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1.3. Sard’s theorem.

Fact.1 For smooth f : M → N ,

Almost every point of N is a regular value of f

This means: {critical values} = f({critical points}) is a set of measure zero2 in N .
Equivalently: {regular values} ⊂ N has full measure, so these points are “generic”.

Cor. {regular values} ⊂ N is dense.

Pf. Non-empty open sets in Rn have measure > 0. �

Rmk. M,N need not be compact. The result only uses that M is second countable.3

Fact. For Ck-maps4 f : Mm → Nn, the above fact holds provided k > m − n.
(Here M,N need not be smooth, just need Ck-mfds: the transition maps are Ck.)

Examples.

(1) f : Rm → R, x 7→
∑

x2
i − 1

0 regular value, so f−1(0) = Sm−1 mfd of dim = m− 1.
(2) f : Matricesn×n → Symmetric Matricesn×n, A 7→ ATA

I regular value, so f−1(0) = O(n) mfd of dim = n2 − n(n+1)
2 .

(3) Hwk.5 Sard ⇒ homotopy groups πi(S
n) = 0 for i < n.

1.4. Transversality.

Motivation:

q ∈ N regular value ⇒ f−1(q) ⊂ M submfd
➀ submfd Q ⊂ N satisfying . . . ? ⇒ f−1(Q) ⊂ M submfd

➁ submfds Q1, Q2 ⊂ N satisfying . . . ? ⇒ Q1 ∩Q2 ⊂ N submfd

➀ Pretend N/Q made sense ,

⇒ F : M
f
→ N → N/Q ∋ q = Q/Q

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1If you are curious about its non-examinable proof, see Milnor’s Topology from the Differen-

tiable Viewpoint, or Guillemin & Pollack, Differential Topology.
2A subset S of Rn has measure zero if ∀ε > 0, ∃countable covering of S by cubes Ci, with∑
vol(Ci)<ε. A subset S of a mfd N has measure zero if for any chart ϕ : U → Rn, ϕ(S ∩ U)

has measure 0 (it’s enough to require this for a covering ϕi : Ui → Rn). Example: Q ⊂ R. Useful
facts: countable unions of measure 0 sets have measure 0; C1-maps between subsets of Rn always
map measure 0 sets to measure 0 sets.

3Second countable= there is a countable covering by charts. This is always part of the definition
of manifold. Consequence: any covering has a countable subcover.

4k-times continuously differentiable maps, with k ≥ 1 so “regular/critical points” are defined.
5Non-examinable: the proof essentially shows Sard implies the cellular approximation theorem.
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⇒ f−1(Q) = F−1(q)

⇒ f−1(Q) is mfd if q regular value of F

if dpF surjective ∀p ∈ F−1(q)

if dpF (TpM) = Tq(N/Q)

if dpf(TpM) + TqQ = TqN ∀p ∈ f−1(q), ∀q ∈ Q

Def. f : M → N is transverse to Q if the above box holds. Write f ⋔ Q.

Thm.

f ⋔ Q ⇒

{

f−1(Q) ⊂ M submfd of codim = codimQ

Tpf
−1(Q) = ker( TpM

dpf
// TN // TN/TQ) = ker(Dpf : TpM → νQ,q)

Pf. Locally Q ⊂ N is6 Ra ⊂ Rn, so “N/Q” is well-defined locally: Rn/Ra. �

Explanation: νQ = TN/TQ =normal bundle to Q ⊂ N , fibre νQ,q = TqN/TqQ.

Dpf is abuse of notation:7 Dfp ·X = vertical projection of dpf ·X at q = f(p) ∈ Q

➁ For f : Q1 N//
inclusion

�

�

and Q = Q2 ⊂ N ,

f−1(Q) = Q1 ∩Q2 ⊂ N.

Def. Q1, Q2 are transverse submfds of N ,

written Q1 ⋔ Q2, if

TqQ1 + TqQ2 = TqN ∀q ∈ Q1 ∩Q2
Q1

Q2

q

TqQ2

TqQ1

Examples. N ⋔ any submfd! Two vector subspaces ⊂ Rn are ⋔ if they span Rn.

Q1

Q2

Q1 ∩Q2

Cor.

Q1 ⋔ Q2 ⇒







Q1 ∩Q2 ⊂ N submfd

of codim = codimQ1 + codimQ2

Tq(Q1 ∩Q2) = TqQ1 ∩ TqQ2

Rmk.

1. dimQ1+dimQ2 < dimN then Q1 ⋔ Q2 ⇔ Q1 ∩Q2 = ∅

2. dimQ1+dimQ2 = dimN then Q1 ⋔ Q2 ⇔

{

Q1 ∩Q2 finite set8

TQ1 ⊕ TQ2
∼= TN at q ∈ Q1 ∩Q2 (∗)

In case 2. you can define an intersection number

Q1 ·Q2 = #(Q1 ∩Q2) mod 2 ∈ Z/2Z

If Q1, Q2, N oriented:9

Q1 ·Q2 = #(Q1 ∩Q2) ∈ Z,

6Hwk 3: Q → N immersion ⇒ locally has form (x1, . . . , xa) 7→ (x1, . . . , xa, 0, . . . , 0) ∈ Rn.
7f is not a section of νQ, but the construction of that vertical projection is analogous.
8assuming Q1, Q2 are compact submanifolds. Otherwise, replace with “discrete set”.
9Non-examinable: it suffices that Q1 is oriented, and Q2 is co-oriented (= normal bundle

νQ2
= TN/TQ2 is oriented). Assign +1 to p ∈ Q1 ∩ Q2 if an oriented basis of TpQ1 gives rise

to an oriented basis of νQ2
, and −1 else. When Q1, Q2, N are oriented, this sign agrees with the

one above, if we orient so that TN |Q2

∼= νQ2
⊕ TQ2 preserves orientation (“normals first”).
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where # counts with sign +1 if the iso (∗) is orientation-preserving, −1 otherwise.

Next time, we will deduce that one can always achieve Q1 ⋔ Q2 after perturbing

Q1 (or Q2), and in case 2. the value Q1 ·Q2 is independent of the perturbation.

Motivation for stability and genericity. Transversality is stable and generic:
Stable: perturbing preserves the property, generic: it can be achieved by perturbing.

perturb
perturb

nontransverse transversetransverse still transverse

1.5. Stability.

Recall a (smooth) homotopy ft of f : M → N means a smooth map

H : M × [0, 1] → N with

{

ft(x) = H(x, t)
f0 = f

Call f0, f1 (smoothly) homotopic.

Def. A “property” P is stable for a class C of maps f : M → N , if

f ∈ C satisfies P
ft homotopy

}

⇒ ft satisfies P for each t < ε (ε > 0 depending on f, ft)

Rmk.

(1) Locally stable means ∀p ∈ M , ∃ nbhd U ∋ p such that P is stable for the

restrictions {f |U : f ∈ C}
(2) For compact M , one can often deduce stability from local stability, by cov-

ering M by such U , taking a finite subcover, taking min of ε’s.
(3) Can use more general parameters t ∈ S = metric space.

Stability Theorem. M compact ⇒ the following classes are stable:

{local diffeos}
{regular maps}
{maps ⋔ to a given topologically-closed submfd Q ⊂ N}

Pf. The definition of these classes locally involve the non-vanishing of some (sub)
determinant of some differential. Use Rmk (2) to globalize. �

Cor. Transversality is stable and it is an open condition.

Pf. Stability by Thm. Open: if not, find non-transverse fn → f as10 n → ∞.
Produce a homotopy H of f with H(1/n, t) = fn(t). H contradicts stability. �

Rmk. Here is a more direct proof that transversality is an open condition:

Claim 1. regular points of any smooth map f of mfds forms an open set.

Pf. Locally at regular p, dpf = (I 0). So for q close to p, dqf = (T ∗) for

some invertible T since invertibility is an open condition.11 So q is regular. �

Transversality can be expressed as a regularity condition, so it is also open.

10the convergence is in C∞. Also C1 is enough: we just need the derivatives to converge.
11If s is an operator with small norm (‖s‖ < 1 is enough), then (I+s)−1 = I−s+s2−s3+ · · ·

is a well-defined operator. If L is invertible and ‖s‖ < ‖L‖ then (L + s)−1 = (I + L−1s)−1L−1.
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1.6. Local to global examples.

Thm. Any compact mfd N can be embedded in some Rk.

Pf. Cover N by all possible charts12 ϕ : B(2) → N .
Pick finitely many ϕi for which ϕi(B(1)) cover N .
Let β = bump function13 B(2) → [0, 1], β = 1 on B(1), β = 0 near ∂B(2).

⇒ N →֒ R(n+1)·#charts

p 7→ (β(ϕ−1
i (p)) ·ϕ−1

i (p), β(ϕ−1
i (p)) )i=1,2,... (zero entry for i if p /∈ imϕi).

Note we are keeping track of the β values to ensure global injectivity. �

Cultural Rmk. Whitney proved Nn →֒ R2n. Transversality techniques from this

course can easily prove Nn →֒ R2n+1 (if you’re curious, see Guillemin & Pollack).

Def. A tubular neighbourhood is a nbhd U of S with a regular retraction

π : U → S.

(Retraction just means π|S = idS).

Thm. Any submanifold S ⊂ M has a tubular nbhd U ⊂ M .

Pf. Pick a Riemannian metric for M , use exp map. �

S

U
geodesic ⊥ S

πx x point to x in S)
(fact: πx = closest

Rmk.

(1) U
exp−1

∼= nbhd of zero section of normal bundle νS
π ∼= projection

(2) Converse:14 A closed subset S ⊂ Rk is a submfd ⇔ S is a smooth retract15

Pf. implicit function theorem for regular π : U → S. �

Non-examinable details of Pf:

(x, y)

π(x, y)

p

Y

S

πp
X

X

For p ∈ U near S, let X = dpπ(TpU) ⊂ Rk a

v.subspace (secretly Tπ(p)S). Then Rk = X⊕Y

some v.subspace Y . After lin change of coords,

dpπ = [ I 0
0 0 ] : X ⊕ Y → X ⊕ Y,

with p = (0, 0) ∈ X ⊕ Y = Rk. Define

F : X ⊕ Y → X ⊕ Y, F (x, y) = π(x, y) + y.

dpF = I ⇒ InvFnThm ⇒ F−1(s) = (g(s, 0), 0)
for s ∈ S defines chart s 7→ g(s, 0) at π(p) ∈ S.

12B(r) = open ball of radius r, centre 0, in Rn.
13You gain nothing from writing out explicitly a bump function you already know exists:

Non-examinable: for b > a > 0, let α(x) = e−1/x for x > 0, 0 for x ≤ 0; let γ(x) = α(x−a)·α(b−x);

let δ(x) =
∫ b
x
γ/

∫ b
a
γ. Then β(x) = δ(|x|) is 1 on |x| ≤ a, 0 on |x| ≥ b, β(x) ∈ (0, 1) for a < |x| < b.

14the same proof shows this holds for Cr-mfds, π a Cr-map, r ≥ 1 (not just r = ∞).
15Smooth retract= ∃ open nbhd U of S, ∃ smooth π : U → Rk with π(U) ⊂ S, π|S = idS .


