LECTURE 6.

PART III, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

2.3. Fredholm theory.

Def. A bounded linear map $L: A \to B$ between Banach spaces is a Fredholm operator if ker L and coker L are finite dimensional.

Def. A map $f: M \to N$ between Banach mfds is a Fredholm map if $d_p f: T_p M \to T_{f(p)} N$ is a Fredholm operator.

Basic Facts about Fredholm operators

- (1) $K = \ker L$ has a closed complement $A_0 \subset A$. (so the implicit function theorem applies to Fredholm maps). Pf. pick basis v_1, \ldots, v_k of K, pick dual $v_1^*, \ldots, v_k^* \in A^*$. $A_0 = \cap \ker v_i^*$. \square
- (2) $\operatorname{im}(L) = \operatorname{image}(L) \subset B$ is closed. (so $\operatorname{coker} L = B/\operatorname{im}(L)$ is Banach)

Pf. pick complement C to im(L). C is finite dim'l, so closed, so Banach.

$$\Rightarrow \mathcal{L}: A/K \oplus C \to B, L(\overline{a}, c) = La + c$$

is a bounded linear bijection, hence an iso (open mapping theorem). So $\mathcal{L}(A/K) = \operatorname{Im}(L)$ is closed. \square

(3) $A = A_0 \oplus K$, $B = B_0 \oplus C$ where $B_0 = \operatorname{im}(L)$, $C = \operatorname{complement} (\cong \operatorname{coker} L)$. $\Rightarrow L = \begin{bmatrix} \operatorname{iso} & 0 \\ 0 & 0 \end{bmatrix} : A_0 \oplus K \to B_0 \oplus C$

Def. index $(L) = \dim \ker L - \dim \operatorname{coker} L$.

(4) Perturbing L preserves the Fredholm condition and the index:

Claim.² $s: A \to B$ bdd linear with small norm $\Rightarrow \exists$ "change of basis" isos

$$i:A\cong B_0\oplus K\ j:B\cong B_0\oplus C$$
 such that $j\circ (L+s)\circ i=\left[egin{smallmatrix}I&0\0&\ell\end{smallmatrix}\right]$

for some linear map $\ell: K \to C$. Note: dim ker drops by $\operatorname{rank}(\ell)$, but also dim coker drops by $\operatorname{rank}(\ell)$. So $\operatorname{index}(L) = \operatorname{index}(L+s)$.

Proof. $s = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $L = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$ (where T is an iso). So:

$$\begin{bmatrix} I & 0 \\ -c(T+a)^{-1} & I \end{bmatrix} \cdot \begin{bmatrix} T+a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} I & -(T+a)^{-1}b \end{bmatrix} = \begin{bmatrix} I & 0 \\ -c(T+a)^{-1} & I \end{bmatrix} \cdot \begin{bmatrix} T+a & 0 \\ c & -c(T+a)^{-1}b+d \end{bmatrix}$$
$$= \begin{bmatrix} T+a & 0 \\ 0 & -c(T+a)^{-1}b+d \end{bmatrix}$$

where we use that $(T+a)^{-1}$ is defined for small ||s||:

$$(T+a)^{-1} = [T(I+T^{-1}a)]^{-1} = (I-T^{-1}a+(T^{-1}a)^2-(T^{-1}a)^3+\cdots)T^{-1}$$

that power series converges provided $\|T^{-1}a\| < 1$, which we guarantee by: $\|T^{-1}a\| < 1 \Leftarrow \|T^{-1}\| < \|a\|^{-1} \Leftarrow \|T^{-1}\| < \|s\|^{-1} \Leftarrow \|s\| < \|T^{-1}\|^{-1}$ (since $\|s\| \ge \|a\|$).

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

 $v_i^*(v_i) = \delta_{ij}$, the v_i^* exist by the Hahn-Banach theorem.

²Claim implies dim ker L is upper semicontinuous: dim ker $(L + s) \le \dim \ker L$, for small ||s||.

Cor. M connected, f Fred map \Rightarrow index(f) = index $d_p f$ is indep of $p \in M$.

2.4. Sard-Smale Theorem.

$$f: M \to N$$
 smooth Fred map $\Rightarrow \{ regular \ values \ of \ f \} \subset N \ \text{is a } Baire \ set.$

Baire set is a geometer's analogue of "full measure" or "generic" for Banach mfds. **Def.** $S \subset N$ is a Baire set³ if S contains a countable intersection of open dense sets.

Baire category thm. A Baire set in a complete metric space⁴ is dense.

Proof of Sard-Smale.

Claim 1. \exists charts $\substack{M\supset U\hookrightarrow A\cong B_0\oplus K\\N\supset V\hookrightarrow B\cong B_0\oplus C}$ such that locally $f(b,k)=\begin{bmatrix}I&0\\0&\ell(b,k)\end{bmatrix}$, for some nonlinear $\ell:B_0\oplus K\to C$.

Pf. Centre the charts around $p \in U$, $f(p) \in V$. Take $K = \ker d_p f$, $C \cong \operatorname{coker} d_p f$. So $f: B_0 \oplus K \to B_0 \oplus C$, f(0,0) = (0,0), $d_{(0,0)} f = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$. Implicit fn thm⁵ \Rightarrow (after a change of charts) $f(b,k) = (b,\ell(b,k))$

Claim 2. f is locally closed (indeed closed in the above charts).

Pf. Suppose $f(b_n, k_n) \to (b, c)$, $(b_n, k_n) \subset$ bounded open $\subset B_0 \oplus K$. By Claim 1, $b_n \to b$. Now k_n bdd, K finite dim'l $\Rightarrow \exists$ cgt subseq $k_n \to k$. So $f(b, k) = (b, c) \checkmark$

Claim 3. We can reduce to Sard's theorem:

From a cover by charts as above, pick⁷ a countable subcover of M, so reduce to $f|_U: U \to V$. Claim. $V_{\text{reg}} = \{\text{regular values of } f|_U\} \subset V \text{ is open and dense.}^8$

Pf. (critical points of $f|_U$) $\subset U$ is closed, 9 so by Claim 2, V_{reg} is open \checkmark

$$d_{(b,k)}f=\begin{bmatrix} I & 0 \\ * & d_{(b,k)}\ell|_K \end{bmatrix}$$
 surjective $\Leftrightarrow d_{(b,k)}\ell|_K$ surjective

Note: $d_{(b,k)}\ell|_K = d_k(\ell_b)$ for $\ell_b: K \to C, k \mapsto \ell(b,k) \leftarrow$ map of finite dim'l spaces! $\Rightarrow V_{\text{reg}} \cap (\{b\} \oplus C) = \text{(reg. val's of } \ell_b) \subset \{b\} \oplus C \leftarrow \text{dense inclusion by Sard!}$ $\Rightarrow V_{\text{reg}} \subset V \text{ dense } \checkmark \square$

³or generic set, or residual set. We often produce S = countable intersection of dense opens.

⁴ Banach mfds are (complete) metric spaces. *Non-examinable proof:* Urysohn's metrization theorem says every second-countable regular space is metrizable. Banach mfds are by definition second-countable. *Regular space* means given a point p not contained in a closed subset C, there exist disjoint open nbhds of p and C (for Banach mfds, take a chart centred at p, then consider the ε -radius open ball centre p and the complement of the 2ε -radius closed ball centre p).

 $^{{}^5}f(b,k) = (\alpha(b,k), \beta(b,k))$. Inverse fn thm $\Rightarrow \exists$ local inverse to $h: B_0 \oplus K \to B_0 \oplus K$, $h(b,k) = (\alpha(b,k),k)$ near (0,0). Hence $f \circ h^{-1}(b,k) = (b,\ell(b,k))$. \square

⁶locally, closed sets map to closed sets.

 $^{^7}$ Banach mfds are defined to be second-countable, hence Lindelöf (covers have ctble subcovers). Non-examinable remark: I want Banach mfds to be metric spaces (see footnote 4). For metric spaces: second-countable \Leftrightarrow separable \Leftrightarrow Lindelöf. As far as I know, if I replace second-countable by separable, then it's not clear Banach mfds are metric, so it's not clear Baire category applies.

⁸So the regular values of f is the intersection of the regular values of all f|U's, so it's a countable intersection of open dense sets, as required.

⁹Regular points of any smooth map of Banach mfds form an open set: at regular p, $d_p f = [I\ 0]$ (after change of basis), so for q close to p, $d_q f = [T\ *]$ for some invertible T since invertibility is an open condition (which is proved by the power series argument as in (4) of 2.3).

Thm. If $f: M \to N$ is a Fredholm C^k -map of C^k -Banach mfds, then Sard-Smale holds provided k > index(f).

Proof.
$$l_b: K \to C$$
, index $(f) = \dim K - \dim C$, now use C^k -Sard (see 1.3).

Cor. $F: M \times S \to N$ smooth map of Banach mfds, $Q \subset N$ submfd, $F \pitchfork Q$, such that $D_m F_s : T_m M \to \nu_{Q, F_s(m)}$ is Fredholm. Then $F_s \pitchfork Q$ for generic $s \in S$.

Proof. Parametric transversality 1 & 2 (using Sard-Smale and Hwk 6).

2.5. Zero sets of Fredholm sections.

Def. Banach vector bundle $\pi: E \to B$ with fibre V, is defined analogously to finite dimensional vector bundles after replacing E, B by Banach mfds, and V by a

Thm. For a Banach vector bundle $E \to M \times S$ and a smooth section $F: M \times S \to M \times S$ E, assume for all (m, s) with F(m, s) = 0 that

- (1) $D_{(m,s)}F:T_{(m,s)}(M\times S)\stackrel{dF}{\longrightarrow} T_{(m,s,0)}E\to E_{(m,s)}$ is surjective (2) $D_mF_s:T_mM\to E_{(m,s)}$ Fredholm

Then, for generic $s \in S$,

$$\begin{cases} F_s^{-1}(0_E) \subset M \text{ submfd of } \dim = \operatorname{index} (D_m F_s) & (near \ m) \\ T_m F_s^{-1}(0_E) = \ker(D_m F_s : T_m M \xrightarrow{\operatorname{surj}} E_{(m,s)}) \end{cases}$$

Proof. This is a direct consequence of the Corollary, but since it's important:

 $(1) \Rightarrow F \pitchfork 0_E \Rightarrow W = F^{-1}(0) \text{ mfd (implicit fn thm}^{10}).$

Write $\pi: M \times S \to S$ for the projection, recall parametric transversality 2:

$$\ker d\pi|_W \cong \ker DF_s$$
 coker $d\pi|_W \cong \operatorname{coker} DF_s$.

 $(2) \Rightarrow d\pi|_W$ Fredholm of index = index DF_s .

Sard-Smale \Rightarrow for generic s, $d\pi|_W$ is surjective along

$$\pi|_W^{-1}(s) = W \cap \pi^{-1}(s) = F_s^{-1}(0).$$

Hence DF_s is surjective (by the iso of cokernels above). So $F_s^{-1}(0)$ mfd and

$$TF_s^{-1}(0) \cong \ker DF_s$$

with dim $T_m F_s^{-1}(0)$ = dim ker $D_m F_s$ = index $D_m F_s$ (since coker $D_m F_s = 0$).

Thm. Thm also holds for C^k -maps of C^k -Banach mfds when $k > index DF_s$.

Rmk. The dimension of $F_s^{-1}(0_E)$ can vary depending on the connected component, since $index(D_mF_s)$ depends on the connected component of m. That is why we wrote "near m" in the Thm.

¹⁰Hwk 6 checks the closed complement condition. You should check that Cor 1.2 (implicit function theorem) works also for Banach mfds.