usual unit square tiling rotated by 45 degrees) does not match up

with any of the Sn.

(2) Suppose instead the angles α1, α2, . . . are random angles:

The sequence S1, S2, . . . will not converge. But there is some subsequence,

Si1 , Si2 , . . ., which will converge: just pick a subsequence of the angles

αi1 , αi2 , . . . which converges (modulo 2πZ).

2.3. The grasshopper trick.
We will later refer to the following Exercise you had:

Exercise 3. Consider a closed square S in C. Suppose a grasshopper jumps around

on the square. Its positions are z1, z2, z3, . . ..
Chop up the square into 4 equal squares. Use the pigeonhole principle to show

that for one of these four smaller squares, say S′, the grasshopper is in S′

infinitely many times (at positions, say, zi1 , zi2 , . . . for some i1 < i2 < · · · ).
Use this chopping idea inductively to show that, some subsequence of positions

zj1 , zj2 , . . . of the grasshopper converges to some point z in the square S. In other

words, the grasshopper jumps infinitely many times arbitrarily close to z.
Show in general, that for any closed bounded region S ⊂ Rn, and any sequence

of points z1, z2, . . . in S, there is a subsequence zj1 , zj2 , . . . which converges to some

point z in S (z need not be unique).

Cultural remark. A (metric) space is called compact if any sequence of points

has a subsequence which converges to a point in the space.

2.4. The selection theorem.
Here, and later, when we talk about convergence of tiles, we are using the Hausdorff

distance. I will briefly recall the definition below, although you will notice later that we
never really use this detailed definition. It is enough if you are happy with your own intuition
of what it means for two copies of the same tile to be close or not.

Recall that the Hausdorff distance d(S1, S2) between two closed bounded subsets S1, S2 ⊂
R2 of the plane is defined by9

d(S1, S2) = min

{
δ ≥ 0 :

every point s1 ∈ S1 has d(s1, s2) ≤ δ for some s2 ∈ S2,
and every point s2 ∈ S2 has d(s1, s2) ≤ δ for some s1 ∈ S1

}
where the distance d(s1, s2) between points s1, s2 refers to the Euclidean distance.

We say that tiles S1, S2, . . . converge to a tile S if d(Sn, S) → 0 as n → ∞. We abbreviate
this by writing S1, S2, . . . → S.

Theorem 4 (Selection Theorem). Suppose we are given:

(1) a point p ∈ R2;
(2) a tile T (any closed and bounded subset T ⊂ R2);

9An equivalent definition is d(S1, S2) = max{max
s1∈S1

min
s2∈S2

d(s1, s2), max
s2∈S2

min
s1∈S1

d(s1, s2)}.



OXFORD MASTERCLASSES 2014, PROF. ALEXANDER F. RITTER 9

(3) a sequence of tiles S1, S2, . . . ⊂ R2 in the plane each containing p, and each of which
is a copy of T (so all the Sj are “the same” up to translation and rotation).

Then some subsequence Sj1 , Sj2 , . . . converges to a tile containing p which is a copy of T .

Proof. First choose, once and for all, an identification Sn
∼= T for each n = 1, 2, . . .. Via

this identification, the point p ∈ Sn gives a point qn ∈ T .

Now use the “grasshopper trick”: you can pick a convergent subsequence qi1 , qi2 , . . . → q
inside T . Notice that if you place the tile T inside R2 so that q ∈ T lies on top of 0 ∈ R2, then
your only freedom to place T is to rotate it about q. Thus each Sin differs from T by a small
translation by q − qin and by some rotation angle αin . Again, by the “grasshopper trick”,
you can pick a subsequence of the rotation angles αj1 , αj2 , . . . which converges (modulo
2πZ). Call α the limit. But now, observe this means that the tiles Sj1 , Sj2 , . . . converge to
the tile S which is a copy of T rotated by α with q ∈ T placed onto the point p ∈ R2. �
Corollary 5 (Selection Theorem).

Suppose we are given a finite collection F of tile types (each of which is a closed and
bounded subset of R2). For example F = {Kite,Dart}.

If S1, S2, . . . ⊂ R2 is any sequence of tiles in the plane, each of which is a copy of some
tile from F , and each containing the point p ∈ R2, then there is a subsequence Sj1 , Sj2 , . . .
converging to a tile S containing p which is a copy of some tile T ∈ F .

Proof. Since there are only finitely many tiles in F , there must be some tile T ∈ F which
appears, as a copy, infinitely often in the sequence S1, S2, . . .. So pass to a subsequence
Sk1 , Sk2 , . . . all of which are a copy of T . Now apply the previous Theorem. �
Exercise 6. Show that these results can fail if you remove some hypothesis. For example,
if you do not assume that all tiles contain p, or if you do not assume that the tiles are
bounded, or if you assume that F is an infinite collection of tiles.

2.5. The extension theorem.

Theorem 7 (Extension Theorem).
Suppose we use a finite collection F of tile types each of which is a bounded closed subset

of R2 which is homeomorphic to a disc.10 If for any arbitrarily large disc you can find a
partial tiling covering the disc, then there exists a tiling of the entire plane.11

Proof.
Step 1. Pick δ = any positive radius such that each tile of F contains some disc of radius
δ. Now let m = δ

100 . Consider the lattice Z ·m × Z ·m ⊂ R2 of points whose coordinates
are integer multiples of m. Notice that, by the choice of δ, any copy of a tile from F placed
inside R2 must contain at least one lattice point in the interior.12

10Equivalently: any region in the plane bounded by a closed curve with no self-intersections. We need
this condition to avoid bad tiles – can you see why?

11As usual, when using a collection F of tile types, the tiles we place in R2 are each obtained from a tile
T ⊂ R2 of F by translation and rotation.

12Just ask yourself: since the tile contains a disc of radius δ, look at where in R2 the centre of that disc
is, and ask yourself whether this disc contains points of the lattice.
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Step 2. The lattice is a countable collection of points, meaning we can number the points
x1, x2, x3, . . .. For example, we can do this explicitly as in the picture, by spiralling outwards
starting from x1 = (0, 0):

Step 3. By the assumption of the Theorem, we know that there exists some partial tiling
Tr which covers any given disc Br(0).

From this partial tiling Tr, there is some tile Tr,s which contains the lattice point xs. There
may be more than one such tile, when xs lies on the boundary of several tiles, but for the
proof it does not matter which tile Tr,s you pick.

Step 4. For any choice of radii r1, r2, r3, . . . → ∞, you therefore obtain a sequence of tiles

Tr1,s, Tr2,s, Tr3,s, . . .

which contain the point xs.

By the Selection Theorem (Corollary 5), there is a subsequence13

Tr′1,s
, Tr′2,s

, Tr′3,s
, . . . → S

converging to a tile S containing xs which is a copy of some tile from F .

13So, for some subset {r′1, r′2, r′3, . . .} ⊂ {r1, r2, r3, . . .}.
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Step 5. Run Step 4 for the radii 1, 2, 3, . . ., for s = 1 (so for the tiles containing x1) to
obtain a subsequence r′1, r

′
2, r

′
3, . . . of 1, 2, 3, . . . so that:

Tr′1,1
, Tr′2,1

, Tr′3,1
, . . . → S1

where S1 is a copy of a tile in F with x1 ∈ S1.
Now run Step 4 for the radii r′1, r

′
2, r

′
3, . . ., for s = 2 (so for the tiles containing x2) to

obtain a subsequence r′′1 , r
′′
2 , r

′′
3 , . . . of r

′
1, r

′
2, r

′
3, . . . so that:

Tr′′1 ,2
, Tr′′2 ,2

, Tr′′3 ,2
, . . . → S2

where S2 is a copy of a tile in F with x2 ∈ S2.
Now run Step 4 for the radii r′′1 , r

′′
2 , r

′′
3 , . . ., for s = 3 (so for the tiles containing x3) to

obtain:

Tr′′′1 ,3, Tr′′′2 ,3, Tr′′′3 ,3, . . . → S3

where S3 is a copy of a tile in F with x3 ∈ S3.

Keep going inductively. In general, if we abbreviate r
(n)
j to mean that we put n dashes

′ on rj , once we have found r
(n)
1 , r

(n)
2 , . . ., we run Step 4 for the radii r

(n)
1 , r

(n)
2 , r

(n)
3 , . . ., for

s = n+ 1 (so for the tiles containing xn+1) to obtain a subsequence:

T
r
(n+1)
1 ,n+1

, T
r
(n+1)
2 ,n+1

, T
r
(n+1)
3 ,n+1

, . . . → Sn+1

where Sn+1 is a copy of a tile in F with xn+1 ∈ Sn+1.
Step 6. Useful remark. If a sequence z1, z2, . . . → z converges, then any subsequence

also converges to the same limit: zi1 , zi2 , . . . → z.
This is simply because if all points zn approach z, then of course also some points zin

approach z (if d(zn, z) → 0 as n → ∞, then also d(zin , z) → 0 as n → ∞).
By construction Si is the limit

Si = lim
n→∞

T
r
(i)
n ,i

Therefore it is also the limit of any subsequence of T
r
(i)
n ,i

, such as the subsequence T
r
(i+1)
n ,i

,

or T
r
(i+2)
n ,i

, or generally T
r
(k)
n ,i

for k ≥ i. So:

Si = lim
n→∞

T
r
(k)
n ,i

(for any k ≥ i).

Step 7. We claim that S1, S2, S3, . . . defines a tiling of the entire plane!
First, to clarify, these tiles Sj ⊂ R2 need not be distinct: some of them may be repeated

in the list. To show that these really tile the entire plane, we need to check two things:

(1) two tiles Si, Sj only overlap along the boundary (unless they are equal Si = Sj);
(2) any point p ∈ R2 lies in some tile Si (possibly several tiles).

Let’s prove (1) first. Suppose Si, Sj overlap on their interiors. Then also the two tiles
T
r
(k)
n ,i

, T
r
(k)
n ,j

which converge to Si, Sj must overlap on their interiors for large n (here we

use that the tiles are homeomorphic to discs, and we use Step 6 taking k ≥ max{i, j}). But
those two tiles belong to the partial tiling T

r
(k)
n

, so they cannot overlap unless they equal.

So T
r
(k)
n ,i

= T
r
(k)
n ,j

. So taking the limit as n → ∞, we deduce that Si = Sj . This proves (1).

Now we prove (2). Suppose p ∈ R2 does not belong to any of the Si, by contradiction.
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Let’s consider a large disc BR(p) around p, so large that any copy of a tile from F which
touches p must lie entirely inside this ball.14 There are only finitely15 many tiles Si which
lie inside or intersect this disc. The union of these finitely many tiles Si is a closed set, so
their complement is open. Therefore, since p lies in this open set, there is also a small ball
Br(p) around p lying inside this open set. So all Si are at least a distance r away from
p. Therefore16 the tiles T

r
(k)
n ,i

which converge to Si are at least r
2 away from p for large n.

For large n, the partial tiling T
r
(k)
n

will cover BR(p), so some tile X of T
r
(k)
n

must contain p.

But X must contain a lattice point in the interior, say xi. But then X = T
r
(k)
n ,i

(there can

be only one tile of the partial tiling which contains xi in the interior, since tiles must not
overlap). So T

r
(k)
n ,i

contains p, contradicting that it should be r
2 away from p. �

3. Penrose Kites and Darts

3.1. The Kite and the Dart.
The Kite K and the Dart D are defined as follows:

Here φ, roughly 1.618, is the golden ratio defined by

φ =
1 +

√
5

2
.

We emphasize that part of the data of the Kite and Dart is the colouring of the vertices –
black or white. These markings impose a matching condition: when you tile with K,D you
are required to place the tiles so that if two tiles touch at a point which is a black vertex
of one tile, then that point must also be a black vertex of the other tile (similarly, white
vertices must match when placing tiles).

14Notice, here we use again that there are finitely many tiles in F , and that each tile is bounded.
15This uses the assumption that the tiles are bounded, and the fact that each tile contains a disc of radius

δ and thus occupies at least area πδ2.
16More figuratively: you are driving too fast on a road, and there is a lamppost on the left of the road,

and a lamppost on the right of the road, and you crash into the lamppost on the left. Once crashed, you
are far away from the lamppost on the right. Then just before the crash you were also far away from the
lamppost on the right! In this metaphor, p is the lamppost on the right, Si is the crashed car in the left
lamppost, and T

r
(k)
n ,i

is the position of the car just before the crash.



OXFORD MASTERCLASSES 2014, PROF. ALEXANDER F. RITTER 13

Without these markings, the tiles K,D would sometimes17 give rise to periodic tilings,
which we do not want (we want the tile set F = {K,D} to be aperiodic, which we will
prove later).

We mentioned in Section 1.3 how markings and matching conditions work with tilings.
One can draw two honest tiles without markings by replacing the edges above with squiggly
lines so that the tiles can only fit together in the way that we want (i.e. as they would when
we have straight edges and vertex colour markings).

Exercise 8. Try drawing the two tiles with squiggly edges so that the matching conditions
are automatically imposed.

3.2. The golden ratio.

The golden ratio φ = 1
2(1 +

√
5) appears in many situations in geometry, for example in

the construction of the regular unit pentagon:

Notice that φ is a solution of the equation

φ2 − φ− 1 = 0.

From this equation, we obtain the useful equalities: 1 + φ = φ2 and 1 + 2φ = φ3 (since
φ3 = φφ2 = φ(1 + φ) = φ+ φ2 = φ+ (1 + φ) = 1 + 2φ).

Exercise 9 (Fibonacci numbers). The numbers 1, 1, 2, 3, 5, 8, 13, 21, . . . are the Fibonacci
numbers, where each number is obtained by adding the previous two numbers. Call these
numbers Fn. The defining equation is Fn+2 = Fn+1+Fn with initial conditions F1 = F2 = 1.
Show inductively that from the equation defining φ you also obtain the equations

Fn + Fn+1 · φ = φn+1.

The golden ratio has many beautiful properties, for example:

φ = 1 +
1

1 + 1
1+ 1

1+···

Exercise 10. Show that the continued fraction on the right in the above equality really
does18 converge to φ.

Look at the fractions you obtain when approximating the above continued fraction:

1 = 1
1

1 + 1
1 = 2

1

1 + 1
1+1 = 3

2

1 + 1
1+ 1

1+1

= 5
3

1 + 1
1+ 1

1+ 1
1+1

= 8
5

17Insert a K into the D, so that the 4α and 6α add up to a full angle 2π. This is a parallelogram. In the
Exercises, you will prove that any parallelogram can tile the plane periodically. Notice, on the other hand,
that the markings do not allow you to insert a K into D in that way!

18Hint. Suppose it does converge to something, say x. Then can you find an equation that x must satisfy
given the self-similarity of the continued fraction expression?
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Exercise 11. Do you see a pattern above? Show by induction on n that the n-th fraction

you obtain above (approximating the continued fraction of φ) equals Fn+1

Fn
. Deduce that

φ = lim
n→∞

Fn+1

Fn
.

4. Composition, Decomposition, and Inflation

4.1. Subdivision trick: from K,D to A,B.

The tiles K,D can be subdivided along the axis of symmetry to give isosceles triangles A,B:

Although we write two letters A and B, there are actually four tiles: two copies of A and
two copies of B. The two copies are different because they have different vertex markings
(you would need a reflection to obtain one from the other). So we really should talk about
tile types A1, A2, B1, B2, distinguishing the left-half and the right-half of the subdivision of
each of K,D, but for sake of brevity we will just say A,B.

It is clear that there is a unique way to go from K,D to As and Bs by subdividing as
shown. However, we also want there to be a unique way to get from a tiling by A,B tiles
to a tiling by K,D. The problem is, for example, that two As may be glued along the edge
having black vertex colours in the opposite way as that which arises from subdiving K.

For this reason, we put an additional marking on the A,B: we put an arrow pointing to
the peak of the isosceles triangle on the edge which has equal vertex colours. In any tiling
by A,B we then require the additional matching condition that the arrow directions must
match when two tiles share an edge with arrows.

With the arrows and vertex colours it is now obvious that there is a unique way to go
from tilings by A,B to tilings by K,D, and vice-versa.

4.2. Composition trick 1: from A,B to A, φB′.



OXFORD MASTERCLASSES 2014, PROF. ALEXANDER F. RITTER 15

Now, notice that if you have a tile B, then there must always be a tile A attached to B
along the shortest edge (of length 1) as follows:19

Of course, such an A is not glued onto another B, since there is a unique shortest edge in
A. Thus, every such glued B +A can be replaced by the resulting tile, which we call φB′:

We call it φB′ because it is obtained from B by rescaling by φ and by switching colours
and reversing arrows (so the arrow now points away from the peak of the isosceles triangle,
along the edge with equal vertex colours). We will later continue to use the dash symbol ′

to mean: switch the colours white↔black and reverse the directions of arrows.
Applying this composition rule, all Bs will have disappeared and we will only be left with

A,φB′ tiles. So we can uniquely pass from a tiling by A,B to a tiling by A, φB′ tiles.
Vice-versa, a tiling by A,φB′ determines uniquely a tiling by A,B tiles: you just need to

subdivide φB′ as in the above picture to replace each φB′ with two glued tiles A,B. Again,
notice there is a unique way to make this subdivision.

4.3. Composition trick 2: from A,φB′ to φA′, φB′.

19Notice, on the right of the picture, that if you try to attach two copies of B along the short edge, then
you get stuck: either the vertex colours fail, or the angles around a vertex add up to more than 2π.
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Now, notice that if you have a tile A, then there must always be a tile φB′ attached to A
along the edge which has an arrow (of length φ) as follows:20

Thus, this composition gets rid of all As, by replacing them with φA′ (so A rescaled by φ
with reversed colours/arrows). So from any tiling by A,φB′ we obtain uniquely a tiling by
φA′, φB′ tiles.

Vice-versa, a tiling by φA′, φB′ determines uniquely a tiling by A,φB′ tiles: simply subdi-
vide φA′ in the unique way to give rise to an A and a φB′ tile.

4.4. Composition.
Applying the subdivision trick and composition tricks 1, 2 changes tile types as follows:

K,D =⇒ A,B =⇒ A,φB′ =⇒ φA′, φB′.

We now switch colours/arrows, and then apply the reverse of the subdivision trick (erase
the edges with arrows):

φA′, φB′ =⇒ φA, φB =⇒ φK, φD.

Notice that we end up with larger tiles: the Kites and Darts are rescaled by φ.
Thus: from a tiling by K,D we have uniquely obtained a tiling by φK, φD. I will call

this Composition.

20Notice, on the right of the picture, that if you try to attach two copies of A along the edge with the
arrow, then eventually you get stuck. Since only the A tiles have an edge of length 1, you would in fact need
four A tiles attached, but then you get stuck: the vertex colours or the arrows fail, or the sum of the angles
around a vertex add up to more than 2π.
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Remark 12. Double-composition consists of: subdivision, composition tricks 1, 2, 1, 2,
and finally reverse subdivision:

K,D =⇒ A,B =⇒ A, φB′ =⇒ φA′, φB′ =⇒ φA′, φ2B =⇒ φ2A,φ2B =⇒ φ2K,φ2D,

where we used that A′′ = A, B′′ = B (reversing twice does nothing). This is often conve-
nient, as it avoids the unnatural step of reversing colours/arrows.

4.5. Decomposition.
Since each individual step in the Composition procedure can be uniquely reversed, we

can also carry out all steps in reverse. In reverse, we pass from a tiling by K,D to a tiling
by 1

φK, 1
φD tiles. I will call Decomposition the reverse of Composition.

Example. Below are the steps of the Decomposition applied to an Ace (two Kites

and a Dart):

The last move above is to erase the edges with arrows. Near the boundary, there

are half-tiles, and it is customary when working with partial tilings to complete

those tiles. In the above case, we obtain Batman (The Dark Knight Falls):

Notice that both Composition and Decomposition, in practice, just means taking a black
marker and drawing a tiling on top of your given tiling. In the Composition process, you
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will draw bigger tiles (rescaled by φ, which is approximately 1.618). In the Decomposi-
tion process, you will draw smaller tiles (rescaled by 1/φ, approximately 0.618). In both
cases, if your original tiling was only a partial tiling, covering some region R, then the
decomposed/composed partial tilings will also cover the same region R.

4.6. Inflation.
If we apply Decomposition and then rescale by φ, we obtain a partial tiling by tiles of

the same size as originally, but covering a larger region (namely φ times larger). I will call
Inflation this procedure: Decompose and then rescale by φ (equivalently: first rescale by φ
then Decompose). Inflating a partial tiling by K,D covering the ball Br(0) will produce a
partial tiling by K,D of the ball Bφr(0). Summarizing:

Example. In the Decomposition of the previous example, rescaling the final

Batman gives:

Notice that Batman has an Ace up his sleeve (but the Ace is flipped).

The tiles K,D at the end are the same size as originally, but the region has

expanded by a factor of φ (roughly 1.618).
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5. Existence of a Penrose tiling

5.1. The existence of a tiling of the entire plane by K,D.
So far, we never proved that the plane can be tiled by K,D. We will use the extension

theorem. Start with any partial tiling by K,D covering some small disc Br(0) around 0. By
applying Inflation n times, you obtain a partial tiling by K,D covering the disc Bφnr(0).
Thus, we can obtain partial tilings covering arbitrarily large discs. Notice that, as far as we
know, none of these partial tilings have anything to do with each other! But the extension
theorem doesn’t care: it will produce for us, from a subsequence of these inflated partial
tilings, a limit tiling of the entire plane!21

Philosophically speaking, we have not actually in practice found any tiling of the entire
plane by Kites and Darts. We only know that one exists.

In one of the Exercises, you will be asked to build a tiling by K,D which have a pen-
tagonal22 symmetry about the origin, and to show that in fact there are exactly two such
tilings (called the sun tiling and the star tiling). So you will know how to build two tilings
in practice.

Exercise 13 (Hard). How many possible tilings of the plane by K,D are there? More
precisely, you do not want to distinguish two such tilings if one can be obtained from the
other by translation and rotation. So, the question is: can you classify all tilings by K,D
up to congruency?

The above exercise is hard because, as we will see later, any finite region, no matter how
large, of a given tiling by K,D must also arise (in fact infinitely often!) in any other tiling
by K,D. So far, for all we know, the extension theorem may always give the same tiling up
to congruency. Also so far, for all we know, maybe not all tilings by K,D arise by repeated
inflation via the extension theorem.

6. Penrose Rhombi

From a tiling by A,φB′ tiles (obtained from a K,D tiling after the subdivision trick and
composition trick 1), we can obtain a tiling by two types of rhombi:

Simply glue the A tiles along the shortest edges that appear (of length 1), and glue the φB′

tiles along the longest edges that apper (of length φ2).
As usual, there are markings on the tiles (vertex colours, and arrows on the two edges

which have equal vertex colours). We remark that despite the markings, there really are
just two rhombi, not four.23

21In fact, so far we don’t even know whether a large partial tiling obtained by Inflation can actually be
continued to give a tiling of the whole plane.

22i.e. rotating the tiling about 0 by integer multiples of the angle 2α = 2π/5 will give you back the exact
same tiling.

23For example, there are two ways to glue two copies of A, depending on whether you put the white vertex
on the left or on the right in the above picture. But the resulting two rhombi are related by a rotation by
π, so you only obtain one marked rhombus from gluing two copies of A. Similarly, when gluing two φB′.
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There is a unique way to glue As or φB′s to obtain rhombi. Conversely, there is a unique
way to subdivide the two rhombi to obtain As and φB′s: simply subdivide the rhombi
along the diagonals of length 1 and φ2 respectively. Thus there is a unique way to pass
from tilings by K,D to tilings by Penrose Rhombi, and vice-versa.

7. Proof that the Penrose tiles are aperiodic

Recall from Section 1.5 that a set F of tiles is called aperiodic if every tiling of the plane
using copies of tiles from F is always non-periodic (that is, it does not have any translational
symmetry).

Theorem 14. The Penrose tiles K,D are aperiodic.
Remark. the same holds for the tiles A,B, and the Penrose rhombi, as you can always pass
from these tilings uniquely to a tiling by K,D and vice-versa.

Proof. Suppose not, by contradiction. (A mathematician’s finest weapon!)
Then you know there exists a tiling of the plane by K,D which has a translational

symmetry.
So consider a large patch of the tiling. When you move this first patch by the translation

symmetry, then you get a second patch. The two patches must agree on the overlap, since
that translation is a symmetry.

Now, apply Composition to the first patch (recall, in practice, this just means that you
draw some thick dark lines on top of your existing patch, which gives a tiling over the same
region but using bigger tiles).

Next, apply Composition to the second patch.
The two patches you obtain after Composition, must also agree on the overlap. Why?

Because the Composition involves unique rules, so since the original two patches agree on
the overlap, also the composed patches must agree on the overlap (you have unique rules
on how to compose the tiles in the original overlap of patches).

Upshot: the two patches obtained after Composition respect the same translational sym-
metry.24

24Using the same constants of translation, we do not rescale the constants of translation!
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Therefore, Composition applied to the entire tiling of the plane by K,D gives a new
tiling, involving tiles which are larger (the new tiles are φ2K,φ2D instead of K,D), but
nevertheless we still have the same translational symmetry, say z 7→ z + c.

Thus, applying Composition many times, say N times, we obtain a tiling by φ2NK,φ2ND
with the same translational symmetry z 7→ z + c. But, for large N , this is absurd:

For N very large compared to c (for example, N > 1000 ·c works), the translation will move
a given tile φ2NK to a new tile which overlaps with the given tile: but this contradicts that
the translation is a symmetry.25 (and similarly for a given tile φ2ND). Contradiction. �

So why does the above argument not work for tilings by unit squares (with vertices at the
lattice points Z×Z)? The issue is that the rule for Compositions is not unique in this case.
For example, suppose we want our Composition rule to double the side lengths of squares.
Then there are four ways of Composing, depending on whether you want the new lattice of
composed squares to be 2Z×2Z, (2Z+1)×2Z, 2Z× (2Z+1) or (2Z+1)× (2Z+1). In the
above proof, the translation symmetry z 7→ z + (0, 1) of the original tiling by unit squares
will not give a translation symmetry of the composed tiling. Instead, the translation will
send one choice of Composition of squares to another choice of Composition of squares, and
in the case of z 7→ z + (0, 1) these are two different choices:

8. The cartwheel tiling

8.1. The cartwheels Cn and the cartwheel tiling C.
Take an Ace as in the Example of Section 4.5, and apply inflation several times. This

yields a sequence of partial tilings: C0 (Ace), C1 (Batman), C2, . . ..

25a symmetry sends a tile to a tile, and in a tiling the tiles are not allowed to overlap.
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In the Exercises, you will prove that C0 ⊂ C2 ⊂ C4 ⊂ · · · are contained inside each other
concentrically. The odd C1, C3, . . . also appear inside C2, C4, . . . respectively, but they are
flipped (reflected). In the picture below, on the left you can see the Bat-Signal C2 reflected
in the Gotham Skyline C3 (the picture also highlights Batman C1 and his flipped Ace C0).

In the picture on the right, you can see C0 ⊂ C2 ⊂ C4 concentrically.
The limit

C = lim
n→∞

C2n

is called the carthweel tiling (the limit makes sense since in general each C2n is contained
concentrically in the next C2n+2, as you will prove in the Exercises).

Remark. The Extension Theorem applied to the sequence C0, C1, C2, . . . would have spat out
one of two types of convergent subsequences: those which eventually will only involve even
cartwheels which converge to C, or those which eventually will only involve odd cartwheels
which converge to a reflection of C.

8.2. Every tile sits inside arbitrarily large cartwheels.
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Theorem 15. Given any tiling by K,D, every tile lies inside a copy of the cartwheel C2n

for each n.

Proof. Step 1. Given any tiling by K,D, every point p ∈ R2 lies inside an Ace.
Proof. First suppose p ∈ D. Look at the picture of D: inside the slot where the 6α angle

is, you cannot put a copy/copies of D since the vertices would not match. You also cannot
put only one copy of K, with the angle 4α inserted next to the 6α of D, because the vertex
colours would not match. You can only insert two copies of D, which will form an Ace, as
required.

Next suppose p ∈ K. If you put a copy of D along the short edge (of length 1) then
again you are in the above situation: the D will give rise to an Ace. If you do not put a
copy of D, then we can assume that on the two short edges of K we put two more copies of
K. But three copies of K cannot glued in this way along the short edges: it would create
an angle of 3× 4α > 2π.

Step 2. A clever Composition-Decomposition trick.
Given a tiling T by K,D. Call T 2n the tiling obtained from T by Composing 2n times

(this new tiling uses the huge tiles φ2nK,φ2nD).
Now p ∈ T 2n. Therefore, by Step 1 applied to the tiling T 2n, the point p lies inside some

huge Ace of T 2n. Now apply Decomposition 2n times. Then

p ∈ (decompose the huge Ace 2n times) = C2n ⊂ T.

(Here we used that Composition/Decomposition are unique, and by definition the repeated
Decompositions of an ace give cartwheels using rescalings of the tiles K,D) �

Remark 16. The above theorem does not imply that every tiling by K,D is a carthwheel
tiling! Even though each tile lies inside an arbitrarily large cartwheel C2n, these copies of
C2n need not be concentric around the given tile. In the above proof, you do not know where
p lies inside the huge Ace, so you do not know where p lies inside the copy of C2n. There
is no guarantee that p will always be at the centre of the huge Aces as n varies.

9. Any finite region of a Penrose tiling is repeated infinitely often

9.1. Vertex neighbourhoods.
Given a vertex, there are 7 possible ways of arranging K,D tiles around this vertex. We

call these the 7 vertex neighbourhoods:

Theorem 17. In every tiling by K,D, each of the 7 vertex neighbourhoods occurs infinitely
often.
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Proof. By the previous Theorem, each tile sits inside a copy of C4. Now look at the picture
of C4: you will find copies of all 7 vertex neighbourhoods inside C4. �

9.2. Any finite region of a Penrose tiling occurs infinitely often.

Theorem 18. Given any finite region R of a tiling by K,D. There are infinitely many
congruent (translated and rotated) copies of R in the tiling. In fact, there are infinitely
many congruent copies of R inside any other tiling by K,D as well.

Proof. Let T be the given tiling. Let Tn be the tiling obtained from T by applying Com-
position n times. For large n, this involves a tiling by huge tiles φnK,φnD. If R is in
the interior of one of these huge tiles, let’s say a huge Dart X, then simply consider the
infinitely many huge Darts that are in the tiling Tn (these huge Darts are copies of X but
they may be translated and rotated).

By n-Decomposition we will mean: apply Decomposition n times. Observe that if you
apply n-Decomposition to Tn you get back T , and the n-Decomposition of all those huge
Darts will give rise to infinitely many copies of the n-Decomposition of X (since Decompo-
sition involves unique rules). But by construction, the n-Decomposition of X contains R
(since X arose from n-Composition on a region containing R).

If the region R is not contained in the interior of a huge tile of Tn, then R must either
intersect some edge or some vertex of a huge tile. Then simply consider a huge vertex
neighbourhood X which contains R and run the same argument as above (using the pre-
vious Theorem that the tiling Tn must contain infinitely many copies of this huge vertex
neighbourhood X).

We have found infinitely many copies of R inside the given tiling T , but we can run the
same argument with any other tiling Q by K,D: just consider the n-Composition Qn, and
consider the infinitely many copies of the huge vertex neighbourhood X inside Qn. �

Remark 19. In the Exercises you will improve the above result, by showing that in fact
within a distance of φ5 (just under 12) times the diameter of your region you can find
another copy of the region (the factor φ5 is not optimal, but it is fairly easy to obtain).

Remark 20. The theorem says that you can find infinitely many congruent copies of R,
but in fact you can find infinitely many translated copies of R. Indeed, all the copies of the
tiles D in a tiling by K,D are related to each other by rotation by finitely many possible
angles: the integer multiples 0, α, 2α, . . . , 9α of α. Similarly all Ks are related by rotations
by those angles, and all vertex neighbourhoods are related by those angles. The rest of the
argument now follows by the next exercise.

Exercise 21. Check that in a large enough cartwheel C2n you can find all vertex neighbour-
hoods rotated by all those angles. If you prefer, you could also use the sun tiling (or the
star tiling) to find those neighbourhoods, and then apply the above theorem.
Example. The centre of the sun tiling has ten overlapping Aces meeting in the

centre, thus all ten of the above angles occur for the Ace vertex neighbourhood.

10. Average number of K,D per unit area of the plane

Consider a tiling by K,D. Recall Br(0) is the disc centred at 0 of radius r. Then, we
will now prove that,

#K inside Br(0)

#D inside Br(0)
→ φ

as r → ∞. So the average number of Kites over Darts on larger and larger discs will
approximate the golden number (!). There is nothing special about the ball Br(0): you
could also use larger and larger squares, or larger and larger hexagons.
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In general, you can take any sequence R1, R2, . . . of larger and larger convex regions.
“Larger and larger” means we require that, given any large ball Br(0), there is some N so
that all Rn contain Br(0) for n ≥ N .

Exercise 22. In the process of inflation, count how many φK get produced from each K
and from each D. Similarly count how many φD get produced. Deduce that, starting with
any partial tiling by K,D,

lim
n→∞

#φnK after the n-th Inflation

#φnD after the n-th Inflation
= φ.

Thus, for tilings by K,D arising by Inflations+Extension Theorem, if you take R1, R2, . . .
to be the (possibly non-convex) regions obtained by repeated Inflations, then φ is the limit
of the ratios (number of K inside Rn)/(number of D inside Rn) as n → ∞.

In the Exercises, you will show that, in general, you cannot drop the assumption about
convexity: if you were allowed to choose non-convex regions R1, R2, . . ., then you can in
fact make the ratios (#K inside Rn)/(#D inside Rn) converge to any number you like.26

Theorem 23. Take any sequence R1, R2, . . . of larger and larger convex regions of the
plane. Then for any tiling of the plane by K,D the ratio of numbers of K,D tiles converge:

lim
n→∞

#K inside Rn

#D inside Rn
= φ.

Proof. (There are probably shorter and easier proofs of this – try to find one!)
By the subdivision trick, we can pass from a tiling by K,D to a tiling by A,B. Each K

gives rise to two A, and each D gives rise to two B. So:27

#A inside Rn

#B inside Rn
=

2#K inside Rn

2#D inside Rn
=

#K inside Rn

#D inside Rn
.

So it remains to show that the ratio of the number of As over the number of Bs converges
to φ. Recall the two composition tricks:

Ignoring markings (since we only care about counting tiles), these compositions can be
summarised by the equations:

φB = A+B
φA = A+ φB

= A+ (A+B).

26The idea is similar to the Exercise, mentioned in my other Masterclasses Lecture notes, where you
rearrange a certain series so that the infinite sum converges to any number you like.

27The first equality is not quite right, but it is correct in the limit n → ∞. There may be a few K,D
intersecting the boundary ∂Rn which subdivide to give copies of A,B which are inside Rn.
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Let’s see what happens when we keep rescaling by φ the tiles28

φA = A+ (A+B) φB = A+B
φ2A = 2A+ 3(A+B) φ2B = A+ 2(A+B)

= 5A+ 3B = 3A+ 2B
φ3A = 5A+ 8(A+B) φ3B = 3A+ 5(A+B)

= 13A+ 8B B = 8A+ 5B

Can you see a pattern?
The coefficients in the equation are the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . ., from

Section 3.2.

Exercise 24. Show by induction on n that

φnA = F2n+1A+ F2nB
φnB = F2nA+ F2n−1B.

Now consider what happens when you apply Composition n times to the given tiling T
by K,D. You obtain a tiling Tn by φnK,φnD.

Easy Case: suppose a region E is exactly equal to a union of some tiles of Tn

(we don’t care whether E is convex or not).
Let’s say that E consists of a copies of φnA and b copies of φnB. Now apply the above
formulas for φnA and φnB:

E contains aF2n+1 + bF2n copies of A
E contains aF2n + bF2n−1 copies of B.

Therefore:
#A inside E

#B inside E
=

aF2n+1 + bF2n

aF2n + bF2n−1

=
aF2n+1

F2n
+ b

a+ bF2n−1

F2n

' aφ+ b

a+ b 1φ
=

aφ+ b

aφ+ b
· φ = φ.

Explanation of the above: we divided top and bottom by F2n because we wanted to obtain

fractions F2n+1

F2n
and F2n

F2n−1
whose limits we know are φ, by Exercise 11. So for large n those

fractions are approximately equal to φ: F2n+1

F2n
' φ and F2n

F2n−1
' φ.

Easy Case: suppose we have a sequence of larger and larger regions E1, E2, . . .,
such that, for each n, En is exactly equal to some union of tiles from Tn.

Then we can take the limit of the above approximations (see the next exercise):

lim
n→∞

#A inside En

#B inside En
= φ.

Exercise 25. There is a small gap in the above argument: the values a and b also depend
on n, so we cannot treat them as constants when we take the limit n → ∞ (that is: a = an,
b = bn depend on n and will typically also grow to infinity). You need to check29 that the
above approximation nevertheless converges to φ.

28To find φn+1A in terms of A,B you cannot simply replace φn+1 by φn+1 = Fn + Fn+1 · φ, the formula
we found in Section 3.2. That’s because the equalities “φB = A+B” aren’t really meaningful as numbers,
it is just an abbreviation for how tiles are built out of other tiles.

29Hints. Write F2n
F2n−1

= φ+ sn, where you think of sn as a small error (indeed sn → 0 as n → ∞). Plug

this formula into
an

F2n+1
F2n

+bn

an+bn
F2n−1
F2n

to obtain a fraction of the form anφ+bn+error
anφ+bn+error

· (φ+ error), where you need to

check that the errors indeed do not matter in the limit.
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Hard Case: suppose we have larger and larger convex regions R1, R2, . . . (pos-
sibly unrelated to Tn).

One of the Exercises asks you to finish the proof in this case. Below are some hints –
Spoiler alert: stop reading if you do not want any hints!

Inside the convex region Rn, find the largest possible region En which is exactly equal to
a union of some tiles from Tn. These huge tiles are φnA,φnB so two vertices within a tile
are at most φn+1 distance apart. Let’s call Pn the perimeter of the region Rn. Then the
gap Gn = Rn \En between the two regions En ⊂ Rn has width at most φn+1 (the distance
between adjacent vertices), therefore

Area(Gn) ≤ Pn · φn+1.

For large n, this is very small compared to Area(En) (here we use the fact that the regions
R1, R2, . . . are becoming “larger and larger”, meaning: for sufficiently large n the regions
Rn contain the arbitrarily large disc Br(0)).

Finally, writing A(X), B(X) for the number of A or B tiles in region X, and using that
A(Rn) = A(En) +A(Gn), and similarly for B, we obtain

A(Rn)

B(Rn)
=

A(En)

B(En)
·
1 + A(Gn)

A(En)

1 + B(Gn)
B(En)

By the easy case, A(En)/B(En) → φ, so it remains to check that

A(Gn)

A(En)
→ 0

B(Gn)

B(En)
→ 0.

But this follows immediately from the fact that the area of Gn is tiny compared to En for
large n.

Exercise 26. Fill in the details for the very last step. It needs a little care since, you need
to check that it is not possible for the large En to have very few tiles of a certain type, say
A, because otherwise, in principle, Gn may have many tiles of type A making the fraction
above large, even though the area of Gn is small compared to En. To prove that, you need
to look at the possible vertex neighbourhoods (you need to expand the “sun” and the “star”
vertex neighbourhoods, which contain only one tile type, to see that the other type of tile
must arise nearby) �

11. Algorithm to decide whether a patch of tiles can be extended

Spoiler alert: this Section answers most of Exercise 2.

Theorem 27. A computer can decide in finite time whether a partial tiling by K,D can be
extended to a tiling of the plane.

Proof. Suppose that the partial tiling R can be extended to a tiling of the whole plane.
Recall in the proof of Theorem 18 that one looks for a huge vertex neighbourhood X in
Tn (the tiling obtained after n Compositions) which contains the region R. One can write
down an explicit formula for an n that works in terms of the diameter of the region R.

Now the cartwheel C4 contains all vertex neighbourhoods, and applying n Decompositions
we obtain C4+n (rescaled by φ−n). Therefore, a copy of R must sit inside C4+n.

Thus, given any partial tiling R, it is enough for the computer to build the cartwheel
C4+n (with n determined by the diameter of R) and check if there is a copy of R (this only
involves a finite number of calculations). If there isn’t, then R cannot be extended to a
tiling of the plane. �
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12. There are many different Penrose tilings of the plane

Spoiler alert: this Section answers most of Exercise 13.

Theorem 28. There are uncountably many different tilings by K,D. Indeed, there is a
bijection between R and the possible different tilings (they have the same cardinality).

Sketch proof. Given a tiling by K,D, apply the subdivision trick to obtain a tiling by A,B.
More precisely, this is now a tiling by four types of tiles: A1, A2, B1, B2. Indeed recall that,
for example, subdividing K gives two halves, the left-half is A1 and the right-half is A2:
due to the markings these are actually different tiles, differing by a reflection.

Exercise 29. Show that composition trick 1 (A,B ⇒ A,φB′) is of the following two types:

B2 +A1 = φB′
2 or B1 +A2 = φB′

1

(the first type is drawn in the picture in Section 4.2).
Show that composition trick 2 (A,φB′ ⇒ φA′, φB′) is of the following two types:

A1 + φB′
1 = φA′

1 or A2 + φB′
2 = φA′

2.

(the first type is drawn in the picture in Section 4.3).

Given any point p ∈ R2 you can now specify “coordinates” which tell you in which tile p
is located in the tiling, as follows.

Starting with the given tiling T = T0, apply Composition many times to obtain: T1, T2, T3, . . .
After n Compositions we obtain Tn, which is a tiling by φnA1, φ

nA2, φ
nB1, φ

nB2.
One30 of these tiles contains p, let’s say this is a tile of type φnTn,p where Tn,p ∈

{A1, A2, B1, B2}. Thus, to p, we have associated a sequence involving the symbolsA1, A2, B1, B2:

T0,p, T1,p, T2,p, T3,p, . . . .

These are called the coordinates for p, and the Tn,p are called the entries.
Example. In the following picture, after 4 Compositions the point p lies

in the huge tile φ4A2, so T4,p = A2. The first five entries of the coordinates

for p are: A1, B2, B2, A2, A2. Try to check this with a pencil (in the next example,

we will explain this further).

30There may be several choices when p lies on an edge or on a vertex of a tile of T , but this is not a
serious issue. We could simply stipulate that p should be in the interior of some tile of T .
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Notice that, given Tn,p, if we apply Decomposition n times (that is, the reverse of the
Compositions above), then we are back to a patch of tiles Rn inside T : so we have obtained
a neighbourhood of tiles surrounding p.

Exercise 30. Check that these patches R1 ⊂ R2 ⊂ . . . are roughly31 concentric around p,
and that the Rn converge to the tiling T as n → ∞.

Thus, the “coordinates” of a point p tell you how to build T in practice, with centre p.
Example. For example, if the coordinates for p are: A1, B2, B2, A2, A2, . . .,

then the first three steps of the reconstruction are below, and the fourth step

gives the above picture of φ4A2. Notice that in the first two steps only one

of the two composition tricks was used, whereas in the third step we used both

(of combined type: B2 +A1 +A2 = φA′
2).

Now consider two points p, q ∈ R2. The first few entries of their coordinates may be
different, but eventually the entries will be the same32 because the tiles become so huge
that both p, q will be in the same huge tile φnTn,p = φnTn,q for all large enough n.

Thus, the entries of the coordinates of any two points can only differ in finitely many
places. We can define an equivalence relation on the collection of all sequences involving
A1, A2, B1, B2: we say that two sequences are equivalent if they only differ in finitely many
places. Thus, the coordinates of points all belong to a unique equivalence class, and once
you know the equivalence class you can reconstruct the tiling in practice, as we saw above.

More precisely, the equivalence class reconstructs the tiling up to translation and rotation
(the choice of the point p fixes the translation, and of course the coordinates we get do not

31This is not entirely correct, there are exceptions caused by a reflection symmetry, see the next footnote.
32This is not entirely correct, there are exceptions caused by a reflection symmetry:
Suppose that in the above example, the sequence of moves repeats itself after reaching the first A2. So for

example from φ3A′
2 instead of φ4A2 (obtained by composition trick 2) we instead get φ4B1 (via composition

trick 1), just like the first move when we passed from A1 to φB′
2 (composition trick 1). Then the sequence

we get is A1, B2, B2, A2, B1, B1, A1, B2, B2, A2, . . .. The problem is that the shaded tile (the original tile
containing p) would always be touching the edge with the arrow of the A-triangles that we build. So we
would actually be constructing a tiling of the half-plane (consider the limit of the nested A-triangles). If
this is to become a tiling, there must be a copy of the original A-tile reflected on the other side of the line
that defines the half-plane. Now you can check that a point in that tile, A2, must have the same coordinates
except with all indices switched (so A2, B1, B1, A1, B2, . . .) otherwise the two half-plane tilings will not match
along the line separating them. So the two half-plane tilings are reflections of each other.

Thus, in this case, two points p, q on different sides of the separating line will have sequences which do
not eventually agree: they only eventually agree if we switch all indices of the sequence for q.

In any case, such sequences with repetitions will not play a serious role in determining the cardinality
since they are countable (just like Q is the countable subset of decimal numbers in R which eventually have
a block of decimal numbers that keeps repeating).
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change if we rotate the tiling, whereas a reflection will be detected by the coordinates since
that switches all A1 ↔ A2, B1 ↔ B2).

The collection of all possible sequences involving four symbols (such as A1, A2, B1, B2) has
the same cardinality as R as follows. It is enough to check that it has the same cardinality
as the interval [0, 1] (observe that [0, 1] has the same cardinality as R since R is a countable
union of intervals of length 1). Now write decimal numbers in [0, 1] in base 4 and replace
0, 1, 2, 3 by the symbols A1, A2, B1, B2 to get the corresponding sequence. This is not quite
correct, since some decimal numbers in base 4 are identified (such as 0.3333 . . . = 1.0000 . . .):
but there are only countably many such, so the cardinality is not affected by this mistake.
Finally, the collection of equivalence classes also has cardinality R since each equivalence
class contains only countably many sequences.33

So we are done? Not quite: we have not shown that each equivalence class arises from
some tiling by K,D. In fact, this is not true. The following exercise asks you to study
which equivalence classes arise from tilings.

Exercise 31. Not all sequences involving A1, A2, B1, B2 arise from tilings. Can you describe
which ones do?34 Check that this subset of the equivalence classes still has cardinality R. �
Remark 32. Notice that the above proof also gives you a very explicit way to build lots of
Penrose tilings in practice, thus answering much of the discussion in Section 2.1.
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33pick a sequence, then all other sequences in the class are given by changing finitely many entries: that’s
countably many choices.

34Hint. the four types of composition tricks mentioned in Exercise 29 impose constraints on the sequences,
since the sequences must be consistent with Composition. I think you should get that: after a B-letter the
next letter must have the same index (for B1: either B1, B1 or B1, A1 is allowed), whereas an A-letter can
be followed by anything except a B-letter of the same index (so not A1, B1 and not A2, B2).


