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2.3. Fredholm theory.

Def. A bounded linear map L : A → B between Banach spaces is a Fredholm
operator if kerL and cokerL are finite dimensional.

Def. A map f : M → N between Banach mfds is a Fredholm map if dpf : TpM →
Tf(p)N is a Fredholm operator.

Basic Facts about Fredholm operators

(1) K = kerL has a closed complement A0 ⊂ A.
(so the implicit function theorem applies to Fredholm maps).
Pf. pick basis v1, . . . , vk ofK, pick dual1 v∗1 , . . . , v

∗

k ∈ A∗. A0 = ∩ ker v∗i . �

(2) im(L) = image(L) ⊂ B is closed.
(so cokerL = B/im(L) is Banach)
Pf. pick complement C to im(L). C is finite dim’l, so closed, so Banach.

⇒ L : A/K ⊕ C → B,L(a, c) = La+ c

is a bounded linear bijection, hence an iso (open mapping theorem). So
L(A/K) = Im(L) is closed. �

(3) A = A0⊕K, B = B0⊕C where B0 = im(L), C = complement (∼= cokerL).

⇒ L =
[

iso 0
0 0

]

: A0 ⊕K → B0 ⊕ C

Def. index(L) = dim kerL− dim coker L.
(4) Perturbing L preserves the Fredholm condition and the index:

Claim.2 s : A→ B bdd linear with small norm⇒ ∃ “change of basis” isos

i : A ∼= B0 ⊕K
j : B ∼= B0 ⊕ C such that j ◦ (L+ s) ◦ i =

[

I 0
0 ℓ

]

for some linear map ℓ : K → C. Note: dimker drops by rank(ℓ), but also
dim coker drops by rank(ℓ). So index(L) = index(L + s).
Proof. s =

[

a b
c d

]

, L = [ T 0
0 0 ] (where T is an iso). So:

[

I 0
−c(T+a)−1 I

]

·
[

T+a b
c d

]

·
[

I −(T+a)−1b

0 I

]

=
[

I 0
−c(T+a)−1 I

]

·
[

T+a 0
c −c(T+a)−1b+d

]

=
[

T+a 0
0 −c(T+a)−1b+d

]

where we use that (T + a)−1 is defined for small ‖s‖:

(T + a)−1 = [T (I + T−1a)]−1 = (I − T−1a+ (T−1a)2 − (T−1a)3 + · · · )T−1

that power series converges provided ‖T−1a‖ < 1, which we guarantee by:
‖T−1

a‖<1⇐‖T−1‖<‖a‖−1⇐‖T−1‖<‖s‖−1⇐‖s‖<‖T−1‖−1 (since ‖s‖≥‖a‖).

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1v∗i (vj) = δij , the v∗i exist by the Hahn-Banach theorem.
2Claim implies dimkerL is upper semicontinuous: dimker(L+ s) ≤ dimkerL, for small ‖s‖.
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Cor. M connected, f Fred map ⇒ index (f) = index dpf is indep of p ∈M .

2.4. Sard-Smale Theorem.

f : M → N smooth Fred map ⇒ {regular values of f} ⊂ N is a Baire set.

Baire set is a geometer’s analogue of “full measure” or “generic” for Banach mfds.

Def. S⊂N is a Baire set3 if S contains a countable intersection of open dense sets.

Baire category thm. A Baire set in a complete metric space4 is dense.

Proof of Sard-Smale.

Claim 1. ∃ charts M⊃U →֒A∼=B0⊕K
N⊃V →֒B∼=B0⊕C

such that locally f(b, k) =
[

I 0
0 ℓ(b,k)

]

, for some

nonlinear ℓ : B0 ⊕K → C.

Pf. Centre the charts around p ∈ U , f(p) ∈ V . Take K = kerdpf , C ∼= cokerdpf .
So f : B0 ⊕ K → B0 ⊕ C, f(0, 0) = (0, 0), d(0,0)f =

[

I 0
0 0

]

. Implicit fn thm5 ⇒

(after a change of charts) f(b, k) = (b, ℓ(b, k)) X

Claim 2. f is locally closed6 (indeed closed in the above charts).

Pf. Suppose f(bn, kn) → (b, c), (bn, kn) ⊂ bounded open ⊂ B0 ⊕K. By Claim 1,
bn → b. Now kn bdd, K finite dim’l ⇒ ∃ cgt subseq kn → k. So f(b, k) = (b, c) X

Claim 3. We can reduce to Sard’s theorem:

From a cover by charts as above, pick7 a countable subcover of M , so reduce to
f |U : U → V . Claim. Vreg = {regular values of f |U} ⊂ V is open and dense.8

Pf. (critical points of f |U ) ⊂ U is closed,9 so by Claim 2, Vreg is open X

d(b,k)f =
[

I 0
∗ d(b,k)ℓ|K

]

surjective ⇔ d(b,k)ℓ|K surjective

Note: d(b,k)ℓ|K = dk(ℓb) for ℓb : K → C, k 7→ ℓ(b, k) ← map of finite dim’l spaces!
⇒ Vreg ∩ ({b} ⊕ C) = (reg. val’s of ℓb) ⊂ {b} ⊕ C ← dense inclusion by Sard!
⇒ Vreg ⊂ V dense X �

3or generic set, or residual set. We often produce S = countable intersection of dense opens.
4 Banach mfds are (complete) metric spaces. Non-examinable proof: Urysohn’s metrization

theorem says every second-countable regular space is metrizable. Banach mfds are by definition
second-countable. Regular space means given a point p not contained in a closed subset C, there
exist disjoint open nbhds of p and C (for Banach mfds, take a chart centred at p, then consider
the ε-radius open ball centre p and the complement of the 2ε-radius closed ball centre p).

5f(b, k) = (α(b, k), β(b, k)). Inverse fn thm ⇒ ∃ local inverse to h : B0 ⊕ K → B0 ⊕ K,
h(b, k) = (α(b, k), k) near (0, 0). Hence f ◦ h−1(b, k) = (b, ℓ(b, k)). �

6locally, closed sets map to closed sets.
7Banach mfds are defined to be second-countable, hence Lindelöf (covers have ctble subcovers).

Non-examinable remark: I want Banach mfds to be metric spaces (see footnote 4). For metric
spaces: second-countable ⇔ separable ⇔ Lindelöf. As far as I know, if I replace second-countable
by separable, then it’s not clear Banach mfds are metric, so it’s not clear Baire category applies.

8So the regular values of f is the intersection of the regular values of all f |U ’s, so it’s a countable
intersection of open dense sets, as required.

9Regular points of any smooth map of Banach mfds form an open set: at regular p, dpf = [I 0]
(after change of basis), so for q close to p, dqf = [T ∗] for some invertible T since invertibility is

an open condition (which is proved by the power series argument as in (4) of 2.3).
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Thm. If f : M → N is a Fredholm Ck-map of Ck-Banach mfds, then Sard-Smale
holds provided k > index(f).

Proof. lb : K → C, index(f) = dimK − dimC, now use Ck-Sard (see 1.3). �

Cor. F : M × S → N smooth map of Banach mfds, Q ⊂ N submfd, F ⋔ Q, such
that DmFs : TmM → νQ,Fs(m) is Fredholm. Then Fs ⋔ Q for generic s ∈ S.

Proof. Parametric transversality 1 & 2 (using Sard-Smale and Hwk 6). �

2.5. Zero sets of Fredholm sections.

Def. Banach vector bundle π : E → B with fibre V , is defined analogously to
finite dimensional vector bundles after replacing E,B by Banach mfds, and V by a
Banach space.

Thm. For a Banach vector bundle E →M ×S and a smooth section F : M ×S →
E, assume for all (m, s) with F (m, s) = 0 that

(1) D(m,s)F : T(m,s)(M × S)
dF
−→ T(m,s,0)E → E(m,s) is surjective

(2) DmFs : TmM → E(m,s) Fredholm

Then, for generic s ∈ S,
{

F−1
s (0E) ⊂M submfd of dim = index (DmFs) (near m)

TmF−1
s (0E) = ker(DmFs : TmM

surj
−→ E(m,s))

Proof. This is a direct consequence of the Corollary, but since it’s important:
(1) ⇒ F ⋔ 0E ⇒ W = F−1(0) mfd (implicit fn thm10).
Write π : M × S → S for the projection, recall parametric transversality 2:

ker dπ|W ∼= kerDFs coker dπ|W ∼= coker DFs.

(2) ⇒ dπ|W Fredholm of index = index DFs.
Sard-Smale ⇒ for generic s, dπ|W is surjective along

π|−1
W (s) = W ∩ π−1(s)=F−1

s (0).

Hence DFs is surjective (by the iso of cokernels above). So F−1
s (0) mfd and

TF−1
s (0) ∼= kerDFs

with dimTmF−1
s (0) = dim kerDmFs = index DmFs (since cokerDmFs = 0). �

Thm. Thm also holds for Ck-maps of Ck-Banach mfds when k > index DFs.

Rmk. The dimension of F−1
s (0E) can vary depending on the connected component,

since index (DmFs) depends on the connected component of m. That is why we
wrote “near m” in the Thm.

10Hwk 6 checks the closed complement condition. You should check that Cor 1.2 (implicit
function theorem) works also for Banach mfds.


