#### LECTURE 3.

## PART III, MORSE HOMOLOGY, 2011 HTTP://MORSEHOMOLOGY.WIKISPACES.COM

## 1.3. Sard's theorem.

| <b>Fact.</b> <sup>1</sup> For smooth $f: M \to N$ , |                                                     |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|                                                     | Almost every point of $N$ is a regular value of $f$ |  |  |  |  |

This means: {critical values} =  $f({\text{critical points}})$  is a set of measure zero<sup>2</sup> in N. Equivalently: {regular values}  $\subset N$  has full measure, so these points are "generic".

**Cor.**  $\{regular values\} \subset N \text{ is dense.}$ 

*Pf.* Non-empty open sets in  $\mathbb{R}^n$  have measure > 0.

**Rmk.** M, N need not be compact. The result only uses that M is second countable.<sup>3</sup>

**Fact.** For  $C^k$ -maps<sup>4</sup>  $f: M^m \to N^n$ , the above fact holds provided k > m - n. (Here M, N need not be smooth, just need  $C^k$ -mfds: the transition maps are  $C^k$ .)

# Examples.

- (1)  $f : \mathbb{R}^m \to \mathbb{R}, x \mapsto \sum x_i^2 1$ 0 regular value, so  $f^{-1}(0) = S^{m-1}$  mfd of dim = m 1.
- (2)  $f: Matrices_{n \times n} \to Symmetric Matrices_{n \times n}, A \mapsto A^T A$ I regular value, so  $f^{-1}(0) = O(n)$  mfd of  $\dim = n^2 - \frac{n(n+1)}{2}$ . (3) Hwk.<sup>5</sup> Sard  $\Rightarrow$  homotopy groups  $\pi_i(S^n) = 0$  for i < n.

#### 1.4. Transversality.

## Motivation:

| $q \in N$ regular value                      | $\Rightarrow$ | $f^{-1}(q) \subset M$ submfd    |
|----------------------------------------------|---------------|---------------------------------|
| ① submfd $Q \subset N$ satisfying?           | $\Rightarrow$ | $f^{-1}(Q) \subset M$ submfd    |
| $@$ submfds $Q_1, Q_2 \subset N$ satisfying? | $\Rightarrow$ | $Q_1 \cap Q_2 \subset N$ submfd |

① Pretend N/Q made sense ② ⇒  $F: M \xrightarrow{f} N \rightarrow N/Q \ni \overline{q} = Q/Q$ 

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

<sup>&</sup>lt;sup>1</sup>If you are curious about its non-examinable proof, see Milnor's Topology from the Differentiable Viewpoint, or Guillemin & Pollack, Differential Topology.

<sup>&</sup>lt;sup>2</sup>A subset S of  $\mathbb{R}^n$  has measure zero if  $\forall \varepsilon > 0$ ,  $\exists$  countable covering of S by cubes  $C_i$ , with  $\sum \operatorname{vol}(C_i) < \varepsilon$ . A subset S of a mfd N has measure zero if for any chart  $\varphi : U \to \mathbb{R}^n, \, \varphi(S \cap U)$ has measure 0 (it's enough to require this for a covering  $\varphi_i : U_i \to \mathbb{R}^n$ ). Example:  $\mathbb{Q} \subset \mathbb{R}$ . Useful facts: countable unions of measure 0 sets have measure 0;  $C^1$ -maps between subsets of  $\mathbb{R}^n$  always map measure 0 sets to measure 0 sets.

 $<sup>^{3}</sup>Second \ countable =$  there is a countable covering by charts. This is always part of the definition of manifold. Consequence: any covering has a countable subcover.

<sup>&</sup>lt;sup>4</sup>k-times continuously differentiable maps, with  $k \ge 1$  so "regular/critical points" are defined.  $^5Non-examinable:$  the proof essentially shows Sard implies the cellular approximation theorem.

PART III, MORSE HOMOLOGY, L3

$$\begin{array}{l} \Rightarrow \ f^{-1}(Q) = F^{-1}(\overline{q}) \\ \Rightarrow \ f^{-1}(Q) \ \text{is mfd if } \overline{q} \ \text{regular value of } F \\ & \text{if } d_p F \ \text{surjective } \forall p \in F^{-1}(\overline{q}) \\ & \text{if } d_p F(T_p M) = T_{\overline{q}}(N/Q) \\ & \text{if } \hline d_p f(T_p M) + T_q Q = T_q N \qquad \forall p \in f^{-1}(q), \forall q \in Q \end{array}$$

**Def.**  $f: M \to N$  is transverse to Q if the above box holds. Write  $f \pitchfork Q$ . Thus

$$f \pitchfork Q \Rightarrow \begin{cases} f^{-1}(Q) \subset M \text{ submfd of codim} = \operatorname{codim} Q\\ T_p f^{-1}(Q) = \ker(T_p M \xrightarrow{d_p f} TN \longrightarrow TN/TQ) = \ker(D_p f : T_p M \longrightarrow \nu_{Q,q}) \end{cases}$$

$$Pf. \text{ Locally } Q \subset N \text{ is}^6 \mathbb{R}^a \subset \mathbb{R}^n, \text{ so "}N/Q" \text{ is well-defined locally: } \mathbb{R}^n/\mathbb{R}^a. \square$$

Explanation:  $\nu_Q = TN/TQ$  =normal bundle to  $Q \subset N$ , fibre  $\nu_{Q,q} = T_q N/T_q Q$ .  $D_p f$  is abuse of notation:<sup>7</sup>  $Df_p \cdot X$  = vertical projection of  $d_p f \cdot X$  at  $q = f(p) \in Q$ 

② For 
$$f: Q_1 \xrightarrow{} N$$
 and  $Q = Q_2 \subset N$ ,  
 $f^{-1}(Q) = Q_1 \cap Q_2 \subset N$ 



**Examples.**  $N \pitchfork$  any submfd! Two vector subspaces  $\subset \mathbb{R}^n$  are  $\pitchfork$  if they span  $\mathbb{R}^n$ .

Rmk.

1. dim  $Q_1 + \dim Q_2 < \dim N$  then  $Q_1 \pitchfork Q_2 \Leftrightarrow Q_1 \cap Q_2 = \emptyset$ 2. dim  $Q_1 + \dim Q_2 = \dim N$  then  $Q_1 \pitchfork Q_2 \Leftrightarrow \begin{cases} Q_1 \cap Q_2 \text{ finite set}^8 \\ TQ_1 \oplus TQ_2 \cong TN \text{ at } q \in Q_1 \cap Q_2 (*) \end{cases}$ 

In case 2. you can define an intersection number

$$Q_1 \cdot Q_2 = \#(Q_1 \cap Q_2) \mod 2 \in \mathbb{Z}/2\mathbb{Z}$$

If  $Q_1, Q_2, N$  oriented:<sup>9</sup>

$$Q_1 \cdot Q_2 = \#(Q_1 \cap Q_2) \in \mathbb{Z},$$

<sup>6</sup>Hwk 3:  $Q \to N$  immersion  $\Rightarrow$  locally has form  $(x_1, \ldots, x_a) \mapsto (x_1, \ldots, x_a, 0, \ldots, 0) \in \mathbb{R}^n$ . <sup>7</sup>f is not a section of  $\nu_Q$ , but the construction of that vertical projection is analogous. <sup>8</sup>assuming  $Q_1, Q_2$  are compact submanifolds. Otherwise, replace with "discrete set".

 $\mathbf{2}$ 

<sup>&</sup>lt;sup>9</sup>Non-examinable: it suffices that  $Q_1$  is oriented, and  $Q_2$  is co-oriented (= normal bundle  $\nu_{Q_2} = TN/TQ_2$  is oriented). Assign +1 to  $p \in Q_1 \cap Q_2$  if an oriented basis of  $T_pQ_1$  gives rise to an oriented basis of  $\nu_{Q_2}$ , and -1 else. When  $Q_1, Q_2, N$  are oriented, this sign agrees with the one above, if we orient so that  $TN|_{Q_2} \cong \nu_{Q_2} \oplus TQ_2$  preserves orientation ("normals first").

3

where # counts with sign +1 if the iso (\*) is orientation-preserving, -1 otherwise. Next time, we will deduce that one can always achieve  $Q_1 \pitchfork Q_2$  after perturbing

 $Q_1$  (or  $Q_2$ ), and in case 2. the value  $Q_1 \cdot Q_2$  is independent of the perturbation.

Motivation for stability and genericity. Transversality is stable and generic: Stable: perturbing preserves the property, generic: it can be achieved by perturbing.



1.5. Stability.

Recall a (smooth) homotopy  $f_t$  of  $f: M \to N$  means a smooth map

$$H: M \times [0,1] \to N$$
 with  $\begin{cases} f_t(x) = H(x,t) \\ f_0 = f \end{cases}$ 

Call  $f_0, f_1$  (smoothly) homotopic.

**Def.** A "property" P is stable for a class C of maps  $f: M \to N$ , if

 $\left. \begin{array}{l} f \in C \text{ satisfies } P \\ f_t \text{ homotopy} \end{array} \right\} \Rightarrow f_t \text{ satisfies } P \text{ for each } t < \varepsilon \quad (\varepsilon > 0 \text{ depending on } f, f_t) \end{array} \right.$ 

# Rmk.

- (1) Locally stable means  $\forall p \in M, \exists nbhd \ U \ni p \text{ such that } P \text{ is stable for the restrictions } \{f|_U : f \in C\}$
- (2) For compact M, one can often deduce stability from local stability, by covering M by such U, taking a finite subcover, taking min of  $\varepsilon$ 's.
- (3) Can use more general parameters  $t \in S = metric space$ .

**Stability Theorem.** M compact  $\Rightarrow$  the following classes are stable:

 $\{ local diffeos \} \\ \{ regular maps \} \\ \{ maps \ \Uparrow \ to \ a \ given \ topologically-closed \ submfd \ Q \subset N \}$ 

*Pf.* The definition of these classes locally involve the non-vanishing of some (sub) determinant of some differential. Use Rmk (2) to globalize.  $\Box$ 

Cor. Transversality is stable and it is an open condition.

*Pf.* Stability by Thm. Open: if not, find non-transverse  $f_n \to f$  as<sup>10</sup>  $n \to \infty$ . Produce a homotopy *H* of *f* with  $H(1/n, t) = f_n(t)$ . *H* contradicts stability.  $\Box$ 

**Rmk.** Here is a more direct proof that transversality is an open condition: **Claim 1.** regular points of any smooth map f of mfds forms an open set. **Pf.** Locally at regular p,  $d_p f = (I \ 0)$ . So for q close to p,  $d_q f = (T \ *)$  for some invertible T since invertibility is an open condition.<sup>11</sup> So q is regular.  $\Box$ Transversality can be expressed as a regularity condition, so it is also open.

<sup>&</sup>lt;sup>10</sup>the convergence is in  $C^{\infty}$ . Also  $C^1$  is enough: we just need the derivatives to converge.

<sup>&</sup>lt;sup>11</sup>If s is an operator with small norm (||s|| < 1 is enough), then  $(I+s)^{-1} = I - s + s^2 - s^3 + \cdots$  is a well-defined operator. If L is invertible and ||s|| < ||L|| then  $(L+s)^{-1} = (I+L^{-1}s)^{-1}L^{-1}$ .

### 1.6. Local to global examples.

**Thm.** Any compact mfd N can be embedded in some  $\mathbb{R}^k$ .

*Pf.* Cover N by all possible charts<sup>12</sup>  $\varphi : B(2) \to N$ .

Pick finitely many  $\varphi_i$  for which  $\varphi_i(B(1))$  cover N.

Let  $\beta = \text{bump function}^{13} B(2) \rightarrow [0, 1], \beta = 1 \text{ on } B(1), \beta = 0 \text{ near } \partial B(2).$  $\Rightarrow N \hookrightarrow \mathbb{R}^{(n+1) \cdot \# \text{charts}}$ 

 $p \mapsto (\beta(\varphi_i^{-1}(p)) \cdot \varphi_i^{-1}(p), \beta(\varphi_i^{-1}(p)))_{i=1,2,\dots}$  (zero entry for *i* if  $p \notin im\varphi_i$ ). Note we are keeping track of the  $\beta$  values to ensure global injectivity.  $\Box$ 

**Cultural Rmk.** Whitney proved  $N^n \hookrightarrow \mathbb{R}^{2n}$ . Transversality techniques from this course can easily prove  $N^n \hookrightarrow \mathbb{R}^{2n+1}$  (if you're curious, see Guillemin & Pollack).

**Def.** A tubular neighbourhood is a nbhd U of S with a regular retraction

 $\pi: U \to S.$ 

(Retraction just means  $\pi|_S = id_S$ ).

**Thm.** Any submanifold  $S \subset M$  has a tubular nbhd  $U \subset M$ .

*Pf.* Pick a Riemannian metric for M, use exp map.  $\Box$ 



Rmk.

- (1)  $U \stackrel{exp^{-1}}{\cong} nbhd \text{ of zero section of normal bundle } \nu_S$  $\pi \cong projection$
- (2) Converse:<sup>14</sup> A closed subset  $S \subset \mathbb{R}^k$  is a submfd  $\Leftrightarrow S$  is a smooth retract<sup>15</sup>

Pf. implicit function theorem for regular  $\pi: U \to S$ . Non-examinable details of Pf:



For  $p \in U$  near S, let  $X = d_p \pi(T_p U) \subset \mathbb{R}^k$  a v.subspace (secretly  $T_{\pi(p)}S$ ). Then  $\mathbb{R}^k = X \oplus Y$  some v.subspace Y. After lin change of coords,

$$d_p \pi = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} : X \oplus Y \to X \oplus Y,$$
  
with  $p = (0,0) \in X \oplus Y = \mathbb{R}^k$ . Define  
 $F : X \oplus Y \to X \oplus Y, F(x,y) = \pi(x,y) + y.$   
 $d_p F = I \Rightarrow InvFnThm \Rightarrow F^{-1}(s) = (g(s,0),0)$   
for  $s \in S$  defines chart  $s \mapsto g(s,0)$  at  $\pi(p) \in S$ .

 $<sup>{}^{12}</sup>B(r) = \text{open ball of radius } r, \text{ centre } 0, \text{ in } \mathbb{R}^n.$ 

<sup>&</sup>lt;sup>13</sup>You gain nothing from writing out explicitly a bump function you already know exists: Non-examinable: for b > a > 0, let  $\alpha(x) = e^{-1/x}$  for x > 0, 0 for  $x \le 0$ ; let  $\gamma(x) = \alpha(x-a) \cdot \alpha(b-x)$ ; let  $\delta(x) = \int_x^b \gamma / \int_a^b \gamma$ . Then  $\beta(x) = \delta(|x|)$  is 1 on  $|x| \le a$ , 0 on  $|x| \ge b$ ,  $\beta(x) \in (0, 1)$  for a < |x| < b. <sup>14</sup>the same proof shows this holds for  $C^r$ -mfds,  $\pi \neq C^r$ -map,  $r \ge 1$  (not just  $r = \infty$ ). <sup>15</sup>Smooth retract=  $\exists$  open nbhd U of S,  $\exists$  smooth  $\pi : U \to \mathbb{R}^k$  with  $\pi(U) \subset S$ ,  $\pi|_S = \mathrm{id}_S$ .