
LECTURE 12.

PART III, MORSE HOMOLOGY, 2011

HTTP://MORSEHOMOLOGY.WIKISPACES.COM

4.9. Sobolev setup for the transversality theorem. Let M be a closed man-
ifold, f : M → R a Morse function, and fix critical points p 6= q ∈ Crit(f) and a
reference metric gM for M (all norms will refer to gM , not the variable metric g).

Consider the bundle mentioned in 4.0:
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F (u, g) = ∂su+ f ′

g(u)

U ×M

where:1

G = {Ck-metrics on M} (fix k ≥ 1)

U = {u ∈ W
1,2
loc (R,M) : u(s) → p, q as s→ −∞,+∞ and for large S we have :

u(s) = expp(ξ(s)) for s ≤ −S, some ξ ∈W 1,2((−∞,−S), TpM)

u(s) = expq(ξ(s)) for s ≥ +S, some ξ ∈W 1,2((+S,∞), TqM)}

E = {L2-vector fields along the paths u ∈ U}

By Sobolev, W 1,2
loc ⊂ C0

loc(R,M), so the u ∈ U are continuous, and requiring
convergence to p, q at ±∞ makes sense.
E is a vector bundle over U × G with fibre L2(u∗TM), the L2-sections of the

pull-back bundle u∗TM → R whose fibre is (u∗TM)s = Tu(s)M over s ∈ R.

Lemma. G is a smooth Banach manifold.

Proof. G ⊂ Ck(Sym2(T ∗M)) is an open subset of the space2 of symmetric 2-
forms on TM , since positive definiteness is an open condition. We have a regular
retraction π : U → M of a tubular nbhd of j : M →֒ R

a (so π ◦ j = id). Recall by
1.6, that for a Banach space B and a closed subset S ⊂ B,

S smooth retract of an open nbhd of S ⊂ B ⇒ S ⊂ B is a submfd.

Also recall that for any map ϕ : A → B of mfds, g metric on B, the pull-back
metric is defined by (ϕ∗g)a(v, w) = gϕa(dϕ · v, dϕ · w) for v, w ∈ TaA.
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Rmk. We cannot just say U ⊂ W 1,2(R,M): Sobolev spaces don’t make sense for non-

compact domains (unless you are considering sections of a bundle). Example: the constant
u : R → {p} ∈ M has

∫

R
|u(s)|2 ds = |p|2 ·

∫

R
1 ds = ∞ for |p| 6= 0 the norm of p ∈ M ⊂ R

a.

Similarly, continuous u converging to p, q have infinite L2-norm. So our Sobolev spaces would be
empty! We want each p ∈ Crit(f) to be considered to have zero norm, for that reason we chose
(canonical, using exp) charts around the critical points and require u to be W 1,2 in that chart.

2Example: g =
(

1 2
2 3

)

is the symmetric form dx⊗2+2dx⊗dy+2dy⊗dx+3dy⊗2, so g(∂x, ∂y) = 2.
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First note that

S = Ck(Sym2(T ∗M)) →֒ Ck(Sym2(T ∗U)), g 7→ π∗g

is a closed subset (injective since j∗π∗g = (πj)∗g = g). Secondly

Ck(Sym2(T ∗U)) → S, g 7→ π∗j∗g

is a retraction (since π∗j∗π∗j∗g = π∗(πj)∗j∗g = π∗j∗g). Finally, both these maps
are smooth since linear in g. Thus, by the above result, S is a smooth manifold,
hence also the open subset G is a smooth Banach manifold. �

Lemma. U is a smooth Banach manifold modeled on W
1,2
0 (R,Rm).

Proof. The reference metric defines and exp map, and by Cor 0.7: any C0-close
continuous paths u,w are homotopic through geodesic arcs joining u(s), w(s).

geodesic

w(s) = exp
u(s) v(s)

u(s)

Let ε > 0 be as in that Corollary. For each smooth u ∈ U , define

W = {expu(s) v(s) : v ∈W
1,2
0 (u∗DεTM)}

(so in particular, v(s) → 0 as s → ±∞). You can easily check that W ⊂ U , by
construction (this crucially uses the fact that u, exp are smooth maps, so expu v is
as smooth as v is). By Cor 0.7, and the density of C∞ maps inside W 1,2 maps, any
w ∈ U is within ε-distance of some smooth u ∈ U , therefore these W ’s cover U .

Let ∇ be the Levi-Civita connection for gM , then by parallel translation

R

R
m

u u∗TM ∼= R× R
m

so W 1,2
0 (u∗TM) ∼= W

1,2
0 (R,Rm), which is a Banach space. Thus the v are local

coordinates for U near u. You can easily check that transition maps on overlaps
are smooth, since they involve smooth maps u0, u1, exp. �

Rmk. For a Banach manifold M modeled on B, the tangent space is TmM = B

(compare with TxR
n ≡ R

n). For a chart ϕ :M ⊃ U → B define TM |U = ϕ(U)×B.

For another chart ψ : U ′ → B, the transition ϕ(U ∩ U ′) × B → ψ(U ′ ∩ U) × B is

(x, b) 7→ (x, dx(ψ ◦ ϕ−1) · b). In our example: TvW
1,2
0 (u∗DεTM) ≡W

1,2
0 (u∗TM)

Lemma. E is a smooth Banach vector bundle with fibre L2(R,Rm).

Proof. Consider parallel transport along geodesics:

u

exp
u(s)(t · v(s)) w = exp

u(s)(v(s))

R
m

R
m
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Pv : u∗TM
∼
−→ (expu v)

∗TM = w∗TM

Recall this map is smooth (since linear) and is an isometry. Now, consider its
dependence on v:

P :W 1,2
0 (u∗DεTM)× u∗TM

∼
−→

⋃

w∈W

w∗TM.

This is again smooth.3

Finally, consider parallel transporting L2-vector fields over u:

P : W 1,2
0 (u∗DεTM)× L2(u∗TM)

∼
−→ L2(

⋃

w∈W

w∗TM) = E|W .

This is well-defined since parallel transport is an isometry (so L2 sections map to L2

sections), and is invertible by doing parallel transport backwards. It is smooth for
the same reasons as before. As above, we can trivialize: L2(u∗TM) ∼= L2(R,Rm).
Thus we have obtained a trivialization of E|W :

E|W ∼=W × L2(R,Rm)

and two trivializations differ by smooth maps since u0, u1, exp are smooth. �

3Non-examinable: The ODE you solve is ∂t~x(t) = −Aexp
u(s)(tv(s))

((d expu(s))tv(s) ·v(s))·~x(t),

~x(0) ∈ Tu(s)M (where s ∈ R is fixed, t ∈ [0, 1] varies). Change v(s) to v(s) + λ~v(s): observe that

~x(1) is smooth in λ ∈ R because solutions of ODEs depend smoothly on initial conditions.


